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Two-mode Ginzburg-Landau theory of crystalline anisotropy for fcc-liquid interfaces
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We develop a Ginzburg-Landau (GL) theory for fcc crystal-melt systems at equilibrium by employing two
sets of order parameters that correspond to amplitudes of density waves of principal reciprocal lattice vectors
and amplitudes of density waves of a second set of reciprocal lattice vectors. The choice of the second set
of reciprocal lattice vectors is constrained by the condition that this set must form closed triangles with the
principal reciprocal lattice vectors in reciprocal space to make the fcc-liquid transition first order. The capillary
anisotropy of fcc-liquid interfaces is investigated by GL theory with amplitudes of (111) and (200) density
waves. Furthermore, we explore the dependence of the anisotropy of the excess free energy of the solid-liquid
interface on density waves of higher-order reciprocal lattice vectors such as (311) by extending the two-mode
GL theory with an additional mode. The anisotropy calculated using GL theory with input parameters from
molecular dynamics (MD) simulations for fcc Ni is compared to that measured in MD simulations.

DOI: 10.1103/PhysRevB.93.054114

I. INTRODUCTION

The critical role of anisotropic interface properties on den-
dritic growth has been established in the past few decades ana-
lytically and numerically [1-6]. In particular, the anisotropy of
the surface energy is one of the crucial physical quantities that
controls the size and growth rates of dendrites under common
solidification conditions where the solid-liquid interface can
be assumed to be in local thermodynamic equilibrium. Several
techniques have been developed to accurately compute the
solid-liquid interfacial energy from molecular dynamics (MD)
simulations and to successfully resolve its weak anisotropy
[7-14]. In spite of its importance in metallurgy, it is of interest
for scientists to understand the physical origin of the interfacial
anisotropy. Recent studies have demonstrated that the small,
yet important, interfacial anisotropy is related to the broken
symmetry of the solid at the interface [15-17].

MD calculations for a wide range of systems show con-
sistently that the capillary anisotropy for body-centered-cubic
(bcc) elements is smaller than that for face-centered-cubic
(fcc) ones [18,19]. Furthermore, the anisotropy parameters
characterized by Kubic harmonics expansions have similar
values for materials with the same crystal structures [11].
The universal observation that the interfacial anisotropy is
closely related to crystal structures motivates the study of
interfacial anisotropies using Ginzburg-Landau (GL) theory
for bee-liquid interfaces [15,20,21]. The order parameters of
this theory are the amplitudes of density waves corresponding
to the set of principal reciprocal lattice vectors, and the
phenomenological coefficients in the GL theory are derived
from density functional theory (DFT) of freezing [22-28].
The weak anisotropy of bcc-liquid systems calculated using
the GL theory is in quantitatively good agreement with MD
simulations [15]. Since the interfacial anisotropy is closely
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related to the lattice structure, the universality of the interfacial
anisotropy for bcc-liquid systems is also derived in the phase
field crystal (PFC) model [16,17,21] that is closely related to
GL theory.

The PFC model introduced by Elder et al. has been
successfully employed to tackle problems at the atomistic
length scale over the past decade [29—46]. This model exhibits
self-organized crystal-like structures, hence it is capable of
describing crystalline planes, elastic and plastic deformations,
and dislocations in crystals realistically. Thus, the PFC method
is a powerful tool to model interfaces and microstructural
evolution at atomistic scale due to its crystalline properties and
above-mentioned structure-dependent interfacial anisotropy.
However, in three dimensions, the stable crystal structure in the
standard PFC model is the bec lattice due to the fact that only
wave vectors around the principal reciprocal lattice vectors
in the PFC model are excited. Recent work has extended the
PFC method to model other crystal structures of interest, such
as fcc lattices [34,42], by incorporating more than one set of
reciprocal lattice vectors. However, the resulting anisotropy
of the solid-liquid interface free energy and its relationship to
the choice reciprocal lattice vectors has not been analyzed in
detail. In this paper, we employ the GL theory to investigate
interfacial anisotropies for fcc crystals. In contrast to GL
theory for bce-liquid systems, the fourth-order GL theory
with amplitudes of principal reciprocal lattice vectors cannot
form stable fcc-liquid interfaces [47,48]. Thus, we consider
the simplest fourth-order GL theory of the fcc-liquid interface
with two sets of reciprocal lattice vectors. The formulation
of two-mode GL theory is derived from density functional
theory freezing using the set of (200) density waves as the
second mode. The anisotropic density wave profiles and the
anisotropy of interfacial energies are calculated. Furthermore,
we examine the influence of higher-order reciprocal lattice
vectors such as (311) on the anisotropy of the interfacial
energy. The comparison of the anisotropy of the interfacial
energy between GL theory and MD simulations is discussed.
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II. TWO-MODE GINZBURG-LANDAU THEORY

The GL theory of the bcc-liquid interfaces developed
previously by Wu er al. successfully predicts the amplitude
profiles and interfacial anisotropies [15]. The order parameters
are the amplitudes of density waves corresponding to principal
reciprocal lattice vectors (110). The symmetries of principal
reciprocal lattice vectors of bcc lattices result in nonvanishing
cubic terms of amplitudes in the expansion of free energy in
DFT of freezing. The cubic terms give rise to a free-energy
barrier between the liquid and solid phases and make the
bee-liquid freezing transition first order [47]. However, for
the fcc lattices, a single set of reciprocal lattice vectors alone
cannot form a free-energy barrier due to the absence of the
cubic term. Thus, to formulate a first-order solid-liquid phase
transition for fcc lattices, one has to include not only the
principal reciprocal lattice vectors (111) but also a second
set of reciprocal lattice vectors, which form closed triangles
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with (111) in the reciprocal space. The candidates of the
second mode are sets of the reciprocal lattice vectors that
compose closed triads with (111) in reciprocal space, such as
(200),(220), etc. The number density of fcc lattices can be
approximated by the following form:

@) =no| 1+ Y w®e®” + 3 u@e® |, (1)

where the order parameters u; are amplitudes of density waves
corresponding to principal reciprocal lattice vectors (111) and
v; are amplitudes of density waves corresponding to the second
set of reciprocal lattice vectors (G). The free-energy functional
in GL theory is derived from density functional theory of
freezing; see Refs. [15,25,26]. The free-energy functional
that describes small density fluctuations of an inhomogeneous
liquid is
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where §n(¥) = n(r) — ng, and C(|F — 7')|) is the two-particle direct correlation function of the liquid and with Fourier transform,
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is related to the liquid structure factor S(g) = 1/[1 — C(g)]~'. Assuming a planar solid-liquid interface whose normal is along
z direction and the amplitudes of density waves vary slowly across the interface, we can expand the density fluctuation $n(r’) in

a Taylor series about z,
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where the higher-order terms are truncated under the assumption that the amplitudes «;’s and v;’s vary slowly across the interface.
The excess free-energy functional is calculated by substituting this expression in Eq. (2) and carry out the integral over 7.

In the integral over 7

’, the contribution from terms that are independent of (z — z’) in Eq. (4) leads to
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The contribution from terms that are linearly proportional to (z — z') in Eq. (4) is
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where C(g) =
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dC(gq)/dq. It does not contribute to the integral over 7 in Eq. (2) since contribution from density wave of +K

(+G ) cancel with that of — K (- G ;). The contribution from terms that are proportional to (z — z ) in Eq. (4)is
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where C”(q) = d*>C(q)/dq?. Finally, the excess free-energy functional Eq. (2) is
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Since the magnitude of the principal reciprocal lattice vectors
is determined by the location of the first peak of the liquid
structure factor, the first derivative of C(q) vanishes for g =
|K|. However, for the second set of reciprocal lattice vectors
(G), the coefficient of the square gradient terms depends on
the details of the shape of C(g) around g = |é| and also
depends on the magnitude of the transverse component of
the reciprocal lattice vectors. In order to have stable density
wave profiles across solid-liquid interfaces, the coefficient of
the square gradient terms must be positive, which requires
both C’(¢) < 0and C”(g) < O for all reciprocal lattice vectors
considered. To construct a simple two-mode GL theory for fcc-
liquid systems, cubic and quartic terms of # and v are required.
The symmetry of reciprocal lattice vectors determines which
combination of polynomials of u;’s and v;’s is allowed in
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the GL free-energy functional as discussed in the following
sections.

III. GL THEORY WITH (111) AND (200) MODES

The GL theory of equilibrium solid-liquid systems is
derived from DFT of freezing as shown in the previous section,
and the free energy is expanded as a power series of u;’s and
v;’s around its liquid state. We first illustrate a simple GL
theory for fcc-liquid systems by considering (200) reciprocal
lattice vectors as the second mode. With (111) principal
reciprocal lattice vectors and (200) reciprocal lattice vectors,
the simplest form of the excess free energy of fcc-liquid
systems can be written as
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¢;j = 1/8 and d;; = 1/6. The interface normal is represented
by 7 and it is set to be along the z direction. The coefficients
of square gradient terms are

1 "o I A

buci = =5 C" (1K) x (K; i), (12)
1 . .

bLdl = _EC”(|G200|) x (G, - )%, (13)
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where we divide the coefficient of the square gradient terms
for vg’s into the longitudinal part, which depends on the value
of the longitudinal component of G, and the transverse part,

which depends on the value of the transverse components of G.
Summing both sides of Eq. (12) and using the normalization

>, ci =1 gives

(G, - 1), (14)

by = —3C"(1Kin), (15)
and
¢ = 2(K; - 7). (16)

Similarly, using the normalization ), d* = land ), d/ =1
we obtain
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It is clear that the nonvanishing cubic term is a result of
closed triangles formed by two (111) vectors and one (200)
vector in the reciprocal space (e.g., [111],[111], and [200] as
shown in Fig. 1). In addition, two (111) vectors and two (200)
vectors form closed four-side polygons in reciprocal space,
which give rise to quartic terms u;u ;v v; in the excess free
energy. These quartic terms naturally ensure the stability of the
solid state. The coefficients ¢;jx, c;jx, and d;ji; are determined
by the ansatz that all geometrically distinct polygons in
reciprocal space with the same number of sides have the
same weight [15,20], and the sums of the ¢’s and d’s are
normalized to unity, which yields ¢;jx = 1/12, ¢;ji = 1/12,
and d;j;; = 1/24. Note that the equal-weight ansatz is made
due to the lack of information of the higher-order direct
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FIG. 1. Example of principal reciprocal lattice vectors of fcc
lattices forming a closed triangle in reciprocal space.
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correlation functions, which are difficult to obtain. Generally,
the weight of polygons with 7 sides is related to the n-particle
direct correlation function, which not only depends on the
magnitude of reciprocal lattice vectors but also the angles
between these vectors [49]. Different ansatz for the weight of
polygons is discussed in the derivation of amplitude equations
of PFC model [21] and also by Téth and Provatas [17]. If
one assumes higher-order correlation functions are constant,
then all closed polygons (all repetitive closed polygons) have
the same weight, which yields ¢;jx = 1/24, ¢;j;y = 1/216, and
dijje = 1/96. The multiplicative factors as, a4, and by are
obtained by bulk properties at equilibrium as stated below.
In bulk phases, amplitudes of the same set of reciprocal lattice
vectors are equal (i.e., u; = u and v; = v for all i), which
yields the excess free-energy functional of the bulk phases,

kgT
AF%”OB

/d?(az u? + by v* — azu’v + agu + by u*v?).
2D

The coefficients a3, as, and by are determined by the
constraints that the equilibrium state of the solid is a minimum
of the free energy, 0AF/dul,—,, = 0 and 0AF /9v|,=,, =0,
where u; and v; are the values of corresponding order
parameters in the solid. And solid and liquid have equal free
energy at the melting temperature, A F'(u,,v,) = 0. We obtain

a brv
ay =22 +2-2°,
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Figure 2 shows a schematic plot for the excess free energy of
the bulk phase as a function of the order parameter profiles u
and v under the isotropic approximation (i.e., u; = u(z) and
v; = v(z) for all i). The bulk free energy of the two-mode GL
theory features a double well free energy as that in the GL
theory for bee-liquid systems at equilibrium. It is clear that the

0.4
03
AF

02

0.1

FIG. 2. Schematic plot of the excess free energy of GL theory for
fce lattices as a function of density waves amplitudes # and v under
isotropic approximation.
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TABLE I. List of symbols representing density waves used in GL calculation for the (100), (110), and (111) crystal faces.

100 110 111
Subset of (111) (200) (200) (111) (111) (200) (200) (111) (111) (200)
(K; - 12 or (G; - i)? 1/3 1 0 2/3 0 1/2 0 1 1/9 1/3
Number of K;’s or G;’s 8 2 4 4 4 4 2 2 6 6
Order parameter uy vy vy uy Us vy vy 7N U vy

amplitudes of the density waves in the same set of reciprocal
lattice vectors in the solid phase are the same and vanish
in the liquid phase. However, the amplitudes of the density
waves decay at various rates into the liquid phase, which gives
rise to the interfacial anisotropies. It can be seen explicitly
from the prefactors of the square gradient terms in Eq. (9).
The prefactors are proportional to the square of the inner
product of K; (or G;) and the interface normal 7. To evaluate
anisotropies of the interfacial free energy, we compute ampli-
tude profiles and interfacial energies for the three low-index
crystal faces (100), (110), and (111), respectively.

T 5
/ dr [azu% —
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dz dz dz | |
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For (100) crystal faces, the eight principal reciprocal lattice
vectors have the same symmetry with respect to the interface
normal, which yield the same value of (1% ;) = 1/3, and the
corresponding amplitudes are described by u;. The second set
of reciprocal lattice vectors can be divided into two subsets,
which have the value of (G,- -A)2 =1 and 0, respectively,
and the corresponding amplitudes are described by the order
parameter v; and v,. With these three order parameters, the
excess free energy shown in Eq. (9) for (100) crystal faces
reduces to

b
3 (vf—i—Zv%)—i— 64( —|—3u1v2+2ulvlv2)

(23)

Similarly, for (110) crystal faces, the set of principal reciprocal lattice vectors can be divided into two sets with amplitudes u,
and u,, and each set contains four reciprocal lattice vectors. Also the second set of the reciprocal lattice vectors can be divided
into two sets having amplitudes v; and v,, respectively. Subsets of density waves for (110) crystal faces are listed in Table I. For

(110) crystal faces, we have
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For (111) crystal faces, the set of principal reciprocal lattice vectors can be divided into two sets while the second set of

reciprocal lattice vectors has the same value of (Gi
nokp
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Subsets of density waves and their corresponding order
parameters for each crystal faces are summarized in Table I.

The input parameters for the GL theory include
the liquid structure factor and the values of order
parameters in bulk solid. This information is obtained
by MD simulations using the embedded-atom method
(EAM) potential of Foiles, Baskes, and Daw_ (FBD)
for Ni [50]; we obtain S(|K;ii]) = 2.9898, S(|Ga]) =

1.0162, C"(|K1n]) = —=9.1579 A%, C'(|Gaool) = —2.0303 A,
and C”(|6200|) = —0.0998 AZ; see Fig. 3. The first peak of

L . ¢ —1
the liquid structure factor is located at | K| = 3.0376 A
In order to obtain the magnitude of order parameters in solids,

?(u%vl + uluzvl) + a

- 71)? for all six vectors. The excess free energy for (111) crystal faces is

12( + 6u3 + 3ujus + 2uu3)
du1 du2 2 L T dv1 2
— b b )|—1 |. 25
dz dz + (b +by) dz ()

(

we assume that the density of atoms can be represented by
a sum of Gaussian peaks centered at lattice sites 1?;, which
leads to n(F) =Y, (50 2e=G=R?/20°  where o2 is the
variance of the Gaussian function. Under this assumption,
the Fourier amplitudes of the density are simple functions
of the magnitude of the corresponding wave number, n(r) =
no(l+ Y ng e®7 + 3 ng 7 4.0,
—o%K?/2

where ng =

e andng =e™ *G1/2_ The variance o2 of the Gaussian

function is estlmated by the mean-square displacements

of atoms in solids measured from MD simulations, o2 =

%(A?z) = 0.089 Az. Recognizing that the order parameters in
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KA

FIG. 3. The liquid structure factor of Ni at the melting tempera-
ture from MD simulations using EAM FBD potential.

bulk solids are the Fourier amplitudes of the density, we obtain
u(solid) = e~ Kin/2 = 0.6639,
Uago(solid) = e C/2 = 0.5791. (26)

The values of input parameters from MD simulations are
listed in Table II. With the above input parameters, the order
parameter profiles for solid-liquid interfaces are solved by
requiring that the free-energy functional is minimum with
the corresponding order parameters profiles. The variational
process leads to coupled Euler-Lagrange equations, which are
solved numerically subject to the boundary conditions that
these order parameters vanish in bulk liquids and retain fixed
values in bulk solids shown in Eq. (26). The order parameters
profiles for crystal faces (100), (110), and (111) are plotted in
Figs. 4(a), 4(b), and 4(c), respectively.

The interfacial free energies are then computed with the
equilibrium order parameter profiles solved above. In order
to map out the anisotropy of the solid-liquid interfacial free
energy, we employ the Kubic harmonics expansion for y.
The interfacial free energy y(7) can be parameterized by an
expansion in terms of Kubic harmonics [51,52]. In terms of the
Cartesian components of i = (n,n,,n;), the Kubic harmonic
expansion for a weakly anisotropic crystal is [52]

N 3
y () = V0|:1 + € (an — §)
4 222 17
+e 3Zni + 66nnyn; — = | 27)

l

where y; is the average interfacial free energy, and (ej,€)
characterize the capillary anisotropy. Note that for a more

PHYSICAL REVIEW B 93, 054114 (2016)
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FIG. 4. Equilibrium density wave profiles across the solid-liquid
interface obtained by GL theory with (200) mode with input
parameters from MD simulations using EAM FBD potential of Ni
for three low-index crystal orientations: (a) (100), (b) (110), and
(c) (111).

TABLE II. Values of input parameters from MD simulations with interatomic EAM FBD potential for Ni [50] and resulting coefficients

used in GL theory with (200) as the second mode.

a by b, (A% bt (A%

02 = o —1 > o —1
by (A7) Us Vs IKil (A ) IGil (A )

MD [FBD] 2.68 5.90 12.21 0.07

1.16 0.66 0.58 3.0376 3.5075
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TABLE III. Anisotropy parameters for the fcc-liquid interfacial free energy predicted by the present GL theory with (200) mode that
assumes equal weights of geometrically distinct polygons, the GL theory with (200) mode that assumes equal weights of all polygons [17,21],
the present GL theory with (200) and (311) modes that assumes equal weights of geometrically distinct polygons, and MD simulations [11].

€] € (Y100 — ¥110)/2¥0 (Y100 — v111)/2¥0
GL theory with (200) mode 0.1084 0.0157 0.0389 0.0329
GL theory with (200) mode (Refs. [17,21]) 0.1221 0.0191 0.0448 0.0368
GL theory with (200) and (311) modes 0.1038 0.0149 0.0371 0.0315
MD Ni (FBD) (Ref. [11]) 0.088(7) —0.011(1) 0.014(2) 0.032(2)

anisotropic crystal, higher-order Kubic harmonics are neces-
sary to characterize the interfacial anisotropy [53]. With solid-
liquid interfacial free energies yi¢o, Y110, and y;;; obtained
above, we find yy = 106.22 erg/cmz, €1 =0.1084, and ¢; =
0.0157, see Table III. The average interfacial free energy
estimated by GL theory is lower than that measured in
MD simulation, yyp = 284.7 erg/cm?, since the two-mode
GL theory truncates contributions of higher-order density
waves and it assumes a weak first-order phase transition.
Nevertheless, the two-mode GL theory sheds light on the
relation between interfacial anisotropy and crystal structure.
The simple GL theory of fcc-liquid interface considering
reciprocal lattice vectors (111) and (200) predicts reasonable
magnitudes of €; and €; as compared to MD simulations [11].
However, the value of €, obtained in GL theory has an opposite
sign from that in MD simulations. It also gives different
ordering of y observed in MD simulations (yj00 > 110 >
)/1]1) and in GL theory ()/100 > Y > )/110). Similar results
are obtained for the GL theory using different equal-weight
polygon ansatz [17,21], €; = 0.1221, and €, = 0.0191; see
Table III. The discrepancy between MD simulations and GL
theory for fcc materials is likely due to the choice of the second
mode. Even though (200) density waves form closed triangles
with (111) density waves in reciprocal space, the amplitudes of
(200) density waves in liquids at the melting temperature are
not pronounced; see Fig. 3. Possible candidates of the second

J

nokgT
AF = AFy 4+ 28

where A F is the excess free-energy functional of GL theory
employing merely (111) and (200) modes shown in Eq. (9);
the set of reciprocal lattice vectors (311) is represented by
(G"). Comparing it with Eq. (8), we obtain

24
) = —=—, (29)
S(1G3u1l)
1
€ij = ﬁ ) (30
bL = —4C"(|G311)), 31
1 .
ef = 5(Gi Ay, (32)
Cc'(|G
pr = _gCUGanD 33
G311l
1 A
el = E[l —(G; - 1)) (34)

- L L T T
> /dr d> E . ejj wiw; 80’5#5} + E (bwei +bwei)
L] 1

mode for GL theory are the density waves whose magnitude
of the corresponding reciprocal lattice vectors is close to the
position of the second peak of the liquid structure factor. The
density waves that form closed triangles with (111) density
waves and with the magnitude of reciprocal lattice vectors
comparable to the position of the second peak of the liquid
structure factor are (220) and (222) density waves. However,
GL theory with the lowest-order expansion of gradient terms
requires both C’(g) and C”(q) to be less than or equal to
zero for all density waves considered in order to have stable
density wave profiles. Thus, (220) and (222) density waves are
excluded since C’(|Gao|) > 0 and C”(|Ga|) > 0; see Fig. 3.

IV. GL THEORY WITH (111), (200), AND (311) MODES

The density waves with the magnitude of the corresponding
reciprocal lattice vectors close to the location of the second
peak of the liquid structure factor are (310) and (311)
density waves. Furthermore, since the (311) density waves
form closed triangles with (111) and (200) density waves,
we extend previous two-mode GL theory with an additional
(311) mode to carry out the interfacial anisotropy calculations.
The excess free-energy functional of GL theory that employs
an additional (311) mode differs from that of GL theory
discussed in previous section in the following additional
terms,

dw; |*

L

d_z' —d3§ e,'jkuivjwk(?o’];ﬂréﬂréi , (28)
i,j.k

(

The multiplicative factors as, d3, a4, and b4 are obtained using
equilibrium conditions as discussed before. The free energy of
the bulk phase is

kgT -
AF ~ MTB/dr(ag u? + by v? — azu’v + aqu®
+ by uv? — dsuvw + dyw?). (35)
By requiring 0AF/0ul =y, = 0,0AF/0v]y=y, = 0,0AF/

0w|y=y, = 0, and that solid and liquid have equal free energy
at the melting temperature, A F(ug,vs,wy) = 0, we obtain

2
aj bzvs bzv
ay =2—=+42—5, a=—,
s u; u
(36)
ay d2w52 dzws
b=t g B2
Vi usv; Ug Vg
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TABLE IV. List of symbols representing (311) density waves used in GL calculation for (100), (110), and (111) crystal faces.

100 110 111
Subset of (311) (311) (311) (311) (311) (311) (311) (311) (311)
(G; -h)? 9/11 1/11 8/11 2/11 2/11 0 25/33 9/33 1/33
Number of G;’s 8 16 8 4 4 6 12 6
Order parameter w) wH w) ws w3 Wy wy wy w3

The normalization constant for the coupling term uvw is
determined using the equal-weight ansatz for geometrically
distinct polygons in reciprocal space that yields e;j; =
1/24. For different crystal faces, we divide (311) density

J

waves into several subsets according to values of direc-
tion cosines as listed in Table IV. Then the free-energy
functionals for three crystal faces (100), (110), and (111)
are

kgT . b b
Afn = =3 /dr[azuf B c;j(u%vl T 2u%v2) +agu + ?2(”% + 2”%) + g(”%vf + 3ulvi + 2u%v1v2)
d2 d dul L dU1 2 r dU2
2wy) — — 2 by pE| 2L 47|22
+ = 3 ( + ) (u1v1w1 + 2ujvowy) + dz + b, iz + b! I
bL ( |dw, |* dw, bT (ldw, dw,
— | 9|— 2| —= 1= +10 17
" <‘dz +‘dz >+11(dz dz )] (37)

nokgT a a
AFq o = L /dr|: 2(”‘1 —|—u2) 3(“%1)24-14%1)2 +4u1u2vl)+

2 2 6

b
(?aulv1 + u?v] + 3usv? + udv3 +4u1u2v1v2) +

b
1 Yt + ud + 2udud) + ?2(2v12 +v3)

d
EZ(wa + 2w + wi + wi)

ds dui | |dvi]? bT dv > |dv |
——(2u1v1w1 + uivows + 2urviwy + urvowy) + by, + b, + = |— —
dz dz dz dz
bL dw1 de dw3 bT du)1 dw2 du)3 dw4
8| — 2|—= — 6|— 18| —= 9| — 11— . 38
LT ( dz * dz dz ) T < dz + dz + dz + dz >i| G8)

kgT
AFy = nozB /d |:£;2(141+3u2)

b d ds
+ g(ulv1 + 5u3vi + 2uiurv7) + Zz(wlz+2w§~|—w§) — —(ulvlwl + 2urv 1w + U v w3) + — 2 <3

2
dv1

dz

d
182

L T
+ (bl + b)) |— 7z

bL dw1
25| —
44 dz

The solid amplitude for (311) density waves is estimated
to be 0.22 using the approximation of Gaussian density peaks.
The values of input parameters from MD simulations are listed
in Table V. The interfacial energies calculated for these three
crystal faces yield yy = 109.37 erg/cm?, €; = 0.1038, and
€, = 0.0149, see Table IIl. The additional (311) leads to a

TABLE V. Values of input parameters from MD simulations with
interatomic EAM FBD potential for Ni [50] and resulting coefficients
used in GL theory with (311) as the second mode.

S o1
1Gil (A )
5.8166

d LA LAY w,

MD [FBD] 19.46 5.00 0.16 0.22

a;(uﬁvl +u|u2v1) + ‘112

(ul + 6us + 3ulud + 2u1u2) + byv?

2 duz 2
dz

AL, 39
)m( s )]- 59

slightly larger magnitude of y and predicts similar anisotropy
parameters predicted by the two-mode GL theory.

du1
dz

+ 16|22
dz

dwz
+24|—=
dz

dw3
dz

(

V. DISCUSSION AND CONCLUSION

The simple two-mode GL theory shown above is capable
of describing the interfacial anisotropies of fcc-liquid systems.
However, the magnitude of the interfacial energy is about
2 ~ 3 times smaller than predicted by MD simulations, and
other physical quantities such as latent heat of fusion are also
underestimated. Shih ez al. relates the latent heat of fusion (per
atom) to the temperature variation of the inverse of the peak
of the liquid structure factor [20],

T, IAF _ kgT,;

. zdaz
TN oT

L0
At |, “40)

T=T, 2
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where N is the number of atoms in the system. With parameters
listed in Table II, Eq. (40) yields a latent heat value L =
0.103 eV /atom about 40% lower than the MD value (Lyp =
0.179 eV/atom). The underestimation of the latent heat of
fusion can be attributed to the truncation of the contribution of
higher-order reciprocal lattice vectors in GL theory. In order
to construct a GL theory with a limited number of modes that
describes correct anisotropy of the interfacial energy and the
latent heat of fusion, we can use Eq. (40) and the latent heat
of fusion measured from MD simulations to set the magnitude
of ug, which yields u; = 0.87. With this new input of solid
amplitudes, the anisotropy of the interfacial energy remains the
same while the magnitude of the interfacial energy increases
linearly with the solid amplitude square as discussed below.
For simplicity, assuming that density waves of the same set
of reciprocal lattice vectors remain equal across the interface
(i.e., isotropic approximation) and substituting Eq. (22) into
Eq. (9), we obtain

2 dv

kT R

AF = ’“’TBuf / dr [azuz(—1 + V) + by(U? — V)*a?
dU

i R G A e

2

where we define U = (u/uy), V = (v/vy), and o = (vg/uy).
The value of o is set by the Gaussian approximation of
density peaks in solids. It is clear that the magnitude of the
interfacial free energy is proportional to the square of the solid
amplitude u2. Similar arguments can be applied to anisotropic
calculations; the square of the solid amplitude only affects the
magnitude of . With u; estimated by the latent heat of fusion,
u; = 0.87, we obtain yj00 = 194.22 erg/cm?, yy;9 = 179.87
erg/cm?, and y;; = 182.08 erg/cm?.

We have formulated the simplest fourth-order GL theory
of the fcc-liquid systems using two sets of amplitudes
corresponding to principal reciprocal lattice vectors (111) and
a second set of reciprocal lattice vectors. The requirement for
the second set of reciprocal lattice vectors is that it can form
closed triangles with the principal reciprocal lattice vectors in

PHYSICAL REVIEW B 93, 054114 (2016)

reciprocal space, which ensures nonvanishing cubic terms in
the GL free-energy functional, which makes the fcc-liquid
transition first order. The phenomenological GL theory is
derived from density functional theory of freezing, which
ensures correct spatial decay rates of density waves that are
related to the liquid structure factor. The crystalline anisotropy
of interfacial energies is investigated with (111) and (200)
density waves. The two-mode GL theory is shown to form
stable fcc-liquid interfaces, and it predicts a weak anisotropy
with (200) mode. However, the cubic anisotropy parameter €,
calculated using (200) mode has an opposite sign compared
to that in MD simulations. Similar results are obtained by
GL theory with different nonlinear coefficients (different
ansatz of counting polygons), which suggests differences in
nonlinear coefficients only have a small effect on the interfacial
anisotropy. We extended the two-mode GL theory with an
additional (311) mode to explore the dependence of the
interfacial anisotropy on higher order reciprocal lattice vectors.
GL theory with an additional (311) mode predicts similar
anisotropy parameters as shown in two-mode GL theory. This
suggests the third mode has a small effect on the interfacial
anisotropy. These results are relevant to atomistic modeling
of microstructural evolution [34,42], where the anisotropy of
interfacial free-energies can be tuned by the second set of
reciprocal lattice vectors and the shape of the liquid structure
factor accordingly. An interesting future prospect is to extend
the two-mode GL theory to investigate the anisotropy of
kinetic coefficients based on recent progress for bce ordering
Ginzburg-Landau theory [54].

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the National
Science Council of Taiwan (Grant No. NSC102-2112-M-
007-007-MY3), and the support from National Center for
Theoretical Sciences, Taiwan. A.K. was supported by Grant
No. DE-FG02-07ER46400 from the U.S. Department of
Energy, Office of Basic Energy Sciences.

[1] D. A. Kessler, J. Koplik, and H. Levine, Adv. Phys. 37, 255
(1988).
[2] M. Ben Amar and E. Brener, Phys. Rev. Lett. 71, 589 (1993).
[3] A. Karma and W.-J. Rappel, Phys. Rev. Lett. 77, 4050 (1996).
[4] A. Karma and W.-J. Rappel, Phys. Rev. E 57, 4323 (1998).
[5] N. Provatas, N. Goldenfeld, and J. Dantzig, Phys. Rev. Lett. 80,
3308 (1998).
[6] J. Hoyt, M. Asta, T. Haxhimali, A. Karma, R. Napolitano, R.
Trivedi, B. B. Laird, and J. R. Morris, MRS Bull. 29, 935 (2004).
[7]1 J. Q. Broughton and G. H. Gilmer, J. Chem. Phys. 84 (1986).
[8] R. L. Davidchack and B. B. Laird, Phys. Rev. Lett. 85, 4751
(2000).
[9] J. J. Hoyt, M. Asta, and A. Karma, Phys. Rev. Lett. 86, 5530
(2001).
[10] J. J. Hoyt and M. Asta, Phys. Rev. B 65, 214106 (2002).
[11] J. Hoyt, M. Asta, and A. Karma, Mater. Sci. Eng. Rep. 41, 121
(2003).

[12] R. L. Davidchack and B. B. Laird, J. Chem. Phys. 118, 7651
(2003).

[13] R. L. Davidchack and B. B. Laird, Phys. Rev. Lett. 94, 086102
(2005).

[14] R. L. Davidchack, J. R. Morris, and B. B. Laird, J. Chem. Phys.
125, 094710 (2006).

[15] K.-A. Wu, A. Karma, J. J. Hoyt, and M. Asta, Phys. Rev. B 73,
094101 (2006).

[16] A.Jaatinen, C. V. Achim, K. R. Elder, and T. Ala-Nissila, Phys.
Rev. E 80, 031602 (2009).

[17] G. I. Téth and N. Provatas, Phys. Rev. B 90, 104101 (2014).

[18] D. Y. Sun, M. Asta, J. J. Hoyt, M. I. Mendelev, and D. J.
Srolovitz, Phys. Rev. B 69, 020102 (2004).

[19] D. Y. Sun, M. Asta, and J. J. Hoyt, Phys. Rev. B 69, 174103
(2004).

[20] W. H. Shih, Z. Q. Wang, X. C. Zeng, and D. Stroud, Phys. Rev.
A 35,2611 (1987).

054114-9


http://dx.doi.org/10.1080/00018738800101379
http://dx.doi.org/10.1080/00018738800101379
http://dx.doi.org/10.1080/00018738800101379
http://dx.doi.org/10.1080/00018738800101379
http://dx.doi.org/10.1103/PhysRevLett.71.589
http://dx.doi.org/10.1103/PhysRevLett.71.589
http://dx.doi.org/10.1103/PhysRevLett.71.589
http://dx.doi.org/10.1103/PhysRevLett.71.589
http://dx.doi.org/10.1103/PhysRevLett.77.4050
http://dx.doi.org/10.1103/PhysRevLett.77.4050
http://dx.doi.org/10.1103/PhysRevLett.77.4050
http://dx.doi.org/10.1103/PhysRevLett.77.4050
http://dx.doi.org/10.1103/PhysRevE.57.4323
http://dx.doi.org/10.1103/PhysRevE.57.4323
http://dx.doi.org/10.1103/PhysRevE.57.4323
http://dx.doi.org/10.1103/PhysRevE.57.4323
http://dx.doi.org/10.1103/PhysRevLett.80.3308
http://dx.doi.org/10.1103/PhysRevLett.80.3308
http://dx.doi.org/10.1103/PhysRevLett.80.3308
http://dx.doi.org/10.1103/PhysRevLett.80.3308
http://dx.doi.org/10.1557/mrs2004.263
http://dx.doi.org/10.1557/mrs2004.263
http://dx.doi.org/10.1557/mrs2004.263
http://dx.doi.org/10.1557/mrs2004.263
http://dx.doi.org/10.1103/PhysRevLett.85.4751
http://dx.doi.org/10.1103/PhysRevLett.85.4751
http://dx.doi.org/10.1103/PhysRevLett.85.4751
http://dx.doi.org/10.1103/PhysRevLett.85.4751
http://dx.doi.org/10.1103/PhysRevLett.86.5530
http://dx.doi.org/10.1103/PhysRevLett.86.5530
http://dx.doi.org/10.1103/PhysRevLett.86.5530
http://dx.doi.org/10.1103/PhysRevLett.86.5530
http://dx.doi.org/10.1103/PhysRevB.65.214106
http://dx.doi.org/10.1103/PhysRevB.65.214106
http://dx.doi.org/10.1103/PhysRevB.65.214106
http://dx.doi.org/10.1103/PhysRevB.65.214106
http://dx.doi.org/10.1016/S0927-796X(03)00036-6
http://dx.doi.org/10.1016/S0927-796X(03)00036-6
http://dx.doi.org/10.1016/S0927-796X(03)00036-6
http://dx.doi.org/10.1016/S0927-796X(03)00036-6
http://dx.doi.org/10.1063/1.1563248
http://dx.doi.org/10.1063/1.1563248
http://dx.doi.org/10.1063/1.1563248
http://dx.doi.org/10.1063/1.1563248
http://dx.doi.org/10.1103/PhysRevLett.94.086102
http://dx.doi.org/10.1103/PhysRevLett.94.086102
http://dx.doi.org/10.1103/PhysRevLett.94.086102
http://dx.doi.org/10.1103/PhysRevLett.94.086102
http://dx.doi.org/10.1063/1.2338303
http://dx.doi.org/10.1063/1.2338303
http://dx.doi.org/10.1063/1.2338303
http://dx.doi.org/10.1063/1.2338303
http://dx.doi.org/10.1103/PhysRevB.73.094101
http://dx.doi.org/10.1103/PhysRevB.73.094101
http://dx.doi.org/10.1103/PhysRevB.73.094101
http://dx.doi.org/10.1103/PhysRevB.73.094101
http://dx.doi.org/10.1103/PhysRevE.80.031602
http://dx.doi.org/10.1103/PhysRevE.80.031602
http://dx.doi.org/10.1103/PhysRevE.80.031602
http://dx.doi.org/10.1103/PhysRevE.80.031602
http://dx.doi.org/10.1103/PhysRevB.90.104101
http://dx.doi.org/10.1103/PhysRevB.90.104101
http://dx.doi.org/10.1103/PhysRevB.90.104101
http://dx.doi.org/10.1103/PhysRevB.90.104101
http://dx.doi.org/10.1103/PhysRevB.69.020102
http://dx.doi.org/10.1103/PhysRevB.69.020102
http://dx.doi.org/10.1103/PhysRevB.69.020102
http://dx.doi.org/10.1103/PhysRevB.69.020102
http://dx.doi.org/10.1103/PhysRevB.69.174103
http://dx.doi.org/10.1103/PhysRevB.69.174103
http://dx.doi.org/10.1103/PhysRevB.69.174103
http://dx.doi.org/10.1103/PhysRevB.69.174103
http://dx.doi.org/10.1103/PhysRevA.35.2611
http://dx.doi.org/10.1103/PhysRevA.35.2611
http://dx.doi.org/10.1103/PhysRevA.35.2611
http://dx.doi.org/10.1103/PhysRevA.35.2611

KUO-AN WU, SHANG-CHUN LIN, AND ALAIN KARMA

[21] K.-A. Wu and A. Karma, Phys. Rev. B 76, 184107 (2007).

[22] J. K. Percus, in The Equilibrium Theory of Classical Fluids,
edited by H. L. Frisch and J. L. Lebowitz (Benjamin, New York,
1964).

[23] R. Evans, Adv. Phys. 28, 143 (1979).

[24] T. V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19, 2775
(1979).

[25] A. D. J. Haymet and D. W. Oxtoby, J. Chem. Phys. 74, 2559
(1981).

[26] D. W. Oxtoby and A. D. J. Haymet, J. Chem. Phys. 76, 6262
(1982).

[27] Y. Singh, J. P. Stoessel, and P. G. Wolynes, Phys. Rev. Lett. 54,
1059 (1985).

[28] W. A. Curtin and N. W. Ashcroft, Phys. Rev. Lett. 56, 2775
(1986).

[29] K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, Phys.
Rev. Lett. 88, 245701 (2002).

[30] K. R. Elder and M. Grant, Phys. Rev. E 70, 051605 (2004).

[31] J. Berry, M. Grant, and K. R. Elder, Phys. Rev. E 73, 031609
(2006).

[32] P. Stefanovic, M. Haataja, and N. Provatas, Phys. Rev. Lett. 96,
225504 (2006).

[33] K. R. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant,
Phys. Rev. B 75, 064107 (2007).

[34] M. Greenwood, N. Provatas, and J. Rottler, Phys. Rev. Lett. 105,
045702 (2010).

[35] K. Elder, K. Thornton, and J. Hoyt, Philos. Mag. 91, 151 (2011).

[36] M. Greenwood, N. Ofori-Opoku, J. Rottler, and N. Provatas,
Phys. Rev. B 84, 064104 (2011).

[37] G. Tegze, L. Granasy, G. 1. T6th, F. Podmaniczky, A. Jaatinen,
T. Ala-Nissila, and T. Pusztai, Phys. Rev. Lett. 103, 035702
(2009).

PHYSICAL REVIEW B 93, 054114 (2016)

[38] K.-A. Wu and P. W. Voorhees, Phys. Rev. B 80, 125408
(2009).

[39] S. Majaniemi and N. Provatas, Phys. Rev. E 79, 011607
(2009).

[40] K. R. Elder and Z.-F. Huang, J. Phys.: Cond. Matter 22, 364103
(2010).

[41] K.-A. Wu, M. Plapp, and P. W. Voorhees, J. Phys.: Cond. Matter
22,364102 (2010).

[42] K.-A. Wu, A. Adland, and A. Karma, Phys. Rev. E 81, 061601
(2010).

[43] K. R. Elder, Z.-F. Huang, and N. Provatas, Phys. Rev. E 81,
011602 (2010).

[44] M. Greenwood, J. Rottler, and N. Provatas, Phys. Rev. E 83,
031601 (2011).

[45] K.-A. Wu and P. W. Voorhees, Acta Mater. 60, 407 (2012).

[46] E. J. Schwalbach, J. A. Warren, K.-A. Wu, and P. W. Voorhees,
Phys. Rev. E 88, 023306 (2013).

[47] S. Alexander and J. McTague, Phys. Rev. Lett. 41, 702
(1978).

[48] L. Granasy and T. Pusztai, J. Chem. Phys. 117, 10121 (2002).

[49] A. R. Denton and N. W. Ashcroft, Phys. Rev. A 39, 426
(1989).

[50] S. M. Foiles, M. 1. Baskes, and M. S. Daw, Phys. Rev. B 33,
7983 (1986).

[51] S. L. Altmann and A. P. Cracknell, Rev. Mod. Phys. 37, 19
(1965).

[52] W. R. Fehlner and S. H. Vosko, Can. J. Phys. 54, 2159 (1976).

[53] F. Podmaniczky, G. I. Té6th, T. Pusztai, and L. Granasy, J. Cryst.
Growth 385, 148 (2014), the 7th International Workshop on
Modeling in Crystal Growth.

[54] K.-A. Wu, C.-H. Wang, J. J. Hoyt, and A. Karma, Phys. Rev. B
91, 014107 (2015).

054114-10


http://dx.doi.org/10.1103/PhysRevB.76.184107
http://dx.doi.org/10.1103/PhysRevB.76.184107
http://dx.doi.org/10.1103/PhysRevB.76.184107
http://dx.doi.org/10.1103/PhysRevB.76.184107
http://dx.doi.org/10.1080/00018737900101365
http://dx.doi.org/10.1080/00018737900101365
http://dx.doi.org/10.1080/00018737900101365
http://dx.doi.org/10.1080/00018737900101365
http://dx.doi.org/10.1103/PhysRevB.19.2775
http://dx.doi.org/10.1103/PhysRevB.19.2775
http://dx.doi.org/10.1103/PhysRevB.19.2775
http://dx.doi.org/10.1103/PhysRevB.19.2775
http://dx.doi.org/10.1063/1.441326
http://dx.doi.org/10.1063/1.441326
http://dx.doi.org/10.1063/1.441326
http://dx.doi.org/10.1063/1.441326
http://dx.doi.org/10.1063/1.443029
http://dx.doi.org/10.1063/1.443029
http://dx.doi.org/10.1063/1.443029
http://dx.doi.org/10.1063/1.443029
http://dx.doi.org/10.1103/PhysRevLett.54.1059
http://dx.doi.org/10.1103/PhysRevLett.54.1059
http://dx.doi.org/10.1103/PhysRevLett.54.1059
http://dx.doi.org/10.1103/PhysRevLett.54.1059
http://dx.doi.org/10.1103/PhysRevLett.56.2775
http://dx.doi.org/10.1103/PhysRevLett.56.2775
http://dx.doi.org/10.1103/PhysRevLett.56.2775
http://dx.doi.org/10.1103/PhysRevLett.56.2775
http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevLett.88.245701
http://dx.doi.org/10.1103/PhysRevE.70.051605
http://dx.doi.org/10.1103/PhysRevE.70.051605
http://dx.doi.org/10.1103/PhysRevE.70.051605
http://dx.doi.org/10.1103/PhysRevE.70.051605
http://dx.doi.org/10.1103/PhysRevE.73.031609
http://dx.doi.org/10.1103/PhysRevE.73.031609
http://dx.doi.org/10.1103/PhysRevE.73.031609
http://dx.doi.org/10.1103/PhysRevE.73.031609
http://dx.doi.org/10.1103/PhysRevLett.96.225504
http://dx.doi.org/10.1103/PhysRevLett.96.225504
http://dx.doi.org/10.1103/PhysRevLett.96.225504
http://dx.doi.org/10.1103/PhysRevLett.96.225504
http://dx.doi.org/10.1103/PhysRevB.75.064107
http://dx.doi.org/10.1103/PhysRevB.75.064107
http://dx.doi.org/10.1103/PhysRevB.75.064107
http://dx.doi.org/10.1103/PhysRevB.75.064107
http://dx.doi.org/10.1103/PhysRevLett.105.045702
http://dx.doi.org/10.1103/PhysRevLett.105.045702
http://dx.doi.org/10.1103/PhysRevLett.105.045702
http://dx.doi.org/10.1103/PhysRevLett.105.045702
http://dx.doi.org/10.1080/14786435.2010.506427
http://dx.doi.org/10.1080/14786435.2010.506427
http://dx.doi.org/10.1080/14786435.2010.506427
http://dx.doi.org/10.1080/14786435.2010.506427
http://dx.doi.org/10.1103/PhysRevB.84.064104
http://dx.doi.org/10.1103/PhysRevB.84.064104
http://dx.doi.org/10.1103/PhysRevB.84.064104
http://dx.doi.org/10.1103/PhysRevB.84.064104
http://dx.doi.org/10.1103/PhysRevLett.103.035702
http://dx.doi.org/10.1103/PhysRevLett.103.035702
http://dx.doi.org/10.1103/PhysRevLett.103.035702
http://dx.doi.org/10.1103/PhysRevLett.103.035702
http://dx.doi.org/10.1103/PhysRevB.80.125408
http://dx.doi.org/10.1103/PhysRevB.80.125408
http://dx.doi.org/10.1103/PhysRevB.80.125408
http://dx.doi.org/10.1103/PhysRevB.80.125408
http://dx.doi.org/10.1103/PhysRevE.79.011607
http://dx.doi.org/10.1103/PhysRevE.79.011607
http://dx.doi.org/10.1103/PhysRevE.79.011607
http://dx.doi.org/10.1103/PhysRevE.79.011607
http://dx.doi.org/10.1088/0953-8984/22/36/364103
http://dx.doi.org/10.1088/0953-8984/22/36/364103
http://dx.doi.org/10.1088/0953-8984/22/36/364103
http://dx.doi.org/10.1088/0953-8984/22/36/364103
http://dx.doi.org/10.1088/0953-8984/22/36/364102
http://dx.doi.org/10.1088/0953-8984/22/36/364102
http://dx.doi.org/10.1088/0953-8984/22/36/364102
http://dx.doi.org/10.1088/0953-8984/22/36/364102
http://dx.doi.org/10.1103/PhysRevE.81.061601
http://dx.doi.org/10.1103/PhysRevE.81.061601
http://dx.doi.org/10.1103/PhysRevE.81.061601
http://dx.doi.org/10.1103/PhysRevE.81.061601
http://dx.doi.org/10.1103/PhysRevE.81.011602
http://dx.doi.org/10.1103/PhysRevE.81.011602
http://dx.doi.org/10.1103/PhysRevE.81.011602
http://dx.doi.org/10.1103/PhysRevE.81.011602
http://dx.doi.org/10.1103/PhysRevE.83.031601
http://dx.doi.org/10.1103/PhysRevE.83.031601
http://dx.doi.org/10.1103/PhysRevE.83.031601
http://dx.doi.org/10.1103/PhysRevE.83.031601
http://dx.doi.org/10.1016/j.actamat.2011.09.035
http://dx.doi.org/10.1016/j.actamat.2011.09.035
http://dx.doi.org/10.1016/j.actamat.2011.09.035
http://dx.doi.org/10.1016/j.actamat.2011.09.035
http://dx.doi.org/10.1103/PhysRevE.88.023306
http://dx.doi.org/10.1103/PhysRevE.88.023306
http://dx.doi.org/10.1103/PhysRevE.88.023306
http://dx.doi.org/10.1103/PhysRevE.88.023306
http://dx.doi.org/10.1103/PhysRevLett.41.702
http://dx.doi.org/10.1103/PhysRevLett.41.702
http://dx.doi.org/10.1103/PhysRevLett.41.702
http://dx.doi.org/10.1103/PhysRevLett.41.702
http://dx.doi.org/10.1063/1.1519862
http://dx.doi.org/10.1063/1.1519862
http://dx.doi.org/10.1063/1.1519862
http://dx.doi.org/10.1063/1.1519862
http://dx.doi.org/10.1103/PhysRevA.39.426
http://dx.doi.org/10.1103/PhysRevA.39.426
http://dx.doi.org/10.1103/PhysRevA.39.426
http://dx.doi.org/10.1103/PhysRevA.39.426
http://dx.doi.org/10.1103/PhysRevB.33.7983
http://dx.doi.org/10.1103/PhysRevB.33.7983
http://dx.doi.org/10.1103/PhysRevB.33.7983
http://dx.doi.org/10.1103/PhysRevB.33.7983
http://dx.doi.org/10.1103/RevModPhys.37.19
http://dx.doi.org/10.1103/RevModPhys.37.19
http://dx.doi.org/10.1103/RevModPhys.37.19
http://dx.doi.org/10.1103/RevModPhys.37.19
http://dx.doi.org/10.1139/p76-256
http://dx.doi.org/10.1139/p76-256
http://dx.doi.org/10.1139/p76-256
http://dx.doi.org/10.1139/p76-256
http://dx.doi.org/10.1016/j.jcrysgro.2013.01.036
http://dx.doi.org/10.1016/j.jcrysgro.2013.01.036
http://dx.doi.org/10.1016/j.jcrysgro.2013.01.036
http://dx.doi.org/10.1016/j.jcrysgro.2013.01.036
http://dx.doi.org/10.1103/PhysRevB.91.014107
http://dx.doi.org/10.1103/PhysRevB.91.014107
http://dx.doi.org/10.1103/PhysRevB.91.014107
http://dx.doi.org/10.1103/PhysRevB.91.014107



