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Two-zone Hugoniot for porous materials
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By decoupling thermal equilibrium conditions in shock loaded porous materials, two regimes resulting in
two-zone Hugoniot are revealed, specifically, a stable low-pressure regime characterized by achieving interphase
temperature equilibrium and a metastable high-pressure regime. Porous materials, represented as two-phase
mixtures, are analyzed with an analytically constructed Hugoniot employing a constant Grüneisen parameter of
condensed phase. Results of the analysis agree well with experiments for various porous materials over a wide
range of porosities, which confirms the consistency of this interpretation. The two-zone consideration discovers
a limitation on the high-temperature states of solid materials accessible via the shock loading of porous materials
and suggests that the two-phase nature of porous materials needs to be reflected in the use of Hugoniot data of
powders when constructing equations of state for the corresponding condensed materials.
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I. INTRODUCTION

A description of the shock compression of materials re-
quires reliable equations of state. The Mie-Grüneisen equation
of state (EOS) with a Grüneisen parameter that is constant [1]
or slightly variable with volume [2], describes a wide variety
of condensed materials very well [1–3]. Therefore, failure of
this EOS to describe similar behavior of porous materials at
high porosities in the megabar pressure range is challenging.
The shock compression of porous materials is accompanied
by extreme heating, which is formally conjectured from the
energy balance between the states adjacent to a presumptive
single shock jump [4]. The excessive heating is assumed to be
caused by highly localized deformation and damage of parti-
cles constituting the material and is frequently attributed to the
condensed constituent. The extreme temperature is considered
to be a dominant factor of the description failure [5], which is
responsible for transfer of the solid phase to a dense plasma
state [5,6] and even to a gaseous state [7]. To improve the
description of the behavior of powders by the solid EOSs,
the latter are usually corrected by electronic terms associated
with the quantum-mechanical effects resulting in a Grüneisen
parameter variable with temperature or pressure [5,6].

However, several points of the traditional approach may
need to be scrutinized. First, the temperature obtained from
the single-jump assumption is an upper bound estimate
because the initial and final states associated with a shock
wave in porous material are likely to be connected through
several smaller jumps and ramped compression waves [8–13].
Secondly, the transition of a nonorganic solid to a dense plasma
requires a several times initial density compression and several
tens of thousands of degrees heating [14], which is hard to
supply even within the upper bound estimate. At the same time,
the megabar shock compression of solid materials is unlikely
to cause the electronic effects as discussed in Ref. [15]. A
negligible contribution of preheating to the Hugoniot behavior
of a condensed material was also noted in Ref. [16]. In addition,
microstructure examinations of recovered 50% porosity steel
powder samples [17] subjected to the shock compression with
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pressures up to several tens of GPa demonstrate just a surface
melting of the grains. According to microstructure observa-
tions [17,18] and experimental evaluations of temperature at
dynamic deformation [19] and fracture [20] of solid materials,
the extreme temperatures in the condensed phase of a porous
material followed by the transformation to gaseous products
are unlikely for nonorganic powders although this might be
possible for some polymer powders [7].

Thus, attribution of the excessive heat solely to the con-
densed constituent could be in question (see a rather complete
list of possible factors affecting the shock compression of
powders in Ref. [18]). Analytical assessments [21,22] and
mesoscale modeling [23] have suggested that the extreme
temperature can be accounted for by the influence of interstitial
gas, from which energy contribution is small mechanically
but could be considerable thermally. Earlier, attempts to
consider transfer of the heat due to adiabatic compression
of trapped air to the condensed phase were undertaken in
Refs. [24]. Involvement of the gaseous phase raises the
problem of interphase equilibrium. A possible effect of this
factor is an evolution of thermodynamic states behind the
shock front, which has been studied experimentally [25] and
numerically [11]. A recent attempt was made to incorporate
the kinetic evolution of the behind-shock state into an EOS of
a porous material considered as a single-phase medium [26].

Porous material is a material with a complex structure. Ex-
perimental studies of dynamic response usually employ a high
strain rate split Hopkinson pressure bar testing technique for
the investigation of sensitivity of the material response to the
effects of structure, particle shape, and connectivity [27–30].
However, the pressure range relevant to these effects does not
exceed the strength of the condensed phase, which is related to
“nonhydrodynamic” effects and out of the scope of the present
work.

The real experiment on porous material involving the
factors of material structure and experimental setup can be nu-
merically analyzed with a continuum constitutive model [11],
including the kinetic effects from material microstructure.
Despite the apparent difficulty of identifying Hugoniot states
in continuum considerations due to the state evolution behind
the shock front, even at the microlevel the use of molecular
modeling for analysis of fluctuations of thermodynamic
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parameters in blocks of atoms with voids (pores) under
the shock loading conditions has been known for several
decades [31], and recently molecular modeling has been used
for a similar analysis with gas filled pores [32]. Moreover,
the nonequilibrium molecular dynamics (NEMD) modeling
has been advanced with a construct, known as Hugoniostat,
linking the states separated by a shock wave [33].

While NEMD [31–33], mesomechanical [21,23,34], and
phenomenological [10–12,26,35] simulations can provide
detailed information about bulk material response and in-
ternal processes, including the effects taken into account
by microstructure parameters of models, the corresponding
modeling tools require specific information about the test
setup, which is not usually available from the Hugoniot data
repositories. Therefore, a widely spread technique is still the
Hugoniot analysis based on jump conditions derived from
phenomenological material models.

The present Hugoniot relations are derived from an analysis
of thermodynamic states when representing porous material as
a two-phase mixture with an internal dissipation mechanism
that is responsible for adequate description of available
experiments. A similar technique has been used for the
Hugoniot analysis of a condensed mixture [36].

References [11,37] discuss reaching the interphase pressure
and velocity equilibrium behind the shock front in the
“hydrodynamic” approximation, i.e., neglecting the particle
prepacking in a wave associated with the acoustic precursor
and ignoring the strength effects. While accepting this approx-
imation in the present work, interphase temperature relaxation
within the shock loading zone may take considerable time
requiring sufficiently long thermal contact between gaseous
and solid phases, which results in a condition referred to as
the PTE (pressure and temperature equilibrium) state. The
conditions of reaching the thermal equilibrium have been
analyzed and discussed in Ref. [11]. At the microlevel, the
importance of heat exchange between interstitial gas and
condensed material during the shock compression has recently
been demonstrated by molecular modeling [32].

The constitutive modeling [11] has revealed a pressure
threshold separating the PTE stable state from a metastable
Hugoniot state with interphase temperature nonequilibrium
within the shock zone and referred to as the PE (pressure
equilibrium) state. The analysis suggested that the metastable
Hugoniot state taken by the porous material is realized at
pressures higher than the threshold. The pressure threshold
corresponds to an intersection point (referred to in the
present paper as the PE-PTE point) of the metastable PE
and stable PTE loci on the pressure-volume plane. An
important conclusion from the simulation of shock wave
profiles [10,38] and analysis of the state evolution behind the
shock front [10,11] validated against experiment is that the
profiles observed in the simulations of porous materials can be
considered quasistationary for a duration comparable with the
duration of the experimental traces recorded in the Hugoniot
tests. Thus, despite the complexity of the material and the
process, Hugoniot states can be identified and associated with
corresponding experimental values.

The nonlinear modeling [11] can accurately describe the
transition between PE and PTE states caused by load varia-
tions, however, this description is possible only via a numerical

analysis. At the same time, the nature of the transition is hard to
reveal from simulations. The present analytical consideration
accompanied by a mesomechanical analysis demonstrates that
the transition from the anomalous behavior in the PTE zone to
the conventional behavior in the PE zone is a representation of
the transition from unrestrained expansion of the condensed
phase for a highly porous material at a moderate loading below
the PE-PTE point (when the corresponding temperature rise
expands the solid phase on a volume smaller than the volume
of the shock compressed air) to the confined expansion at
pressure above the PE-PTE point (when the corresponding
temperature is sufficiently high in order to expand the solid
phase on the volume exceeding the air gap). Thus, this point
corresponds to the state of collapse of pores in the material.

The present analysis addresses the physical nature of
these two regimes in a general multiphase representation of
porous material, substantially ignoring the specifics of the
material. In summary, the present consideration enables us
(i) to derive an analytical Hugoniot, (ii) to explicitly formulate
the abnormality condition, (iii) to reveal a link between the
Hugoniot of porous material with that of the corresponding
condensed material, and (iv) to reveal the mechanism of
transition between the PTE and PE Hugoniots.

II. THEORY

The classical Hugoniot analysis [4] assumes equilibrium
states ahead of and behind a shock front moving with speed D.
The Rankine-Hugoniot (RH) conditions can be formulated us-
ing the conservation laws for mass, ρ(D − u) = ρsD, momen-
tum, p − ps = ρsDu, and energy with the last expressed as

e − es − 1

2
(p + ps)

(
1

ρs

− 1

ρ

)
= 0 , (1)

where parameters are in the coordinate system associated
with a stationary state (referred to as “s”) in front of the shock
wave. Here, e is specific internal energy, ρ is material density
determining specific volume as v = 1/ρ, p is pressure, and u

is particle velocity. Thus, Eq. (1) is sufficient for the derivation
of the Hugoniot in the form p = pH (v) if an EOS is given as
e = e(p,v).

In contrast to the classical analysis that can be completed
with the above EOS and applied to a single-phase material, the
present analysis is dealing with a two-phase material. Loading
of multiphase materials is complemented with internal ther-
modynamic fluxes that are responsible for extra dissipation
in the materials [35,36]. Referring to the phenomenological
models [11,35] for multiphase materials, typical internal
dissipation mechanisms are the mass, momentum, and heat
exchange between the phases that may take the role of the
thermodynamic fluxes.

For the present case of a porous material we assume the
absence of mass exchange between the gaseous and condensed
phases. The pressure and velocity equilibrium assumptions
result in the absence of interphase momentum exchange. Thus,
we cannot neglect only the interphase heat exchange taken
as the internal process in the present case. Based on the
framework discussed in Sec. I, we can conduct the Hugoniot
analysis in two ultimate regimes: (i) the heat exchange has
fully completed and the phases are in temperature equilibrium,
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which requires an analysis of temperatures in the phases; and
(ii) there is no heat exchange between the phases. The former
provides complete thermodynamic equilibrium, whereas the
latter is the conventional mixture approximation that ignores
temperature difference between the phases. In reality, there
might be a marginal zone of incomplete heat exchange, which
requires a constitutive modeling [11] with a heat exchange
kinetic incorporated. It is interesting to note, that the zone
spreads very moderately away from the point of instantaneous
transition between the regimes as observed for a number of
porous materials in Refs. [10,11]. Therefore, we simplify
the present consideration to the case of the instantaneous
transition. Depending on the regimes, two separate Hugoniots
need to be derived and analyzed.

The first step in realization of the suggested approach is
to analyze Hugoniot in the PTE state. Variables’ subscripts
“1” and “2” refer to the condensed and gaseous phases,
respectively. For a two-phase material, the mass-weighted ad-
ditivity rule is applicable to the thermodynamical variables of
specific internal energy and specific volume: e = c1e1 + c2e2,
v = c1v1 + c2v2, where c1 and c2 are the corresponding mass
concentrations. For the gaseous phase, we take the simplest
EOS consistent with adiabatic shock compression—an ideal
gas EOS, while the condensed phase utilizes the simplest
generalization of the above EOS—the stiffened gas EOS. In
this case, the EOSs formulated in the form of e(p,v), are
bilinear on p and v, as follows:

e1 = p1 + γ1p00

γ1mρ1
, e2 = p2

γ2mρ2
. (2)

Here, γkm = γk − 1, γkp = γk + 1, (k = 1,2), where γkm are
the Grüneisen parameters (γ2 is the polytropic index of the gas,
with denotation � = γ1m used concurrently for the condensed
phase), p00 is the stiffening constant in the EOS of the
condensed phase (p00 = ρs1c

2
1/γ1), and c1 is the bulk speed

of sound. Having preset values for ps , ρs1, c1, heat capacity
cv1, and �, we can fully specify the EOS. It is well known that
this EOS is thermally inconsistent if adjusting realistic values
of the sound speed and Grüneisen parameter with reference
temperature T0. Therefore, T0 is excluded from the list of
parameters required for the EOS specification, thus neglecting
a possible mismatch at nearly atmospheric conditions. This in-
consistency is not critical in the hydrodynamic approximation
of the present paper, and it can be easily rectified by using
a rather simple nonlinear EOS generalization employed, for
example, in Refs. [10,11]. However, the nonlinearity of the
generalization precludes the Hugoniots for a porous material
from an analytical representation. The advantage of using the
stiffened gas EOS is that an analytically derived Hugoniot
would allow us to conduct a mesomechanical analysis of the
interphase exchange.

The ideal gas EOS at the reference state relates ps , ρs2,
and T0 to heat capacity cv2, γ2, and sound velocity c2. The
constant es in Eq. (1) is calibrated such that e = es at atmo-
spheric pressure p = pk = ps = pa and ρk = ρsk (k = 1,2).
We further denote vs = c1vs1 + c2vs2, where vs1 = 1/ρs1,
vs2 = 1/ρs2. Variables p and v are not natural for the potential
e, therefore, EOSs (2) should be completed with equations for

temperature

T1 = 1

cv1

p1 + p00

γ1mρ1
, T2 = 1

cv2

p2

γ2mρ2
. (3)

Five equations (1)–(3) and two additivity rules for e and v

are complemented with three equilibrium conditions for bulk
and phase pressures p = p1, p1 = p2, and phase temperatures
T1 = T2. Thus, we obtain a system of ten equations for 11
independent variables: e, p, v, e1, e2, p1, p2, v1, v2, T1, and
T2. When the above system is resolved for pressure against
specific volume v, a quadratic equation for the Hugoniot p =
pH (v) is obtained which has two solutions at the positive
discriminant. Rewritten as v = vH (p), this equation facilitates
analysis without multivaluedness

v =
[

1
2 (p + ps)vs + es

]
(cvmp + cv2mp00)

p(cvsp + cvgp00) + 1
2 (p + ps)(cvmp + cv2mp00)

. (4)

Here, we denote cvs = c′
1 + c′

2, cvg = c′
1γ1 + c′

2, cvm =
c′

1γ1m + c′
2γ2m, cv2m = c′

2γ2m, cvsm = cvs + 1
2cvm, and cvgm =

cvg + 1
2cv2m, where c′

k = ckcvk (k = 1,2). Thus, relation (4) is
the PTE Hugoniot, vPT E

H (p), with the abnormality occurring
when ∂vPT E

H /∂p > 0. The abnormality condition will be
analyzed in detail in the next section.

Meanwhile, the shock transition with independent temper-
atures in the phases results in the PE Hugoniot vPE

H (p). In this
case, each phase is subject to independent shock compression
characterized by the same final pressure behind the shock
front. Applying RH conditions (1) to individual phases with
EOSs (2) results in well-known Hugoniots for both condensed
and gaseous phases. These two Hugoniots, the additivity rule
for specific volume, v, and two equilibrium conditions for
the bulk and phase pressures, result in five equations for
six variables p, v, p1, p2, v1, and v2. The solution of these
equations, representing vPE

H (p), is

v = c1vs1
γ1p(p00 + ps) + γ1m(p + ps)

γ1p(p + ps) + γ1m(p00 + ps)

+ c2vs2
γ2pps + γ2mp

γ2pp + γ2mps

. (5)

Accepting the rule of transition from the PTE to PE Hugoniot
at the PE-PTE point, which will also be discussed in more
detail in the subsequent section, we obtain a single composite
Hugoniot denoted by vS

H (p): vS
H (p) = min{vPT E

H (p),vPE
H (p)}.

Cases beyond the assumption of instantaneous PE-PTE transi-
tion are governed by the kinetic of interphase heat transfer and
can only be analyzed for powders with specified microstructure
by using a constitutive model, e.g., the model described in
Ref. [11].

III. ANALYSIS

Numerical examples of the present paper utilize the full-
length analytical representation of the PTE Hugoniot (4),
referred to in this section as vH (p). Simultaneously, for
a convenient analysis of the abnormality, we consider an
approximation of (4), v0

H (p), at ps = 0. It is straightforward
to prove for a pressure p a few orders higher than ps , that the
difference between the solutions v determined via vH (p) and

054103-3



A. D. RESNYANSKY PHYSICAL REVIEW B 93, 054103 (2016)

v0
H (p), equates to the order of ps . Thus, taking the derivative,

∂v0
H/∂p, allows us to determine with good accuracy the point

vb, where the derivative changes sign to positive at the specific
volume being the abnormality bound:

vb = 2es

p00

cvsm

cvgm

cvscv2m + cvm(cvm + cvm)

(cvm − cv2m)(cvm + cvm)
. (6)

The third factor in (6) is close to 1 with the difference being
proportional to cv2m—a small contribution in the case of the
second gaseous phase.

Below, we estimate contributions of specific volumes, v1

and v2, to v in (4). The values of v1 and v2 are calculated
using the additivity rule for v and Eqs. (3) and (4). In order to
explicitly evaluate v1 and v2, we take the reduced relations at
ps = 0, which results in

v1 = cv1γ1m

1
2pvs + es

cvsmp + cvgmp00
,

v2 = cv2γ2m

p + p00

p

1
2pvs + es

cvsmp + cvgmp00
. (7)

It is seen from (7) that the values of v1 are within finite positive
limits for v1 at p = 0 and p = ∞. The slope of this v1 contribu-
tion of the Hugoniot curve that is proportional to cvgmp00vs −
2cvsmes , is positive at vs > v1c = (2es/p00)(cvsm/cvgm), and
is negative otherwise. On the other hand, v2 behaves in a
monotonic manner, ranging from zero to infinity. In reference
to (6), v1c is close to vb; thus, the positive slope of v1 to p

corresponds to a positive slope of the Hugoniot for the porous
material, which manifests the abnormality.

It is interesting to evaluate v1c in assumption of c1 ≈ 1 and
c2 ≈ 0 when omitting the gaseous phase. This approximation
results in v1c close to c1v

PE
1 [the first term in Eq. (5)] at pressure

tending to zero. Thus, the abnormality condition is reduced to
vs > vs1(γ1p/γ1m) or, introducing porosity as m = vs/vs1, the
condition is m > (� + 2)/�, which is exactly the well-known
condition of abnormality described in textbooks [4,5]. How-
ever, this condition is applied in Ref. [4] to the entire Hugoniot
behavior, whereas the condition vs > v1c is applicable only to
the first stable zone of the Hugoniot—PTE Hugoniot. Other
ramifications of this simplification will be considered in the
next section.

In contrast to the PTE case, the derivative ∂vPE
H (p)/∂p

for the Hugoniot (5) can be directly calculated and it always
remains negative, proving that the PE Hugoniot has no
abnormality.

The attainment of minimal volume for vS
H and physical

meaning of the PE-PTE point can be understood from an
analysis of the PE and PTE Hugoniots along with accom-
panying mass-weighted (related to the total volume) PE and
PTE Hugoniots for the gaseous and condensed phases, using
the schematic shown in Fig. 1.

At the first stage of shock compression, the phases of a
porous material are compressed along individual Hugoniots.
During this stage, the volume of the gaseous phase (curve
PE2 in Fig. 1) almost approaches its shock compression
limit vPE

2 = vs2γ2m/γ2p (approximately 17% of initial gaseous
volume for the air) at practically any pressure within the
hydrodynamic pressure range.

FIG. 1. Schematic of the PE and PTE Hugoniots for a porous
material and its constituents at a high porosity resulting in the
Hugoniot abnormality.

During thermal relaxation, the heat of compressed gas is
exchanged with compressed condensed phase followed by its
expansion from vPE

1 , associated with the PE1 Hugoniot, up to a
maximum possible expansion vPT E

1 . This value at temperature
equilibrium taken from curve PTE1 is such that δv1 > 0, where
δv1 = c1(vPT E

1 − vPE
1 ). At the same time, the gaseous phase

is collapsing to a value of c2v
PT E
2 (curve PTE2) close to zero.

Thus, at any pressure in the hydrodynamic range, the thermal
relaxation is accompanied by a reduction of the gaseous
part in the bulk specific volume by δv2 = c2(vPE

2 − vPT E
2 ) ≈

c2vs2γ2m/γ2p.
When increasing pressure in the pressure range below the

PE-PTE point, volume vPE
1 is decreasing following the solid

phase Hugoniot (curve PE1). At the same time, volume vPT E
1

is increasing due to a larger expansion caused by a larger heat
transferred from the gaseous to condensed phase at stronger
compression (curve PTE1), while remaining δv1 < δv2 (see
Fig. 1). The combination of the PTE1 expansion and PTE2

collapse results in the PTE section of the composite Hugoniot
(curve PTE below point P that is visually indistinguishable
from curve PTE1 in Fig. 1). When the difference δv1 equalizes
δv2, further easy expansion to the space occupied by the
gaseous phase is not possible, because the expansion volume
will be larger than the volume of shock compressed gas (curve
PE2). This pressure level corresponds to the PE-PTE point
(point P in Fig. 1). Thus, this point is the collapse point,
which means that the solid phase at the P -point compression
resulting in the corresponding temperature, occupies exactly
the volume of shock compressed gas after expansion when
phase temperatures have equilibrated.

When increasing pressure above the collapse point, the
solid phase may expand only by δv2, which is less than δv1

in this case. Because of a larger volume of expansion of the
solid phase than the volume of shock compressed gas (curve
PE2), the temperature equilibrium cannot be achieved in the
corresponding shock wave. Thus, the volume, corresponding
to the porous material Hugoniot, follows vPE

1 shifted by
a nearly constant vPE

2 , resulting in the PE section of the
composite Hugoniot (curve PE above point P in Fig. 1).

Applying the thermodynamic analogy of the shock com-
pression of two-phase materials undertaken in Refs. [3,4,39],
we can consider porous material as a homogeneous mixture
of particles and gas, representing a material exhibiting two
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“phases” characterized by PE and PTE Hugoniots. Following
the analysis in Ref. [11], we consider Rayleigh lines for the PE
Hugoniots (lines R) and PTE Hugoniots (lines r) originating
from point O, corresponding to the initial volume v = vs . At
the same pressure below the collapse point (pressure level A in
Fig. 1), the shock velocity DPE (slope of the RA line) for the
PE Hugoniot is larger than velocity DPT E (slope of the rA line)
for the PTE Hugoniot: DPE > DPT E . Exactly at the collapse
point: DPE = DPT E (lines RP and rP are coincident), and at
pressure above this point (pressure level B): DPE < DPT E

(slopes of lines RB and rB , respectively, in Fig. 1). Because
the PE state is reached first, a two-wave configuration with
a PE wave followed by a PTE wave is stable [11]. At the
collapse point the waves are indistinguishable by pressure and
density (RP = rP ). In contrast, at pressure above the collapse
point, a two-wave configuration cannot be stable due to the
precedence of the PE state. As a result, a single PE wave is
realized followed by a PTE state which is separated from the
head wave by a temperature relaxation zone [11]. Using the
chemical kinetics analogy, the head wave is an “overdriven”
one followed by an equilibrium (stable) state tending to the
PTE Hugoniot. A similar wave configuration was observed
earlier in phase transition modeling [40]. The limited nature
of this thermodynamic analogy should be noted due to the
metastable character of the PE “phase” considered in this
comment.

To support the note commented in the preceding section
on the kinetic nature of the PE-PTE transition, we recall
that the PE-PTE point corresponds to the pore collapse.
Assessments of the collapse duration available in the literature
even without consideration of the gaseous phase span from
200 ns [41] to more than a microsecond [42], which supports
this note. The present analytical consideration assumes the
shock transition in the phases. In the case of a ramped loading,
the thermodynamic path of the corresponding transition may
deviate from the PE or PTE Hugoniots. Thus, the load history
governed by the transition kinetics in the corresponding
compression wave determines the actual path. In general,
when compared with the shock loading, the heating of the
gaseous phase in the case of ramped load is lower due to a
closer association with the isentropic loading and, as a result,
expansion of the solid constituent is smaller, which tends to
some quasi-isentropic PTE transition that has no abnormalities
at any porosity in contrast to the shock PTE transition. Pointing
to the kinetic nature, premature transition of the Hugoniot
states to the PE branch following pressure rise is likely when
thermal relaxation is not complete within the shock zone due to
the material microstructure (e.g., anomalously large particles).
On the contrary, delay of the transition to the PE branch or
permanent association with the PTE branch is likely when the
condensed phase converts to a substance with dramatically
different mechanical properties (e.g., gasification of the solid
phase).

IV. EXAMPLES

The present section presents Hugoniots calculated for
several nonorganic and organic powders and compares the
corresponding Hugoniots with experiments taken from popular
collections of Hugoniot data [43–45]. The material constants

TABLE I. EOS constants for solid constituents of analyzed
porous materials and calculated abnormality bounds of the two-phase
powders.

ρs1 c1 cv1 ρb

(g/cm3) (km/s) [J/(g K)] � (g/cm3) mb

Cu 8.93 3.94 0.45 1.99 4.45 2.0
Fe 7.84 4.63 0.415 2.2 4.1 1.91
Ta2O5 8.2 2.1 0.324 0.9 2.54 3.22
(C8H8)n 1.05 2.04 1.3 2.03 0.36 2.9
(C2F4)n(I) 2.17 1.47 1.17 0.45
(C2F4)n(II) 2.355 4.0 0.5 1.4
SiO2(I) 2.65 3.77 0.75 1.55
SiO2(II) 4.29 8.57 0.9 2.3

required by EOSs (2) and (3) are commonly available.
Specifically, constants for air, including ρs2 and cv2, completed
with two required extra constants c2 = 0.34 km/s and γ2 =
1.4, are obtained from (2) and (3) for the gaseous phase
by adjustment of the constants with room temperature T0 =
300 ◦K and atmospheric pressure ps = pa = 0.1 MPa. For the
solid constituent of a powder, four constants are needed in
order to specify the corresponding EOS: ρs1, c1, and cv1—
which are well tabulated—and �, taken as the corresponding
value for the solid material, unless otherwise specified. The
proposed analytical consideration relies on a constant �,
which is consistent with the thermodynamic relation [4] for
the Grüneisen parameter assessed as the ratio of volumetric
heat expansion α on isentropic bulk modulus over density
on the constant-pressure specific heat capacity. For solids at
the reference conditions, the thermodynamic estimate of the
Grüneisen parameter is very close to � = αc2

s /cv . Table I
summarizes these constants for the corresponding condensed
phases of the powders illustrated below.

The Hugoniots vS
H (p) for copper and iron powders are

shown in Figs. 2 and 3, where the figure caption indicates
values of porosity, m = ρs1/ρs with denotation ρs = 1/vs .
The points referred to in the present figure captions are
experimental data. Tantalum pentoxide, Ta2O5, is illustrated
in Fig. 4 with calculated composite Hugoniots for the
corresponding powders that have recently been studied in
several works [26,46,47]. Hugoniots for a polymer powder,

FIG. 2. Calculated composite Hugoniots (curves) compared to
the experiment (points) for copper powders: m = 1.4 (1, ◦), 2 (2, �),
4 (3, �), 5.5 (4, •), 7.2 (5, �), and 10 (6, ×).

054103-5



A. D. RESNYANSKY PHYSICAL REVIEW B 93, 054103 (2016)

FIG. 3. Calculated composite Hugoniots (curves) compared to
the experiment (points) for iron powders: m = 1.13 (1, ◦), 1.65 (2,
�), 2.33 (3, �), 2.9 (4, �), 10 (5, •), and 20 (6, ×).

polystyrene (PS), (C8H8)n, are shown in Fig. 5 and compared
with experimental data from Refs. [44,45]. The anomalous
behavior of polystyrene has previously been analyzed in
Ref. [7] without explicit specification of individual experi-
mental points.

The Grüneisen parameters of solid phases listed in Table I
agree with the thermodynamic estimate for the majority of
powders illustrated in Figs. 2–5. The Grüneisen parameter for
the solid constituent of the tantalum pentoxide powder is taken
as an average of the suggested values from Ref. [26].

Description of the experiments is generally good as seen in
Figs. 2–5. The theory-experiment divergence at low porosities
may reach nearly 8% for some powders with solid phases,
such as copper, which exhibit a nonlinear cold compression
response as shown in Fig. 2. Taking the nonlinearity into
account in the Hugoniot calculation [11] for copper at m = 1.4
(dashed curve in Fig. 2 next to curve 1) proves that this
divergence is due to the linear approximation of the present
EOS.

At large porosities, the error magnitude of specific volume,
�v, due to experimental velocity errors �D and �u can be
assessed [5] from the RH conditions as a value proportional
to the product of porosity, compression, and velocity errors.
As a result, a 1% velocity error may cause the volume
error to reach tens of percent for porosities higher than 5.
To illustrate the error magnitude, evaluated error bars are
shown for two experimental points from datasets in Figs. 4

FIG. 4. Calculated composite Hugoniots (curves) compared to
the experiment (points) for tantalum pentoxide powders: m = 1.1 (1,
◦), 2.7 (2, �), 6.8 (3, �), and 32.8 (4, ×).

FIG. 5. Calculated composite Hugoniots (curves) compared to
the experiment (points) for polystyrene powders: m = 2.1 (1, ◦),
3.67 (2, �), 5.3 (3, �), 7.2 (4, •), 10.5 (5, �), 13.6 (6, �), and 19.1
(7, ×).

and 5. Accordingly, the theory and experiment in Figs. 2–5
for the high-porosity powders are in agreement within the
experimental error margins.

Separately, two points above 100 GPa of the dataset 3
at m = 6.8 for the tantalum pentoxide powder (Fig. 4) were
obtained in Z experiments [46], which provide conditions close
to the isentropic compression [48]. The present consideration
does not analyze an actual thermodynamic path for these
loading conditions. Deviation of the two points from the
composite Hugoniot (curve 3 in Fig. 4) is possibly associated
with full dissociation of the gaseous phase to a monoatomic
gas, which is caused by the joule heating to temperatures of at
least a few up to several tens eV in the secondary hohlraums
of Z-machine containing samples [49]. The dissociation may
result in a variation [50] of the polytropic index in the
gaseous phase (called isentropic coefficient in Ref. [50]) to
γ2 = 5/3. The result of the calculation employing this index
for the gaseous phase (shown in Fig. 4 by a dashed curve)
demonstrates that such a change in thermodynamic properties
of the phase due to the specific loading conditions could be a
reason for the deviation.

Meanwhile, the PTE Hugoniots offer a potentially better
description of a polystyrene powder for points 6 and 7 in
Fig. 5 (the dashed curve is the PTE Hugoniot for m = 13.6),
scarcely available in the second Hugoniot zone. It should
be noted that highly porous PS powders typically show a
large experimental scatter (see comment on styrofoam in
Ref. [3]). Possible proximity of the high-porosity experimental
data to PTE Hugoniot could be caused by probable thermal
decomposition [51] of polystyrene into gaseous products. The
decomposition mechanism could be combustion because of
the low limiting oxygen index (LOI) less than 20 [51]. The
combustion results in more than 50% gaseous products [52]
when oxygen is sufficiently supplied at high porosity. This
mechanism has indirectly been confirmed by experiments [7]
supported by a theory from the same paper, assuming trans-
formation of the solid phase to a gaseous one. However, the
datasets 6 and 7 do not provide a sufficiently wide range of
points at high pressures above the collapse point, which makes
it difficult to judge the validity of the combustion mechanism
in this pressure region.
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The suggested approach has been trialled on a wide range
of powders with Hugoniot points from Refs. [43–45] when
the high-porosity data were available. A comparison with
experiments shows agreement of the description mostly within
10% when error margins are included. A description of similar
adequacy was also observed for the materials where phase
transition [such as the (α − ε) transition in iron] does not
result in a considerable change of mechanical impedance and
Grüneisen parameter. Moreover, the predicted abnormality
bounds, which are calculated using relation (6) and shown in
Table I, agree particularly well with the values inferred from
experimentally observed Hugoniots separating the normal and
anomalous regimes (e.g., curve 2 in Fig. 2 as well as unshown
separators at m = mb between curves 2 and 3 in Figs. 3 and 4,
and between curves 1 and 2 in Fig. 5).

It is worthwhile comparing the “textbook” limiting porosity
mt = (� + 2)/� with the limiting porosity mb calculated from
Eq. (6) and listed in Table I. It is seen that for the “heavy”
powders with a large-density condensed phase the values of
mt and mb are very close. However, the mt assessment for a
“light” powder with a low-density phase such as polystyrene,
results in a value less than 2, whereas mb is close to 3. At the
same time, the experimental points for PS powder at m = 2.1
demonstrate that the dataset 1 in Fig. 5 does not show any
abnormality. The anomalous behavior is observed for points 2
at m = 3.67, which agrees with the abnormality bound mb. The
reason for the divergence between mb and mt assessments is
the omission of the second phase that becomes non-negligible
in the calculation of mb for the low-density condensed phase.

Thus, the present approach offers a good description
and sensible interpretation that does not contradict available
experiments. However, the case of phase transition may result
in difficulties that cannot be resolved by the above two-phase
approach and will be discussed in the next section.

V. MULTIPHASE GENERALIZATION

The phase transitions may result in a considerable
impedance mismatch between polymorphs (such as those in
silica powders), or in a substantial � variation (such as that
in a Mie-Grüneisen EOS for polytetrafluoroethylene). In this
case, the two-phase consideration of the previous sections is
not applicable to the Hugoniot analysis for the corresponding
porous materials. However, an analytical description is still
possible for multiple phases in assumption of a constant phase
composition during the shock loading.

The chosen assignment of phases assumes the first two
phases to be polymorphic forms of the condensed phase related
to each other by a transition from the first phase to the second
one, and the third phase to be an interstitial gas. A simple
generalization of the PTE Hugoniot from Sec. II for a three-
phase material with two condensed phases and a third gaseous
phase based on the same EOSs has the following form:

v =
[

1
2 (p + ps)vs + es

]
A(p)

1
2 (p + ps)A(p) + B(p)

,

A(p) = c′
1γ1mpbp + c′

2γ2mpap + c′
3γ3mpapb,

B(p) = c′
1pbpgap + c′

2papgbp + c′
3papbp, (8)

where pa = p + p01, pb = p + p02, pga = p + γ1p01, and
pgb = p + γ2p02, p0k (k = 1,2) are the stiffening constants
of corresponding condensed phases, and denotations for the
third gaseous phase are extended from the corresponding ones
in Sec. II.

Similarly, an analytical representation of the PE Hugoniot
is

v = c1vs1
γ1p(p01 + ps) + γ1m(p + ps)

γ1p(p + ps) + γ1m(p01 + ps)

+ c2vs2
γ2p(p02 + ps) + γ2m(p + ps)

γ2p(p + ps) + γ2m(p02 + ps)

+ c3vs3
γ3pps + γ3mp

γ3pp + γ3mps

. (9)

It should be noted that five formal combinations of PE
and PTE states between the phases are possible. Hugoniots
describing these combinations are also not difficult to derive
in a similar way. However, for the sake of brevity, we consider
only two of the above combinations out of the five: (i) all
the phases are in thermal equilibrium [the Hugoniot vPT E

determined by Eq. (8)] and (ii) all the phases are in mutual
thermal nonequilibrium [the Hugoniot vPE determined by
Eq. (9)].

To illustrate Hugoniots for the three-phase case, we analyze
two porous materials with solid phases that are subject to
phase transitions under shock loading, resulting in significantly
different polymorphic modifications.

The first example considers polytetrafluoroethylene
(PTFE), (C2F4)n, powders. This material in condensed state
has multiple phases, including a low-pressure crystalline phase
that exhibits three forms at different temperatures mixed with
an amorphous phase, all transforming to a high-pressure
modification of the crystalline phase [53], when pressure is
increasing. The physics of the phase transition is complex and
requires a kinetic description embedded in the constitutive
model such as that in Ref. [54].

A simplified approach in the present work employs a two-
phase representation of the polymer, which is based on the
fact that polymorphs of the low-pressure crystalline phase are
mechanically relatively close to each other in comparison with
the high-pressure crystalline phase. Thus, the simplified two-
phase approximation of the material considers the first phase
to be PTFE at normal conditions and the second phase to be
the high-pressure crystalline phase. This approximation was
used earlier for the two-phase modeling [55] of PTFE.

The high-pressure phase is not easy to characterize mechan-
ically due to its metastable nature, but the modulus of this phase
is expected to be relatively high as an analysis in Ref. [53]
indicates. In addition, the isentrope data [56] suggest quite
large sound speeds in solid PTFE under shock compression.
The corresponding values for the second condensed phase
of the represented material are shown in the “c1” column
of Table I marked with the phase numbers referred to by
roman numbers next to the chemical formula of the material.
The Grüneisen parameter for the first condensed phase is
taken from the thermodynamic estimate [56] and listed in
Table I. However, when being under pressure, the Grünesien
parameter for PTFE is variable with both compression [56]
and temperature [57]. The high compression value [56] of the
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FIG. 6. Calculated three-phase composite Hugoniots (curves)
compared to the experiment (points) for PTFE powders: m = 1.45
(1, ◦) and 2.82 (2, �).

parameter selected for the second phase of PTFE is shown in
Table I.

When increasing temperature, thermal decomposition is
also a likely process as discussed in Ref. [56]. The influence of
the decomposition or dissociation [56,58] on the mechanical
properties, including the Grünesien parameter, is not easy to
specify. In the case of limited air supply, possibly occurring in
low-porosity powders and being observed in the recovery tests
of solid PTFE [56], dissociation is more likely. In contrast,
high-porosity powders can provide a high intake of oxygen at
high pressure and temperature; therefore, the combustion is a
possible mechanism of decomposition, even for a high LOI of
PTFE [51] at normal conditions.

Calculated Hugoniots for PTFE are shown in Fig. 6
for relatively low (curve 1) and high (curve 2) porosities.
At shock loading in the hydrodynamic pressure range, the
transition of PTFE to the high-pressure zigzag conformation
is accepted [53,54,56]. Therefore, the mass ratio of the second
phase to the first, c2 : c1, which is needed for calculation
of the phases’ mass concentrations along with the given
porosity m = ρs1/ρs , is taken to be 10:1. It is seen that the
Hugoniot description is reasonable for the low-porosity case,
but it is poor at high porosity. Possible disagreement could
be associated with thermal decomposition, which could result
in a drop of the Grünesien parameter (an example of a better
description is demonstrated by curve 2b in Fig. 6 at �2 = 0.6).

Another porous material illustrated in the present section is
silicon dioxide (silica) undergoing a high-pressure transition
to a metastable polymorphic form, stishovite [26]. The corre-
sponding calculated Hugoniots are calculated and compared
with experiments in Fig. 7.

Similarly to the preceding case, several low-pressure
polymorphs exist in silica. In order to minimize the number
of phases involved in the present analysis, we apply similar
simplification as we used for PTFE. We choose the first
phase at low pressure as α-quartz (for the crystalline silica)
without distinguishing between low-pressure polymorphic
modifications. The second phase at high pressure is taken
to be stishovite [13]. It should be noted that this simpli-
fication is less rationalized for the present case within the
hydrodynamic approximation because an intermediate phase,
coesite, ignored in the present consideration, exists in a lower
part of the hydrodynamic pressure range and its mechanical

FIG. 7. Calculated three-phase composite Hugoniots (curves)
compared to the experiment (points) for silicon dioxide powders:
m = 1.5 (1, ◦) and 4.82 (2, �).

characteristics differ notably from α-quartz and stishovite. The
occurrence of this form begins at a relatively low pressure of
nearly 2–3 GPa. We use α-quartz as the first phase because
the coesite mechanical characteristics are closer to α-quartz
than to stishovite, although an analysis with coesite as the first
phase is equally possible. The mechanical characteristics and
the Grüneisen parameter for α-quartz and stishovite are taken
from Refs. [59] and [60], respectively, and listed in Table I.

In both PTFE and silica, intermediate polymorphs may
exist at a time when moving up along Hugoniot, resulting
in a very complex process as molecular modeling [61]
shows. Thus, these materials under shock compression do not
preserve a permanent phase content, which is presumed by
the present analysis. In order to associate the phase content
with available experimental data for silica, we also choose
several phase ratios, c2:c1, within the condensed component
of silica powders. For a moderate-porosity case at m = 1.5,
curves 1, 1b, and 1c at the ratios 1:100, 3:1, and 10:1,
respectively, demonstrate the influence of the phase content
on the Hugoniots. It should be noted that while the phase
transition develops in the shock zone, the Hugoniot in real
powder may not follow the frozen Hugoniots shown in Fig. 7
because the Hugoniots, originating from points on Hugoniots
with variable phase concentrations, take individual paths that
may not be associated with any of the frozen Hugoniots.

As seen in Fig. 7, the calculated Hugoniot for the low-
porosity powder describes experiments well in the low-
pressure region, if the low-pressure phase is dominating
(curve 1 at c2:c1 = 1 : 100), whereas the description is poor
in the high-pressure region. When increasing pressure, the
description is improving with an increase of the stishovite
concentration in the condensed component (curves 1b and
1c). For the high-porosity case, curves 2 and 2b correspond to
the phase ratios 1:100 and 3:1, and the experimental points are
in the region between these Hugoniots with prevailing low-
pressure phase (curve 2) and high-pressure phase (curve 2a).
This agrees with the widespread hypothesis of the presence of
several polymorphs in silica during shock loading [13,59,60].

When comparing the low- and high-porosity cases of silica
with experiments in Fig. 7 and keeping in mind the prevailing
PTE regime for the high-porosity powder, the description of
the shock compression of stishovite at low concentration is
better for the high-porosity powder than for the low-porosity
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powder. Therefore, one could conclude that expansion of the
condensed phase as evidenced by the dominating PTE regime
in the high-porosity case, limits concentration of stishovite
in the condensed phase. Therefore, the volume change could
be hypothesized to be a dominant kinetic driver of the phase
transition in silica.

VI. INFLUENCE OF INTERSTITIAL GAS

The gaseous phase was frequently discarded from con-
sideration in the shock compression analyses of porous
materials available in the literature due to its low mechanical
response when compared with the condensed phase. Several
studies [5,62,63] have attempted to support the claim of
negligible influence of the air phase by testing porous samples
with evacuated air.

Referring to the experiments reported in Ref. [62], copper
powder samples with the air evacuated down to a few Torr
pressure (an order of several hundred Pa) have been tested
under shock loading. However, this level of evacuation is not
sufficient to achieve a sufficiently large free mean path [64]
in order to assume the interstitial space being free of the air.
Calculation of the composite Hugoniot using the relations from
Sec. II, as well as numerical results [11] published earlier,
give practically identical Hugoniots for powders under an
initial pressure of 0.1 MPa and 500 Pa. It is interesting to
note that the effect of initial air pressure in porous samples
is more noticeable when calculating the shock compression
of the corresponding samples with the elevated pressure of
the interstitial air. For example, the calculation result of the
composite Hugoniot for porous copper with initial air pressure
of 10 MPa in the powder is shown as curve 5a in Fig. 2.
However, lowering the pressure of the interstitial air down to
tens of Pa as claimed in Refs. [5,63] results in large Knudsen
numbers in the interstitial medium and a continuous analysis is
not straightforwardly applicable, which requires an additional
analysis.

First, we draw attention to the test methodology used
for obtaining Hugoniot points. One of the most popular
experimental techniques is the impedance match method
outlined in Chapter 2 of Ref. [5]. The method is typically based
on the time of arrival gauges (pins) which aim at recording the
shock velocity in a material in parallel with measurement of the
shock velocity for the same wave transmitted through a screen
material (a standard). Numerical analysis of possible issues
concerning the Hugoniot points of a porous material obtained
with this technique has been conducted in Ref. [11]. However,
evacuation of air from a porous sample raises additional issues
to the Hugoniot interpretation, which will be addressed below.

Suppose that the air can be fully evacuated from a
preselected original volume A × H that contains a certain
mass of particles or a solid matrix occupying a volume A × h

in a fully compacted state. Here, H and h are thicknesses
of a porous and corresponding solid sample. Focusing on the
shock wave propagation direction that is through the thickness
direction, we can exclude the area dimension A.

First, we can calculate the shock wave propagation time, tp,
in a porous material sample occupying the original volume that
consists of a solid matrix and the interstitial air at atmospheric
conditions. Secondly, we assume that the air is fully evacuated

from the original volume of thickness H measured in the wave
propagation direction.

When using time of arrival (TOA) gauges (e.g., pin gauges),
the wave speed is calculated by division of the distance H over
the propagation time tv of a recordable shock disturbance.
In accepting the mesomodel [21,65] simplification, it is easy
to see that the propagation time tv is a sum of propagation
times through the condensed portion of the sample, tc, and
the time of movement of the screen transmitting shock wave
to the sample, ts . The solid portion of the sample could be a
single block or an incremented set of matrix elements (e.g.,
particles), forming the same block after having removed voids.
In turn, movement of the screen can either be broken down
to a set of nonobstructed free movements of the particles
through the empty space between the incremented set of
particles or a continuous movement through the empty space
of thickness H − h. In either case, the time contribution due
to the propagation of disturbance through empty space spans
over the same time, ts .

Summarizing, in the case of evacuated air the resulting
propagation time through the volume originally occupied by
the sample is tv = tc + ts . If the particle velocity behind the
shock wave in the screen material due to impact by a flyer
plate or acceleration by detonation products is Up, then the free
surface velocity (velocity of the screen surface moving towards
the sample) is 2Up. Thus, ts = (H − h)/(2Up) and tc = h/Dc,
where Dc is the shock wave velocity in the condensed phase.

The case with evacuated air, analyzed in Refs. [5,63], deals
with two experimental Hugoniot points for silica powder.
These points are among the experimental data considered for
silica in the preceding section (Fig. 7). The samples were
loaded by the shock wave corresponding to the velocity in an
aluminum standard Up = 2.7 km/s [63]. We consider times
of arrival normalized by thickness H , which are in inverse
velocity units, thus eliminating set-up dimensions from the
analysis. Referring to the previous analysis, we consider the
PTE and PE cases, where in the case of vacuum the interphase
equilibrium relates only to the polymorphic modifications of
the solid component of the powder.

We compare the normalized TOA for the porous material
at the atmosphere conditions, tp/H , with the TOA assessment
tv/H = (ts + tc)/H calculated for the same assembly with
evacuated air. The ratio h/H ≈ 1/m is calculated from known
porosity m. The impedance match method with predetermined
Hugoniot in the aluminum standard [5] allows us to calculate
the Hugoniot state in the silica samples by employing the
analytical Hugoniots of the preceding section. The results are
summarized in Table II. In this table, ρs = 0.55 g/cm3 for the
high-porosity case at m = 4.82 and ρs = 1.75 g/cm3 for the
low-porosity case at m = 1.5. Pressure pp is calculated in the
powder at atmospheric conditions and pc in the solid phase
at the “vacuum” conditions. Indices Sp and Sc point to the
interphase equilibrium conditions in the corresponding setups
(the index Sp involves all three phases and the index Sc two
condensed polymorphs).

It is seen from a comparison of tp/H with tv/H at
the variety of interphase equilibrium conditions and several
concentrations of the low- and high-pressure phases that the
times differ from each other by a discrepancy from less than
a percent up to 15%. Thus, the times of arrival do not differ
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TABLE II. TOA evaluations in silica.

ρs pp pc tp/H tv/H

(g/cm3) (GPa) (GPa) Sp Sc (s/km) (s/km) c1:c2

0.55 15.0 53.4 PTE PTE 0.168 0.161 0.01
0.55 15.9 53.4 PE PTE 0.157 0.161 0.01
0.55 15.8 68.4 PE PTE 0.159 0.137 1.0
0.55 15.0 53.3 PTE PE 0.168 0.162 0.01
0.55 15.9 53.3 PE PE 0.157 0.162 0.01
0.55 15.8 65.1 PE PE 0.159 0.146 1.0
1.75 40.5 77.7 PTE PTE 0.153 0.147 3.0
1.75 40.5 77.7 PE PTE 0.154 0.147 3.0
1.75 40.5 74.8 PTE PE 0.153 0.152 3.0
1.75 40.5 74.8 PE PE 0.153 0.152 3.0

dramatically for the atmospheric and vacuum conditions if the
pin or similar TOA technique is used for registering the shock
wave velocities, which means that the TOA proximity does not
cast light on the influence of interstitial air on the Hugoniot.

It should be noted that evolution of the phase concentrations
and conditions of equilibrium are kinetically driven, therefore,
the present results are only possible estimates. However, the
calculated TOA proximity is sufficient for the conclusion about
the possible proximity of the shock velocities in powders filled
up with vacuum and with the air at atmospheric conditions.
Therefore, the Hugoniot states evaluated from the shock
velocities using the RH relations in the vacuum setup may
result in the pressure-volume response distant from that of the
material. This is seen from ps values in Table II, whereas the
corresponding specific volume is hard to determine correctly
in the vacuum setup due to the degenerating mass of the
corresponding phase.

Thus, the pin technique cannot discriminate with certainty
the shock compression of porous material at atmospheric
conditions from that at the vacuum conditions only on the basis
of TOA comparison. Embedded gauges [66] used for the shock
testing of porous materials with explicit stress measurement
or testing under elevated pressure could possibly bring more
clarity to the issue of the air influence.

VII. DISCUSSION AND CONCLUSIONS

A Hugoniot relation in an analytical form has been derived,
using the simplest EOSs for solid and gaseous phases of a
porous material represented as a two-phase mixture. With the
help of the analytical approach, a mesomechanical analysis of
shock compression of the porous material has been conducted
and two zones of Hugoniot have been revealed. The first stable
zone is a result of full thermal expansion of the solid phase,
when the limiting volume of the shock compressed gaseous
phase is sufficiently large. The second zone corresponds to
partial thermal expansion of the solid phase limited by the
volume occupied by the shock compressed gaseous phase.
Compression of the solid phase occurs as further expansion
is attempted and is restricted by the limiting volume of the
gaseous phase. The second zone is metastable with the material
expanding further in a temperature relaxation zone.

A number of simplifications were used in the paper. For
example, the shock compression of the phases of porous

material is represented on the mesolevel by equivalent el-
ementary bulk compressions, which is quite different from
the processes in real porous materials. The factors omitted in
the present consideration are the three-dimensional nature of
the compression on the mesolevel depending on the material
microstructure, high-temperature variation of the polytropic
index in the gaseous phase at shock compression, etc. The
description of available experiments with the present approach,
accepting these simplifications, is surprisingly good and
indicates that the bulk compressive response of the powders in
the hydrodynamic pressure region seemingly dominates.

Using the present analysis, the change of Hugoniot behavior
from normal to anomalous regime when porosity is increasing
could be explained by introducing a larger volume of the
interstitial gas, which results in a larger heating of the shock
compressed gaseous phase causing a larger thermal expansion
of the solid phase that is expanded fully in the first Hugoniot
zone. The abnormality condition obtained with the present
approach below the collapse point is very close to the well-
known abnormality limit in the case of heavy powders but may
differ essentially for light powders and the condition cannot
be applied above the collapse point.

Addressing thermodynamical aspects of the present analy-
sis within the hydrodynamic and linear EOS approximations,
pressure and temperature from the Hugoniot of a porous
material in the first zone could be used for characterization of
the condensed phase with specific volume apportioned to the
first phase from the first equation of (7). Similar decomposition
can be applied to the condensed phase in the second zone taking
pressure, properly apportioned volume of the Hugoniot of the
corresponding porous material (5), and temperature from the
first equation of (3). Note, a state from the second metastable
Hugoniot zone for the condensed phase does not necessarily
correlate with the point of its phase diagram corresponding to
the bulk temperature, evaluated from the energy balance for
the porous material.

The present approach enables us to analyze the Hugoniot of
multiphase porous materials. An analysis of porous materials
with phase transition between two phases of solid constituents
confirms an adequate correlation of the Hugoniots at various
concentrations of the phase modifications with the pressure
range corresponding to the prevailing phase modification.
However, in addition to the requirement of an invariable
Güneisen parameter of the condensed phase, the limitation
of the analytical approach is a permanent phase composition
which can be pulled off only by constitutive modeling with a
phase transition kinetic.

Further more explicit experimental studies are necessary
for clarification of the influence of the interstitial air on the
Hugoniot behavior because the traditional impedance match
technique cannot lead to an unambiguous conclusion. From the
analysis, the porous material with evacuated air is seemingly
thermodynamically different from porous material with an
interstitial gas.

Summarizing, (1) the Hugoniot data for porous materials
provide relevant data in thermodynamical equilibrium for the
condensed phase in the first stable zone; (2) decomposition of
the Hugoniot data for condensed materials from the Hugoniot
data for porous materials has to be mediated by an analysis
that takes into account the heat transfer from the gaseous
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to the condensed phase. Specifically, the second metastable
zone does not provide a thermodynamic equilibrium state,
but can be used for generation of the required data via a
two-phase consideration. A flowchart for determination of
the data can be deduced from the analytical derivation in
Sec. II; and (3) the thermodynamical properties, in particular,
the Grüneisen parameter, available for condensed materials
could possibly be applicable in areas of the phase diagram

of compliant porous materials with essentially higher thermal
energy than was believed earlier, if the gaseous phase is taken
into consideration. On the other hand, when temperatures are
assessed from the energy balance at shock compression of
porous materials, the extreme temperature data assigned to
condensed materials in corresponding phase diagrams may not
actually be achieved due to the temperature nonequilibrium in
the second metastable Hugoniot zone.
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