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Ultrastrong light-matter coupling of cyclotron transition in monolayer MoS2
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The light-matter coupling between cyclotron transition and photon is theoretically investigated in a monolayer
MoS2 system with consideration of the influence of electron-hole asymmetry. The results show that ultrastrong
light-matter coupling can be achieved at a high filling factor of Landau levels. Furthermore, we show that, in
contrast to the case for conventional semiconductor resonators, the MoS2 system shows a vacuum instability. In a
monolayer MoS2 resonator, the diamagnetic term can still play an important role in determining magnetopolariton
dispersion, which is different from a monolayer graphene system. The diamagnetic term arises from electron-hole
asymmetry, which indicates that electron-hole asymmetry can influence the quantum phase transition. Our study
provides new insights in cavity-controlled magnetotransport in the MoS2 system, which could lead to the
development of polariton-based devices.
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I. INTRODUCTION

The strong interaction between an exciton and cavity
photon in a high-finesse microcavity can induce a hybrid
light-matter eigenstate, which is usually named as polariton
in solid-state systems [1]. This strong light-matter interaction
can be achieved when this interaction is larger than all
broadenings caused by other various factors, e.g., electron
phonon scattering and cavity loss. The polariton is now
stimulating tremendous research interests due to its high
potential in cavity quantum electrodynamics (QED) [2] and
the achievement of polaritonic devices. Moreover, when the
interaction strength between an excitation and the cavity
photon, quantified by vacuum Rabi frequency, becomes
comparable to or larger than the corresponding electronic
transition frequency in a cavity, the system can enter an
ultrastrong coupling regime, which has been experimentally
observed [3,4]. In this regime, the standard rotating-wave
approximation is no longer valid, and the antiresonant term of
the interaction Hamiltonian starts to play an important role,
giving rise to exciting effects in cavity QED [5,6].

The discovery of graphene has attracted a great deal of
investigations into two-dimensional (2D) materials due to a
wide range of extraordinary electrical, optical, mechanical,
and thermal properties [7]. Recently, it has been predicted
that graphene can enter the ultrastrong light-matter coupling
regime under perpendicular magnetic field. In particular, a
vacuum instability (phase transition) analogous to the one
occurring in the Dicke model can also occur for graphene
in this ultrastrong coupling regime, which is absent in the
case of massive electrons in semiconductors [8,9]. In addition
to graphene, monolayer group VI transition-metal dichalco-
genides (e.g., MoS2, MoSe2, and WS2) have emerged as a new
class of 2D materials, which are being widely investigated due
to strong photoluminescence, excellent optical and electric
properties, and controllable valley polarization [10–22]. They

*Email address: qjwang@ntu.edu.sg

have a direct bandgap in the visible range, which is located at
the K and K ′ points situated at the corners of the hexagonal
first Brillouin zone. The inversion symmetry is explicitly
broken into monolayer MoS2 and other transition-metal
dichalcogenides (TMDs), giving rise to a valley-contrasting
optical selection rule, which allows optical pumping of valley-
polarized carriers by circularly polarized light [23]. Due to
their unique properties, MoS2 and other TMDs have attracted
great interest in the study of light-matter interactions. The
strong light-matter coupling between an exciton and photon
has been experimentally observed recently [24]. One important
open question is whether MoS2 and other TMDs systems can
enter the ultrastrong coupling regime and whether a quantum
phase transition (or vacuum instability) can occur.

In this paper, we theoretically study the ultrastrong light-
matter coupling in a monolayer MoS2 system under a perpen-
dicular magnetic field with the consideration of electron-hole
asymmetry. We show that the ultrastrong light-matter coupling
can be achieved at a high filling factor of Landau levels
(LLs) and the vacuum instability occurs, which was absent
in conventional semiconductor resonators [5,25]. The paper
is organized as follows. In Sec. II, we derive the coupling
between a cavity resonator and cyclotron transition and
establish the second quantized light-matter Hamiltonian for a
MoS2 system based on quantum field theory. At the same time,
the electron-hole asymmetry is also considered. In Sec. III, we
analyze the results, which show that an ultrastrong light-matter
coupling can be achieved at a high filling factor. Furthermore,
we show that, in spite of diamagnetic term A2

em, the MoS2

system still shows a vacuum instability, which is in contrast to
the case for conventional semiconductor resonators. Finally,
the conclusions are given in Sec. IV.

II. PHYSICAL SYSTEM AND INTERACTION
HAMILTONIAN

For the monolayer MoS2 system, without an external field
applied, the conduction and valence band edges are located
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at the two corners (i.e., K and K ′) of the first Brillion
Zone. The first-principle calculation has shown that the main
contributions to band edges near K and K ′ can be attributed to
dz2 , dxy , and dx2−y2 orbitals of metal atoms and the low-energy
band model has been constructed by using the k · p model
[26–28]. Ignoring the trigonal warping effect, which can only
provide small perturbation terms [29,30], we can write the two
band Hamiltonian as [29,31]

Hτs = t0a0k · στ + �

2
σz + λτs

1 − σz

2
+ �

2|k|2
4m0

(α + βσz),

(1)

where the final term indicates the electron-hole asymmetry.
In Eq. (1), m0 is the free electron mass, s = ± indicates spin
up and down, respectively; and τ = ± indicates K and K ′
valley, respectively, with Pauli matrices σ τ = (τσx,σy) and
Bloch wave vector k = (kx,ky). The energy gap � = 1.9 eV,
and the spin orbit coupling coefficient λ = 80 meV. The other
parameters are t0 = 1.68 eV, α = 0.43, β = 2.21, and a0 =
1.84 Å [29].

When a perpendicular magnetic field B = ∇ × A0 is
applied to the MoS2 plane, the electrons occupy highly
degenerate LLs. Within the limit a0/lB � 1, we can make
the Landau-Peierls substitution k → k + eA0/� to the Hamil-
tonian Hτs , where lB = √

�/(eB) is the magnetic length.
Using the Landau gauge A0 = (0,Bx,0) and writing the wave
function in K valley as

φn,k = (an|n − 1,k〉,bn|n,k〉),n > 0 (2)

φn=0,k = (0,|0,k〉),n = 0 (3)

with

an =
(

i

√
2

lB
a0t0

√
n

)
/No (4)

bn =
[
�

2
+ �

2

2m0l
2
B

(
n − 1

2

)
(α + β) − En,τ=+

]
/No, (5)

ana
∗
n + bnb

∗
n = 1 and No is the normalization factor. Note that

|n,k〉 are LL states with quantum numbers n and k. In this
paper, we assume the Fermi level is within the conduction
band, and the eigenenergies are as follows [29]:

En,τs =
√[

� − λτs

2
+ �ωcl

(
βn − ατ

2

)]2

+ 2n

(
t0a0

lB

)2

+ λτs

2
+ �ωcl

(
αn − βτ

2

)
, (6)

where cyclotron frequency ωcl = eB/2m0. In this paper, we
neglect the valley and spin splitting of LL energies, which are
small so as to have negligible effect on our results. Therefore,
the LL degeneracy is nB = 4eBL2/h, where L is the cavity
length. The first unoccupied LL index n is determined by the
filling factor v = ρS/nB (ρ is electron density), where S = L2

is the monolayer MoS2 surface area. In this paper, for the sake
of simplicity, we will consider the case of an integer filling
factor v. As we address the coupling between the light and

FIG. 1. Left panel: sketch of a cavity resonator embedding a
monolayer MoS2 with a uniform and static magnetic field B applied
perpendicularly to the material. Right panel: the MoS2 cyclotron
transition between conduction band LLs n = v and n = v − 1 is
quasiresonant to a confined cavity photon mode.

high filling factor of LLs, we have to take into account the
system at cryogenic temperature. Therefore, we assume zero
temperature in the rest of the calculations of this paper to
ensure the cyclotron transition energy is larger than thermal
energy.

We consider a rectangular cavity (see Fig. 1) with perfectly
conducting walls on all three sides and that has the volume
V = LzL

2 with the monolayer MoS2 material placed at the
center of the cavity perpendicular to the z direction. The cavity
length Lz along the z direction is assumed to be much smaller
than the cavity transverse size L. Therefore, we can restrict our
study to the particular photon mode with nz = 1, neglecting
all the higher lying modes nz > 1. The electromagnetic vector
potential can be written as

Aem(r) =
∑
η=1,2

√
�

2ε0εωcV
uη(aη + a†

η), (7)

where aη is the annihilation operator for a given photon mode
η = 1,2, ε is the cavity dielectric constant, and ε = 4.2 for
the monolayer MoS2 [32]. Applying the cavity mode with
wave vector q = (qx,qy,qz) = (2π/L,2π/L,π/Lz), the cavity

frequency ωc = [πc/(Lz

√
ε)]

√
1 + 8(Lz/L)2 and the modes

can be written as [8,9]

u1 =
⎛
⎝2cos(2πx/L)sin(2πy/L)cos(θ )

2sin(2πx/L)cos(2πy/L)cos(θ )
0

⎞
⎠ (8)

u2 =
⎛
⎝−2cos(2πx/L)sin(2πy/L)

2sin(2πx/L)cos(2πy/L)
0

⎞
⎠, (9)

where cos(θ ) = 1/
√

1 + 8(Lz/L)2.
Following the procedure of LL bosonization [8,9], we

obtain the bosonic bright mode annihilation operator be-
tween the transitions v → v − 1 coupled to cavity modes
η = 1,2 with the consideration of the condition |q|lB � 1
(for the photonic wave vector, this condition is always
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satisfied)

d1 =
√

1

nB

∑
k,±

sin

[
2π

L

(
k ± π

L

)
l2
B ∓ π

4

]
c
†
v−1,kcv,k±2π/L

(10)

d2 =
√

1

nB

∑
k,±

sin

[
2π

L

(
k ± π

L

)
l2
B ± π

4

]
c
†
v−1,kcv,k±2π/L,

(11)

where cv,k(c†v,k) are the annihilation (creation) operators for the
eigenstates φv,k defined in Eq. (2). Note that dη (η = 1,2) are
bosonic operators and they satisfy the commutation relation in
the ground state and dilute regime as [dη,d

†
η′ ] = δη,η′ .

Starting from the bosonic bright mode operators, after some
calculations, we can get the following bosonized version of the
kinetic part HL, the light-matter interaction part Hint, and the
diamagnetic term Hdia as (see Appendix)

HL =
∑
η=1,2

�ωegd
†
ηdη (12)

Hint =
∑
η=1,2

��η(dη + d†
η)(aη + a†

η) (13)

Hdia =
∑
η=1,2

�Dη(aη + a†
η)

2
, (14)

where �1 = �2cos(θ ),D1 = D2cos2(θ ) and the vacuum Rabi
frequency of mode two (η = 2) is

�2 =
√

1

2�ε0εωcV

i
√

2a∗
vbv−1a0t0e

√
nB

�

+
√

1

2�ε0εωcV

e�
√

nB

2m0lB
[(α + β)a∗

v−1av

√
v − 1

+ (α − β)b∗
v−1bv

√
v], (15)

and transition frequency ωeg between nearby LLs and diamag-
netic terms D2 are

ωeg = (Ev − Ev−1)/� (16)

D2 = nBe2

4ε0εωcm0V

v−1∑
n=0

[a∗
nan(α + β) + b∗

nbn(α − β)]. (17)

Note that in monolayer MoS2, similar to graphene, a
quantum critical value exists because D2ωeg is smaller than
�2

2, e.g., with v = 50 and B = 1T , D2ωeg/�2
2 ≈ 0.5 [8,33].

Above this critical value, a spontaneous coherence of light and
matter appears. The ground state becomes twice degenerate,
and the system goes into super-radiant quantum phase. In
addition to the light-matter interaction, we should also include
the Coulomb interaction, which plays an important role. We
can only consider the Coulomb interaction between transition
v − 1 and v levels. Based on our cavity structure, it is
straightforward that the Coulomb potential V (r − r ′) should
be expanded in terms of the 2D Fourier series. By the

FIG. 2. The dimensionless vacuum Rabi frequency �2/ωeg ver-
sus the doping density ρ. Other parameters are Lz = 1 mm, L = 8Lz,
and ωc = 0.49 THz rad−1. ωeg is the cyclotron transition frequency
between the last occupied LL with the first unoccupied one.

bosonization of the Coulomb Hamiltonian, we find

HCoul =
∑
η=1,2

�Vcχη(dη + χηd
†
η)

2
, (18)

where χ1 = −1, χ2 = 1, and

Vc = nBe2l2
Bvπ

8
√

2ε0εL3�

(
a∗

vav−1

√
v − 1

v
+ b∗

vbv−1

)2

. (19)

By diagonalizing the kinetic and Coulomb Hamiltonian, we
can obtain the magnetoplasmon modes

HCoul + HL =
∑
η=1,2

�ωpg†
ηgη + const, (20)

where gη = uηdη + vηd
†
η is the magnetoplasmon mode, where

ωp = √
ωeg(ωeg + 4Vc), uη = −χη

ωp+ωeg

2
√

ωegωp
, and vη = ωeg−ωp

2
√

ωegωp
.

Then, we can write the total Hamiltonian
describing photonic and magnetoplasmon modes

FIG. 3. Normalized frequencies of LP and UP branches of
magnetopolariton as a function of doping density for η = 1 and
η = 2. Parameters are B = 0.75 T, Lz = 1 mm, L = 8Lz, and ωc =
0.49 THz rad−1; the critical density for phase transition is ρc =
1.44 × 1013cm−2.
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FIG. 4. Normalized frequencies of LP and UP branches of
magnetopolariton as a function of doping density with and without
the diamagnetic term, e.g., for η = 2. Parameters are B = 1 T, Lz =
1 mm, L = 8Lz, and ωc = 0.49 THz rad−1; the critical density for
phase transition is ρc = 1.44 × 1013cm−2 and ρc = 6.30 × 1012cm−2

with and without diamagnetic terms, respectively.

as

H =
∑
η=1,2

[�ωpg†
ηgη + �ωca

†
ηaη + ��̃η(g†

η + gη)(aη + a†
η)

+ �Dη(aη + a†
η)

2
], (21)

where �̃η = (uη − vη)�η.
Introducing polariton operators pj,η = cj,ηg

†
η + dj,ηa

†
η +

ej,ηgη + fj,ηaη, we can write the Hamiltonian (21) in polariton
basis as

H =
∑
j,η

�ωj,ηp
†
j,ηpj,η + const. (22)

Here j indicates upper polaritons (UPs) and lower polaritons
(LPs), and the commutation relation [pj,η,p

†
j ′,η] = δj,j ′ . By

calculating the commutation relation [pj,η,H ] = �ωj,ηpj,η,

we can obtain a 4 × 4 matrix that can be written as⎛
⎜⎜⎝

ωc + 2Dη �̃η −2Dη −�̃η

�̃η ωp −�̃η 0
2Dη �̃η −ωc − 2Dη −�̃η

�̃η 0 −�̃η −ωp

⎞
⎟⎟⎠. (23)

By diagonalizing the matrix, we can obtain the eigenfrequency
of the polaritons. Meanwhile, the critical value of �̃, beyond
which the system may enter super-radiant phase regime, is
�̃c = √

ωp(ωc + 4D)/2. The phase transition occurs at v =
200 with B = 0.75T, which we will show below.

III. NUMERICAL RESULTS AND DISCUSSIONS

As written in Eq. (15), we have obtained the vacuum Rabi
frequency of the monolayer MoS2 system, and we then can
characterize the intrinsic strength of the transition, i.e., the
ratio between vacuum Rabi frequency �2 with LL transition
frequency ωeg , which is shown in Fig. 2. The results show
that the dimensionless vacuum Rabi frequency �2/ωeg can be
comparable to or even larger than 1 for small magnetic field
B and large enough doping density. We can conclude that,
as is the case for graphene, the monolayer MoS2 system can
also enter the ultrastrong coupling regime. Note that in our
paper, the carrier doping is induced by the external electric
fields, and their relations can be simply calculated according
to Ref. [34]. But as discussed in Ref. [29], the external electric
field will also influence the electron-hole asymmetry, thus the
band structure of MoS2. For the sake of simplicity, we adopt
the formula used in Ref. [29], which describes the relation
between the electron-hole asymmetry and electric field.

Using Eq. (23), we can calculate the magnetopolariton
dispersion. In Fig. 3, we show the carrier density dependences
of frequencies of magnetopolariton normalized to the cavity
mode, where the LP and UP branches are the two spectrally
separated light-matter eigenstates in strong coupling regime.
In contrast to the conventional semiconductor materials
(e.g., GaAs), the monolayer MoS2 resonator, as a 2D
semiconductor material, shows the existence of quantum
critical point (ρc = 1.44 × 1013cm−2 in our considered
parameter) beyond which the normal ground state becomes
unstable. This quantum critical point exits in the MoS2 system

FIG. 5. (a) Normalized frequencies of LP and UP branches of magnetopolariton as a function of magnetic field B, doping density is
ρ = 2.81 × 1012cm−2. (b) Normalized frequencies of LP and UP branches of magnetopolariton as a function of magnetic field B, doping
density is ρ = 1.42 × 1013cm−2, which is just below the critical density. The critical value of magnetic field B for phase transition is Bc = 1.06 T,
beyond which the system may enter the super-radiant phase regime.
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due to the smaller diamagnetic term rather than vacuum Rabi
frequency term, i.e., D2 < �2

2/ωeg , as discussed above [33].
In conventional semiconductors, the diamagnetic term is even
dominant in the ultrastrong coupling regime between a cavity
resonator and cyclotron transitions.

In contrast to graphene, the diamagnetic term can still
play an important role in determining magnetopolariton
dispersion for the monolayer MoS2 system, as shown in Fig. 4.
The quantum critical point of the MoS2 resonator can be
greatly increased from ρc = 6.30 × 1012cm−2 to ρc = 1.44 ×
1013cm−2 when considering the diamagnetic term. On the
other hand, the diamagnetic term arises from the electron-hole
asymmetry, which indicates that electron-hole asymmetry can
influence the quantum phase transition (see Appendix).

We close the analysis by considering the effect of magnetic
field on magnetopolariton at doping density far away from
the quantum critical point [Fig. 5(a)] and one just below the
critical point [Fig. 5(b)]. As a 2D semiconductor material,
the MoS2 system has a similar magnetic field dependent
magnetopolariton dispersion curve with a 2D electron gas in
quantum wells if the doping density is far away from the
critical density. However, when doping density is just below
the critical point, the dispersion curve is very different, as
depicted in Fig. 5(b). As the magnetic field increases, a strong
asymmetric dispersion is exhibited, which shows the signature
of such phase transition.

IV. CONCLUSIONS

In conclusion, we theoretically investigate the cavity QED
in a monolayer MoS2 system under perpendicular magnetic
field with the consideration of electron-hole asymmetry. The
results show that the MoS2 system can enter the ultrastrong

light-matter coupling regime. But, in contrast to conventional
semiconductors, the semiconductor monolayer MoS2 system
shows a quantum phase transition. In the monolayer MoS2

resonator, the diamagnetic term can still play an important
role in determining magnetopolariton dispersion, which is
different from the monolayer graphene system. The dia-
magnetic term arises from electron-hole asymmetry, which
indicates that electron-hole asymmetry can influence the
quantum phase transition. Our study provides a theoretical
foundation for the observation and investigation of cavity QED
for fundamental studies and quantum applications in a MoS2

system.
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APPENDIX

Neglecting the spin and valley splitting effects, the first
order Hamiltonian, including the light-matter interaction, can
be written as two parts H1 = H1,L + H1,int, where kinetic
energy part reads

H1,L =
(

�
2 0
0 −�

2

)
+ a0t0

(
0 kx + eA0,x

�
− i

(
ky + eA0,y

�

)
kx + eA0,x

�
+ i

(
ky + eA0,y

�

)
0

)
, (A1)

and the light-matter interaction part reads

H1,int = a0t0

(
0 eAem,x

�
− i

eAem,y

�
eAem,x

�
+ i

eAem,y

�
0

)
. (A2)

Similarly, the second order Hamiltonian (electron-hole asymmetry term), including the light-matter interaction, can be written
as three parts H2 = H2,L + H2,int + Hdia, where the kinetic energy part reads

H2,L =
(

(α + β) �
2

4m0

(
k + eA0

�

)2
0

0 (α − β) �
2

4m0

(
k + eA0

�

)2

)
, (A3)

the light-matter interaction part reads

H2,int =
(

(α + β) �
2

4m0

[(
k + eA0

�

) · eAem

�
+ eAem

�
· (

k + eA0
�

)]
0

0 (α − β) �
2

4m0

[(
k + eA0

�

) · eAem

�
+ eAem

�
· (

k + eA0
�

)]
)

, (A4)

and in addition we have the diamagnetic term, which reads

Hdia =
(

(α + β) �
2

4m0

(
eAem

�

)2
0

0 (α − β) �
2

4m0

(
eAem

�

)2

)
, (A5)

where A0 = (0,Bx,0) and Aem is given by Eq. (7). We write the
kinetic energy part of the Hamiltonian HL = H1,L + H2,L in
LL basis, which is given by Eq. (2) as HL = ∑

n,k Enc
†
n,kcn,k ,

where En is given by Eq. (6) and c
†
n,k is the Fermi creation

operator for the eigenstates φn,k defined in Eq. (2). In order
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to bosonize the kinetic Hamiltonian HL, we calculate the
commutation relation [HL,d†

η] = �ωegd
†
η, where ωeg is shown

in Eq. (16) as the transition frequency between nearby LLs,
and we obtain the bosonized Hamiltonian HL, as given by
Eq. (12). Next, we give the bosonization procedure for the first
order of interaction Hamiltonian H1,int. First, we write H1,int

in LL basis as

H1,int =
∑

n,n′,k,k′

a0t0e

�
[an′b∗

n〈n,k|(Aem,x + i Aem,y)|n′ − 1,k′〉

+ a∗
nbn′ 〈n − 1,k|(Aem,x − i Aem,y)|n′,k′〉]c†n,kcn′,k′ .

(A6)

Since we are dealing with low energy cavity
modes, the LL mixing can be neglected, and we have

〈n,k| exp(−iq · r)|n′,k′〉 = exp(−i
qx (k+k′)l2

B

2 )χn,n′(qlB)δk,k′+qy

thanks to the condition |q|lB � 1, where χn,n′ (qlB) ≡
�(n − n′)Gn,n′ (q∗lB) + �(n′ − n)Gn′,n(qlB), Gn,n′ (qlB) =√

n′!
n! (−iqlB√

2
)n−n′ n′∑

j=0

n!
(n′−j )!(n−n′+j )!

(−|qlB |2)
j

2j j ! , q = qx + iqy , and

�(n) is a Heaviside step function. Bearing in mind that we
are dealing with the cyclotron transitions between the last
occupied LL, n = v − 1, with the first unoccupied one, n = v.
Finally, we arrive at

H1,int =
∑
η=1,2

��1,η(dη + d†)(aη + a†), (A7)

where for the cavity mode two (η = 2) we obtain the first
order of vacuum Rabi frequency, written as the first part of the
right-hand side in Eq. (15); the bosonic operator dη is shown in
Eq. (10) and Eq. (11). Similarly, the second order vacuum Rabi
frequency can be obtained from Hamiltonian H2,int, and it is
shown as the second part of the right-hand side in Eq. (15). The
diamagnetic contribution Hdia can be bosonized in a similar
way, which can be written in form as

Hdia =
∑

n,n′,k,k′

[
an′a∗

n(α + β)
e2

4m0
〈n − 1,k|A2

em|n′ − 1,k′〉

+ bn′b∗
n(α − β)

e2

4m0
〈n,k|A2

em|n′,k′〉
]
c
†
n,kcn′,k′ (A8)

by setting n = n′ and k = k′, and summing over k provides
the LL degeneracy nB . Replace the number operator c

†
n,kcn′,k′

by the its expectation value 〈c†n,kcn,k〉 = �(v − 1 − n) in the
electronic ground state |F 〉 with

|F 〉 =
v−1∏
n=0

nB∏
k=1

c
†
n,k|0〉. (A9)

Finally, we can obtain this diamagnetic term, as shown in
Eq. (14).
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