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Surface phonon polaritons on anisotropic piezoelectric superlattices
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A theoretical study of surface phonon polaritons (SPhPs) on periodically poled lithium niobate and periodically
poled lithium tantalate surfaces is presented. We calculate the dielectric response for six different superlattice
orientations and the associated SPhP dispersion relations. Our study of SPhPs accounts for the anisotropic nature
of the dielectric response of the semi-infinite piezoelectric superlattices. We find that two different types of SPhPs
can be supported. The first type consists of real surface dipole oscillations coupled to photons. The second type
consists of virtual surface dipole oscillations driven by the incident photons. The dependence of the SPhPs on
temperature and superlattice geometry is addressed. The use of these metamaterial excitations is discussed in the
context of hybrid quantum systems.
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I. INTRODUCTION

Surface polaritons have been studied for applications in
subwavelength and near-field optical devices, energy transfer,
and quantum hybrid systems [1–8]. The confined electromag-
netic wave formed at the interface of two media by coupling
photons to elementary excitations to create polaritons can be
used for information transport. Most of the work on surface
polaritons has been discussed from the perspective of surface
plasmon polaritons (SPPs) [9]. SPPs are formed by coupling
photons to surface charges, generally on metal surfaces. Recent
research on surface phonon polaritons (SPhPs), where photons
couple to optical phonons on dielectric surfaces, has been
investigated for similar applications, usually in the infrared
regime [10–17]. Similar to SPPs, SPhPs are interesting for
future quantum information processing applications as a way
to transport quantum information from a low to a high
temperature environment [18] and, more fundamentally, the
quantum control of mechanical vibrations. The coupling of
electromagnetic waves to phonons and the propagation of
SPhPs along a surface can be controlled by designing and
engineering the material properties. In the case considered
in this paper, we analyze superlattices engineered to have
low frequency phonon modes that support SPhPs which can
resonantly couple to highly excited atoms, such as Rydberg
atoms.

For SPhPs on natural crystal surfaces, such as α-quartz,
the polariton resonant frequencies are generally on the order
of terahertz [19–21] and are difficult to tune. A piezoelectric
superlattice (PSL) is a metamaterial with oppositely poled
adjacent domains of a piezoelectric crystal [22,23]. A PSL has
been shown to act as an artificial ionic-type phononic crystal
[24]. With this picture, the superlattice domains can be viewed
as periodically inverted dipoles whose oscillation produces
phonons, and vice versa, due to the electromechanical coupling
of the piezoelectric effect. Analogous to the dielectric response
determined by the macroscopic equations of polar motion of an
ionic crystal [25], the dielectric response of a PSL modified by
the induced long-wavelength lattice waves can be calculated
using piezoelectric equations [26]. This is an essential step for
determining the characteristics of SPhPs on a PSL [27].

Among the many piezoelectric materials that we exam-
ined, periodically poled lithium niobate (PPLN) [28] and

lithium tantalate (PPLT), which have been extensively studied
for nonlinear optics, are promising PSLs for the study of
SPhPs formed by electromechanical coupling. Both lithium
niobate and lithium tantalate are classified as members
of the 3m point group. They possess large piezoelectric
coefficients with relatively small constant strain permittivity
[29]. These qualities are desired for strong phonon-photon
coupling.

It has been shown that the resonant frequencies of the
lattice waves inside a PSL depend on its superlattice constant,
which is the poling period of a periodically poled crystal
[30]. SPhPs exist near some of these resonances [24,31].
As a result, using PPLN or PPLT with proper periodic
poling can place the frequencies of SPhPs at the frequencies
of specific transitions of Rydberg atoms, opening up the
possibility to study the resonant atom-surface interaction in
an experimentally more accessible regime. The atom-surface
interaction can form an optomechanical hybrid quantum
system where the atomic dipoles strongly couple to the surface
guided electromechanical excitations in the near field regime,
on the order of millimeters to meters.

Based on previous studies of SPhPs on PPLN and PPLT
surfaces [26,31,32], we adopt and extend the method proposed
in Ref. [33] to obtain the dielectric response of PPLN and
PPLT. We further include the anisotropy of the dielectric
response in our SPhP analysis [27,34]. We consider a PSL
surface lying in the i-k plane, as shown in Fig. 1, with
a superlattice-surface orientation of TiNj . Ti represents the
superlattice direction lying parallel to the surface and normal
to the lattice planes, î, while Nj indicates the surface normal,
ĵ . The propagation direction of the induced lattice waves, due
to the domain vibration, is always along î.

The anisotropy of the PPLN and PPLT surfaces origi-
nates from the 3m single crystal structure [35,36] and the
superlattice-surface orientations. Crystal structure can have a
large effect on the way an electromagnetic wave propagates
in and on the surface of a material [37]. The crystal structure
of the lithium niobate and lithium tantalate used to construct
the PSL is 3m. The one-dimensional (1D) structure of the PSL
breaks the 3m symmetry. A 3m crystal structure results in a
uniaxial PSL for some geometries. Certain superlattice-surface
arrangements, TxNy , TxNz, TyNx , and TyNz, result in a biaxial
PSL. Both the 1D structure of the PSL and the symmetry of
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FIG. 1. Schematic sketch of a TiNj orientated PSL surface for
a TM-mode SPhP. The interface is formed between the PSL and an
isotropic medium. We define a geometry where the periodic poled
domains, the superlattice, are aligned along î, and the surface normal
direction is along ĵ . The black and gray sections refer to the domains
with inverted internal dipoles along the crystal optical axis. For
TM-mode SPhPs, the electric field at the interface between the PSL
crystal and the isotropic medium has to be polarized in i-j plane with
components Ei and Ej , with the magnetic field pointing along k̂.

the lithium niobate and lithium tantalate are taken into account
in the calculations. For a 3m single crystal, the constant strain
permittivity tensor, using the principal axes of the crystal as
the basis, has the form

εS =

⎡
⎢⎣

εS
xx 0 0

0 εS
xx 0

0 0 εS
zz

⎤
⎥⎦. (1)

In our theoretical analysis we rely on the assumption that
the superlattice-surface orientation axes (i,j,k) are aligned
with the crystal principal axes (x,y,z). There are six possible
superlattice-surface orientation combinations TiNj that can be
formed by aligning different principal axes of the crystal to the
superlattice orientation, i,j ∈ {x,y,z} and i �= j , as shown in
Fig. 1.

II. DIELECTRIC RESPONSE OF PSL

To study the electromechanical coupling of a SPhP on a
PSL, we start with the piezoelectric constitutive equations as
proposed in previous theoretical analysis [38],

[
S

D

]
=

[
sE d t

d εT

]
·
[
σ

E

]
, (2)

where S is the second-rank strain tensor which can be reduced
and represented as a vector matrix,

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sxx

Syy

Szz

Syz

Szx

Sxy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

σ is the second-rank stress tensor which can also be reduced
and represented as a vector matrix,

σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Txx

Tyy

Tzz

Tyz

Tzx

Txy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

D is the electric displacement vector,

D =

⎡
⎢⎣

Dx

Dy

Dz

⎤
⎥⎦. (5)

E is the electric field vector,

E =

⎡
⎢⎣

Ex

Ey

Ez

⎤
⎥⎦. (6)

sE is the fourth-rank elastic compliance tensor, which is the
inverse of the fourth-rank elastic stiffness tensor CE , and can
be reduced and represented as a 6 × 6 matrix. For a 3m point
group crystal, the elastic stiffness tensor can be expressed as

s−1
E = CE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 0 0

C12 C11 C13 −C14 0 0

C13 C13 C33 0 0 0

C14 −C14 0 C44 0 0

0 0 0 0 C44 C14

0 0 0 0 C14
C11−C12

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)

d, as well as its transpose d t , are third-rank piezoelectric strain
tensors which can be reduced and represented as

d =

⎡
⎢⎣

0 0 0 0 d15 −d22

−d22 d22 0 d15 0 0

d31 d31 d33 0 0 0

⎤
⎥⎦. (8)

εT is the constant stress permittivity tensor,

εT =

⎡
⎢⎣

εT
11 0 0

0 εT
11 0

0 0 εT
33

⎤
⎥⎦. (9)

The piezoelectric constitutive equations, Eq. (2), can be
rewritten in the stress form,

σ = CE · S − et · E, (10a)

D = e · S + εS · E, (10b)

where e, and its corresponding transposed matrix et , are the
piezoelectric stress tensors,

e = d · CE. (11)

The periodically modulated piezoelectric coefficients along
one of the crystal principal axes xi ∈ {x,y,z}, for a single
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period can be written as

e → ef (xi), f (xi) =
{

1, 0 � xi < a,

−1, a � xi < l.
(12)

To analyze the piezoelectric equations, we consider the three-
dimensional (3D) equation of motion with zero body force,

∇ · σ = ρ
∂2u
∂t2

, (13)

where ρ is the density and u is the displacement vector,

u =

⎡
⎢⎣

ux

uy

uz

⎤
⎥⎦, (14)

which satisfies the strain-displacement relation,

S = ∇t · u. (15)

The divergence operator is defined as

∇ ≡

⎡
⎢⎣

∂x 0 0 0 ∂z ∂y

0 ∂y 0 ∂z 0 ∂x

0 0 ∂z ∂y ∂x 0

⎤
⎥⎦, (16)

where the spatial derivative components are ∂xi
≡ ∂/∂xi . ∇t

is the transpose matrix of the divergence. By substituting the
equation of motion and the strain-displacement relation into
Eq. (10) and taking the spatial derivative of Eq. (10a), we
can obtain the piezoelectric equations in matrix representation
[33],

ρ
∂2

∂t2
u = −Âu − iB̂[f (xi)E], (17a)

D = f (xi)iB̂
t u + ε0εS · E, (17b)

where the operators Â and B̂ are defined as

Âu ≡ −∇ · CE · ∇t · u,

B̂[f (xi)E] ≡ −i∇ · et · f (xi)E. (18)

Equation (17a) describes the mechanical oscillation of the
superlattice driven by an electric field. The oscillation, in
turn, contributes to the electric displacement field within the
superlattice, which is described by the first term on the right-
hand side of Eq. (17b). The overall dielectric response to the
electric field including the contribution from the mechanical
oscillation can be solved with these coupled equations. To
obtain an expression for the dielectric response near each
lattice wave resonance, we transform the displacement and
the electric field to momentum space, and take the Fourier
series expansion of the piezoelectric modulation,

u =
∫

uqe
i(q·r−ωt)d3q, (19a)

E =
∫

E(k)ei(k·r−ωt)d3k, (19b)

f (xi) =
∑
m�=0

FmeiGmxi , (19c)

where

Gm ≡ 2πm

l
,

(20)

Fm ≡ 2 sin mπa
l

mπ
e−i mπa

l .

We substitute the solution of u in terms of E near the mth res-
onant frequency ωm, obtained from Eq. (17a), into Eq. (17b).
It is important that the piezoelectric modulated phase of
the electromagnetic field matches the mechanical wave to
support a SPhP that can propagate over many wavelengths.
The modulated piezoelectric effect and quasiphase matching
have been extensively studied for the frequency conversion
of light. The condition of perfect phase matching is difficult
to achieve but propagating excitations can exist if the phase
matching condition is approximately satisfied, i.e., quasiphase
matching,

q � k + Gm, (21)

where Gm = Gmx̂i . For a wavelength of the electromagnetic
wave much larger than the poling period of the PSL, an explicit
expression of the electric displacement in terms of the electric
field can be written out. This “so-called” long-wavelength
approximation is well satisfied for our system since the SPhP
wavelength is on the order of a centimeter and the poling
period is on the order of a micrometer. In the long-wavelength
approximation,

k � Gm and f (xi)e
iGmxi ≈ 〈f (xi)e

iGmxi 〉 . (22)

By applying the quasiphase matching condition and the long-
wavelength approximation [26], the final result for the electric
displacement is

D = [−2|Fm|2B̂t
m(ω2ρÎ − Âm)−1B̂m + ε0ε

S]E. (23)

Equation (23) contains the resulting dielectric response tensor
ε, where D = ε0ε E,

ε = εS − 2
|Fm|2

ε0
B̂t

m(ω2ρÎ − Âm)−1B̂m. (24)

The dielectric response of the PSL, ε, is the essential
quantity needed to calculate the dispersion relation of the
supported SPhPs. ε determines the coupling between the
dipole excitations and the electromagnetic waves within the
crystal. The second term on the right side of Eq. (24) includes
the frequency dependence of the dielectric response of the
PSL. The mechanical properties are described by Âm. The
modulated piezoelectric effect enters the equation in the
coefficient Fm. B̂m gives the coupling between the electric field
and mechanical vibration. For an isotropic crystal surface in
vacuum, a negative dielectric response of the crystal results in
an evanescent electromagnetic field along the surface normal
direction, and the corresponding SPhP dispersion relation is
straightforward to calculate analytically. However, our SPhP
analysis has to adapt the complex dielectric response given by
Eq. (24), due to the more complicated crystal structure of the
anisotropic PSL, to calculate the SPhP dispersion relations.
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III. SMALL ROTATION APPROXIMATION

The dielectric response ε, obtained from Eq. (24), is not
in general a diagonal matrix in the basis along the crystal
principal axes. The off-diagonal parts of the dielectric response
are introduced by the second term in Eq. (24) due to the
piezoelectrically induced superlattice vibrations. The surface
polariton dispersion relation on a general anisotropic surface
can be calculated as shown in Ref. [34]. However, a simple
analytic solution of the dispersion relation only exists for TM-
mode SPhPs [27]. Therefore, it is convenient to approximate
the general SPhPs as TM-mode SPhPs on PSL surfaces. A
diagonalized dielectric response is required for a TM-mode
SPhP dispersion relation calculation. For periodically poled
3m crystals, the dielectric response along the crystal principal
axes,

ε =

⎡
⎢⎣

εxx 0 0

0 εyy εyz

0 εyz εzz

⎤
⎥⎦, (25)

can be diagonalized by a rotation operator,

R̂ =
⎡
⎣1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎤
⎦. (26)

The diagonalized dielectric response matrix has the form

ε′ = R̂−1εR̂ =

⎡
⎢⎣

εx 0 0

0 εy 0

0 0 εz

⎤
⎥⎦. (27)

The angle θ shown in Fig. 2, between the dielectric response
principal axes (x ′,y ′,z′) of a PSL and the crystal principal axes
(x,y,z) of the corresponding single crystal, can be derived
from the rotation operator,

tan(2θ ) = 2εyz

εyy − εzz

⇒ θ = 1

2
arctan

2εyz

εyy − εzz

. (28)

In a typical PPLN or PPLT crystal, the superlattice-surface
orientation axes are aligned with the crystal principal axes
(i,j,k) ∈ (x,y,z). For a small rotation angle |θ | � 1, the
rotated dielectric principal axes (x ′,y ′,z′) are almost aligned
with the crystal principal axes (x,y,z). We refer to the condi-

FIG. 2. Rotation of a 3m single crystal in y-z plane around the
crystal principal axis x with an angle θ required to diagonalize the
dielectric response matrix of a PSL.

tion (x ′,y ′,z′) ∼ (x,y,z) as the small rotation approximation
(SRA). It leads to a simplification of the calculations of the
SPhP dispersion relations. We validate this approximation later
in this work by comparing its result with an exact numerical
calculation for PPLN and PPLT.

IV. TM-MODE SPhP DISPERSION RELATION

The calculated dielectric response of PSL crystals for
different TiNj orientations includes the electromechanical
couplings between the phonon vibrations and the TM-mode
photons. The dispersion relation describes the coupled photon-
phonon mixture (polariton) traveling within the material.
On the surface of the material, the TM waves due to the
boundary discontinuity can be confined to the surface with
an exponentially decaying electromagnetic field normal to the
surface. Therefore, it is useful to analyze the dispersion relation
of the SPhPs to study the properties of the confined polaritons
traveling along a surface.

The dielectric response along the different axes are gen-
erally not the same. To include the anisotropy in the SPhP
dispersion relation calculation, we take advantage of previous
work on semi-infinite anisotropic crystals. The TM-mode
SPhPs only exist on the TiNj surfaces where one of the
principal axes of the diagonalized dielectric response is aligned
with the magnetic field direction k̂, and the plane defined by
the other two principal axes is obtained by a rotation of the
i-j plane around the k axis. The corresponding TM-mode real
SPhP dispersion relation is given by [27]

k2
i = ω2

c2
εM

εiεj − εMεjj

εiεj − ε2
M

, (29)

where εi , εj ∈ {εx,εy,εz}, as defined in Eq. (27), are the two
principal dielectric response along the directions near the
superlattice direction î and the surface normal direction ĵ ,
respectively. εjj ∈ {ε11,ε22,ε33} is the dielectric response on
the diagonal of the dielectric response matrix, which describes
the response to the electric field along the surface normal
direction ĵ , and εM is the dielectric permittivity of the isotropic
medium. There are two different types of SPhPs described by
this dispersion relation. A real SPhP has a resonance at ωR

where the group velocity of the surface wave is zero,

εi(ωR)εj (ωR) − ε2
M = 0. (30)

For a confined, nonradiative SPhP, the wave number along the
propagation direction is real while the wave numbers along
the surface normal direction are required to be imaginary.
With these frequency requirements on the wave numbers,
the condition for a TM-mode, real SPhP can be obtained by
examining the existence of a SPhP resonance ω = ωR , which
satisfies Eq. (30) [27,39],

εi(ω) < 0 and εj (ω) <
ε2
M

εi(ω)
. (31)

Outside the real SPhP regime, there is another set of
frequency ranges that fulfills the wave number requirements
without any SPhP resonance [40],

εi(ω) < 0 and εj (ω) > 0. (32)
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The corresponding dispersion is given by the same equation,
Eq. (29), as the real SPhP, but a different constraint. For
the frequencies that satisfy Eq. (32), the dispersion curves
represent virtual SPhPs. Unlike real SPhPs, the group velocity
of a virtual SPhP can be very small but not zero. This
implies that virtual SPhPs have no resonant surface polariton
excitation. They only exist for finite wave numbers and in the
presence of an associated driving field [41–43]. The dispersion
relations of virtual TM-mode SPhPs are bounded between the
light line in the isotropic medium and the dispersion curve of
the bulk polariton polarized along the surface normal direction
in the crystal [44]. All TM-mode, virtual SPhPs terminate at
the natural frequency of the corresponding longitudinal optical
phonons ωLO, where the polariton inside the crystal behaves
like a bulk mode polariton, no longer confined to the surface.

For our analytic calculation on the TiNj surfaces, since
Eq. (29) requires that the magnetic field direction k̂ lies parallel
to one of the dielectric principal axis {x̂,ŷ,ẑ}, the allowed
rotation required to diagonalize the dielectric response matrix
is in the i-j plane. Therefore, Eq. (29) is valid only for TyNz

and TzNy orientations with a dielectric response shown in
Eq. (25). For the other four orientations we have to make the
assumption that the rotation is negligible, the SRA, in order to
get an analytic SPhP dispersion relation if rotation is required
to diagonalize the corresponding dielectric response matrix. In
these cases, the magnetic field is almost aligned with one of
the dielectric principal axes. To apply the analytic calculation
to different superlattice-surface orientations, we use Eq. (29)
to calculate the SPhP dispersion relations for the cases where
one of the principal axes of the dielectric response is perfectly
aligned with the magnetic field and apply the SRA to derive a
simple analytic dispersion relation for other cases. Under the
SRA, εjj � εj , the dispersion relation becomes

k2
i � ω2

c2
εj εM

εi − εM

εiεj − ε2
M

. (33)

The wave vector along the surface normal direction in the
isotropic medium and in the crystal under the SRA can be
simplified to

k2
Mj = ω2

c2
εM − k2

i , (34a)

k2
j � εi

εj

(
ω2

c2
εj − k2

i

)
. (34b)

Within the SRA, the Maxwell wave equation for a TM-mode
electromagnetic wave leads to a simple relation between the
electric field components along the propagation direction and
the surface normal direction in the two dielectric materials at
the interface [39],

kiEi + kMjEMj = 0, (35a)

kiεiEi + kj εjEj = 0. (35b)

With the wave vectors given by Eqs. (33) and (34), the
relative electric field components near the interface can
be obtained from Eq. (35). The plane wave solution of
the electric field has to be an evanescent wave along the surface
normal direction k2

Mj < 0 and k2
j < 0, for the existence of

surface polaritons. This restriction further narrows the valid
virtual SPhP frequency ranges defined in Eq. (32). For an
isotropic media with a positive dielectric permittivity εM > 0,
the overall constraint for TM-mode virtual SPhPs is [41]

εi(ω) < 0 and εj (ω) > εM. (36)

According to Eq. (35b), two types of TM-mode SPhP, real and
virtual, with different range of dielectric response, Eqs. (31)
and (36), respectively, have distinct electric field distributions
near the interface.

The exact dispersion relation for SPhPs on TxNy , TxNz,
and TyNx surfaces of PPLN and PPLT can also be calculated
numerically without the SRA. For estimating the validity of the
SRA, we calculate and analyze the exact dispersion relation
at sample frequencies within the valid SPhP domain using
Eqs. (6) and (17) in [34]. As the dielectric principal axis rotates
away from k̂, the electric field will have a nonzero electric
field component along k̂ to satisfy the electromagnetic wave
equation. The electric field rotates out of the i-j plane. A TE
polarized component is generated and the excitation becomes a
hybrid TM-TE mode. However, in the cases described here, the
TE component is small as can be seen through the agreement
between the analytic and exact numerical calculations of
the dispersion relations for the excitations. The analytic
calculation assumes the SPhP is pure TM polarized. Therefore,
without the SRA, we would not be able to compute the
dispersion relations analytically as TM-mode SPhPs anymore.
This leads to an electromagnetic wave with two superposed
modes (kj1 and kj2) in the crystal along the surface normal
direction. If both modes of the electromagnetic wave have
evanescent surface normal components (both kj1 and kj2 have
positive imaginary parts), the SPhP is confined at the PSL
surface and propagates along the superlattice direction. If
one of the two surface normal electromagnetic wave modes
describes a propagating field (either kj1 or kj2 is real or has a
negative imaginary part), the polariton will radiate along the
surface normal direction into the crystal. The energy radiated
by the SPhP causes the excitation to decay as it propagates
along the surface of the PSL. The radiative decay introduces
an intrinsic damping for these SPhPs. This type of SPhP has
been termed as pseudo-SPhP [27]. A pseudo-SPhP will lose
energy and attenuate as it propagates along a crystal surface.

V. NUMERICAL ANALYSIS

We calculate the dielectric response matrices using Eq. (24)
with the parameters listed in Table I [36,45,46] at room tem-
perature, 25 ◦ C, assuming the artificial superlattice constant,
or domain period, to be l = 7.2 μm. For simplicity we consider
homogeneous inverted domains with constant domain width
equal to half of the superlattice constant, a = l/2 = 3.6 μm.
The nonzero contributions of the electromechanical coupling
to the dielectric response are near the odd order resonances
which correspond to the odd order terms of the Fourier
expansion shown in Eq. (19c). Only the dielectric response
near the first order resonances is presented in our report, which
corresponds to m = 1 in Eq. (24). The dielectric response
near the higher order resonances at higher frequencies can be
computed in the same manner with different m values. For
semi-infinite PSLs in vacuum, where εM = 1, the supported
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TABLE I. A list of numerical values of the parameters used for the calculations. The absolute quantities are measured at room temperature,
25 ◦C. The temperature coefficients α and β are the coefficients of the polynomial expansion of the ratio of the corresponding absolute quantities
Q measured at temperature T to the quantities measured at 25 ◦C: Q(T )

Q(25) = 1 + α(T − 25) + β(T − 25)2. For lithium niobate, the small second
order temperature dependence β can be neglected except for the thermal expansion coefficients. The temperature coefficients of the elastic
stiffness, the piezoelectric constant, and the dielectric permittivity are found in [45], valid within the range 0–110 ◦C. The thermal expansion
coefficients are found in [46], valid within the range 25–500 ◦C.

LiNbO3 LiTaO3

Absolute Normalized Absolute Normalized

Constant electric field quantities temperature coeff. quantities temperature coeff.

elastic stiffness (×1011 N/m2) α (×10−4/◦C) (×1011 N/m2) α (×10−4/◦C) β (×10−7/◦C2)

cE
11 2.030 − 1.74 2.298 − 1.03 0.77

cE
12 0.573 − 2.52 0.440 − 3.41 − 1.18

cE
13 0.752 − 1.59 0.812 − 0.50 6.00

cE
14 0.085 − 2.14 − 0.104 6.67 16.7

cE
33 2.424 − 1.53 2.798 − 0.96 − 3.21

cE
44 0.595 − 2.04 0.968 − 0.43 1.67

cE
66 0.728 − 1.43 0.929 − 0.47 1.24

Piezoelectric
strain constants (×1011 C/N) (×10−4/◦C) (×1011 C/N) (×10−4/◦C) (×10−7/◦C2)
d15 6.92 3.45 2.64 − 1.31 − 9.64
d22 2.08 2.34 0.75 − 1.32 − 9.79
d31 − 0.085 19.1 − 0.30 3.27 43.1
d33 0.60 11.3 0.57 2.74 118

Constant strain
dielectric permittivity (×10−4/◦C) (×10−4/◦C) (×10−7/◦C2)
εS

11/ε0 44.3 3.23 42.6 3.29 4.28

εS
33/ε0 27.9 6.27 42.8 11.6 78

Thermal expansion for Expansion coefficients Expansion coefficients

different crystal orientation α (×10−5/◦C) β (×10−9/◦C2) α (×10−5/◦C) β (×10−9/◦C2)

X cut 1.44 7.1 1.61 7.5
Y cut 1.59 4.9 1.54 7.0
Z cut 0.75 − 7.7 0.22 − 5.9

SPhP dispersion relations are calculated using Eq. (33) for
different superlattice-surface orientations in the regimes where
the SRA is valid.

A. Dielectric response matrix

The calculated dielectric response matrix elements (εxx ,
εyy , εzz, and εyz = εzy) are plotted in Fig. 3 for PPLN surfaces
and in Fig. 4 for PPLT surfaces. For each superlattice-surface
orientation, the three solid lines in the figure represent the
diagonal elements of the dielectric response matrices. The
off-diagonal elements are plotted using dashed lines. The
basis used to calculate the matrices are along the crystal
principal axes which are assumed to be aligned with the
superlattice-surface axes for our theoretical setup shown in
Fig. 1. For further analytic SPhP dispersion calculations under
the SRA, the small off-diagonal elements in the dielectric
response matrix are neglected.

We obtain the diagonalized dielectric response matrices and
the corresponding rotation angles by Eqs. (27) and (28). The
matrix elements of the diagonalized dielectric response are

shown in Fig. 5 for PPLN surfaces and in Fig. 6 for PPLT
surfaces. This diagonalization process mixes the dielectric
response along the crystal principal y axis (the red curves)
with the dielectric response along the crystal optical z axis
(the black curves) when a rotation is required to diagonalize
the matrix. The valid frequency ranges for SPhPs are calculated
from the dielectric response constraints for both real, Eq. (31),
and virtual, Eq. (36), SPhPs. We record the angle of rotation
for diagonalization to check the validity of the SRA for each
valid SPhP frequency domain.

B. SPhP dispersion relation curves

Due to the constraints for a real SPhP, requiring both
the dielectric response along the propagation and the surface
normal directions to be negative at the same frequency, real
SPhPs exist on both PPLN and PPLT surfaces only with
TyNx superlattice-surface orientation. The solid curve in Fig. 7
shows the calculated dispersion relation of the real SPhP
on the PPLN surface under the SRA. The valid frequency
range for the real SPhP is from 549.74 to 594.25 MHz. The
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FIG. 3. Calculated dielectric response matrix elements before
diagonalization with respect to different frequencies for the six dif-
ferent superlattice-surface orientations. Matrix element εij describes
the dielectric response along the crystal principal axis i ∈ {x,y,z}
to the electric field polarized along the principal axis j ∈ {x,y,z}.
εxy = εyx = εxz = εzx = 0 and εyz = εzy as shown in Eq. (25). For
the two equivalent orientations shown in (e) and (f), εxx and εyy are
the same, due to the uniaxial behavior of the 3m crystals.

rotation angles required to diagonalize the dielectric response
matrix are negligible within this range, |θ | < π/400 � 1. The
group velocity of the SPhP goes to zero as the frequency
approaches the real SPhP resonance at 594.25 MHz. Figure 8
shows the calculated dispersion relation of the real SPhP
on the PPLT surface. The real SPhP exists in the frequency
range from 498.55 MHz to its resonance at 505.99 MHz.
The corresponding rotation angles needed to diagonalize the
dielectric response matrix are also negligible within the valid
real SPhP domain, |θ | < π/200 � 1. The exact numerical
calculations at sample frequencies within the valid domain,
shown with red crosses, confirm the SRA on both the PPLN
and PPLT surfaces.

The exact numerical analysis shows that a small rotation
of the dielectric response principal axes around the surface
normal direction adds a tiny positive imaginary part to the
approximated wave vector along the superlattice direction.
This intrinsic damping along the SPhP propagation direction
suggests that the SPhPs we analytically approximated under
the SRA are indeed pseudo-SPhPs. A small propagating mode
in the crystal is discovered along the surface normal direction.
We compute the energy loss of the surface polariton and the
radiation energy carried by the propagating electromagnetic
field component along the surface normal direction by in-
tegrating the time averaged Poynting vector over the planes
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FIG. 4. Calculated matrix elements of 3-by-3 PPLT dielectric
response matrices before diagonalization are shown in the same
layout as Fig. 3 for PPLN. As a 3m class crystal, lithium tantalate has
the same uniaxial behavior as lithium niobate. Hence, PPLT also has
dielectric response matrices in the form shown in Eq. (25).

perpendicular to the superlattice direction and the planes
parallel to the crystal surface at the sample frequencies. It is
confirmed that the damped SPhPs radiate their energy into the
PSL. For a small rotation angle, the imaginary part of the wave
vector along the superlattice direction is orders of magnitude
smaller than the real part. For the real SPhP in our analysis
on PPLN surface | Im[ki ]

Re[ki ]
| < 10−3, and on the PPLLT surface

| Im[ki ]
Re[ki ]

| < 10−4. The SPhPs can propagate along the surface for
many wavelength before they lose substantial energy.

In addition to the real SPhPs, Figs. 9 and 10 show that
virtual SPhPs exist on the PPLN and PPLT surfaces. For a
virtual SPhP, the diagonalized dielectric response near the
propagation direction is negative, εx < 0, but is required to
be positive near the surface normal direction, εz > 0. The
finite wave numbers of the corresponding virtual SPhPs are
listed above each dispersion relation curve in Figs. 9 and
10. The SRA is applied for approximating the dispersion
relations using Eq. (33) on the TxNy , TxNz, and TyNx surfaces.
The rotation angles |θ | < π/20 on the PPLN surfaces and
|θ | < π/12 on the PPLT surfaces are also small. Since there
is no rotation required to diagonalize the dielectric response
matrix on the TzNx surface, TM-mode SPhPs are supported.
Therefore, the analytic calculation using Eq. (29) is performed
to obtain the dispersion curves on the TyNz, TzNx , and
TzNy surfaces. It is interesting to note that there are two
“almost photonlike” virtual SPhPs on the PPLN surfaces
shown in Figs. 9(c) and 9(g). The absolute value of the
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FIG. 5. The diagonalized dielectric response matrix elements
with respect to different frequencies of PPLN crystals are shown
in the same layout as Fig. 3. Matrix element εα is the dielectric
response along the new rotated axis α ∈ {x ′,y ′,z′} to the electric field
polarized along the same direction α̂. Unlike Fig. 3, only the three
matrix elements along the diagonal are nonzero.
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FIG. 6. The diagonalized dielectric response along the new
rotated axes of PPLT crystals is shown in the same layout as Fig. 5
for PPLN.

FIG. 7. The dispersion relation of the real SPhP calculated under
the SRA on the TyNx surface of PPLN. The corresponding rotation
angle required to diagonalize the dielectric response matrix is shown.
The numerical analysis of the dispersion relation without the SRA is
plotted in red crosses for comparison.

dielectric response is much greater than the vacuum dielectric
permittivity in the frequency ranges where these two virtual
SPhPs exist. These SPhPs are primarily photon excitations.
They behave like surface guided light waves.

Similar to real SPhPs, the virtual SPhPs on the TxNy , TxNz,
and TyNx surfaces are also pseudosurface polaritons with small
intrinsic damping along the propagation direction. Comparing
the dispersion relations computed by the exact numerical
calculation (red crosses) to the dispersion curves obtained
by the analytic calculation with the SRA (solid curves), the
calculations agree well for most of the virtual SPhPs. The
maximum rotation angle occurs for the TyNx surface of PPLN
[Fig. 9(i)] and on the TxNy or the TxNz surfaces of PPLT
[Fig. 10(a) or 10(d)]. The maximum errors for the virtual
SPhP propagation wave number of the SRA in the cases with
relatively large rotations are less than 10% .

The electric field distribution of a real SPhP and a virtual
SPhP near the interface between vacuum and the PPLN crystal
is shown in Figs. 11 and 12, respectively. The SPhPs on
the PPLT surfaces have the similar electric field distribution.
The relative vector field is calculated using Eq. (35) with

FIG. 8. The dispersion relation obtained with the SRA on the
TyNx surface of PPLT. Similar to Fig. 7, the corresponding rotation
angles are shown, and the results of the numerical analysis are plotted
in red crosses for PPLT.
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FIG. 9. The dispersion relations of 12 possible virtual SPhPs on TiNj surfaces of PPLN. The SRA is applied to obtain the dispersion curves
(solid lines) on the TxNy , TxNz, and TyNx surfaces. Similar to Figs. 7 and 8, the results of the corresponding numerical calculation without
the SRA in red crosses and the rotation angle required to diagonalize the dielectric response matrix are also shown. The dispersion relations
on the TyNz, TzNx , and TzNy surfaces are obtained by the analytic calculation for TM-mode SPhPs. Since the TzNx and the TzNy orientations
are equivalent, only one of the two identical dispersion curves is displayed, and the corresponding rotation angles are zero (the dielectric
response matrices are naturally diagonalized along the superlattice-surface orientation). The corresponding allowed range of the virtual SPhP
propagation wave number calculated under the SRA is listed above each dispersion curve.

the wave vector components given by Eqs. (33) and (34)
under the SRA. The field amplitude is normalized to unity
at the interface. There is a π/2 phase difference between the
electric field components along the propagation and the surface
normal directions. This phase difference causes the rotation of
the electric field vector along the propagation direction and
can be understood by imposing pure imaginary wave vector
components along the surface normal direction in Eq. (35).
The electromagnetic wave associated with the real SPhP
propagates along the interface and exponentially decays away
from it. The confined polariton along the surface is illustrated

as the electric field amplitude distribution concentrates at the
interface, the bright red area near the zero-distance line, shown
in Fig. 11 for a real SPhP. Closer to its resonance at ωR , the real
SPhP is more confined to the surface of the PSL. On the other
hand, as shown in Fig. 12, the strength of the electromagnetic
field close to the interface in the vacuum is always stronger
than or equal to the field in the PSL for a virtual SPhP. Closer
to its stop point, where the virtual SPhP terminates at ωLO,
the polariton is less confined to the surface of the PSL and
behaves like a bulk polariton inside the PSL at the stop point.
The calculated electric field vectors are slightly off the plane
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FIG. 10. The dispersion relations of nine possible virtual SPhPs on TiNj surfaces of PPLT and the corresponding rotation angles are shown
in the same layout as Fig. 9. The results of the numerical analysis in red crosses are displayed on top of some of the dispersion curves which
are obtained under the SRA.

defined by the propagation and the surface normal directions,
shown in Figs. 11 and 12, and the field amplitude is slowly
damped along the propagation direction, in the full calculation
without the SRA.

C. SPhP resonance frequency tunability

All the parameters used in our calculations are measured
at room temperature, 25 ◦ C, and on the surface of PSLs
with a fixed poling period of 7.2 μm. In order to tune
the SPhP resonance frequencies, we examined the effect of

FIG. 11. The electric field pattern calculated under the SRA for the real SPhP near the TyNx surface of PPLN at 594.02 MHz. The horizontal
axis, at distance d = 0, indicates the interface. The electric field pattern inside the PPLN (vacuum) is shown above (below) the interface, in
the positive (negative) distance region as labeled in the figure. The length of the vectors, shown by white arrows, indicates the field strength at
the center of each arrow. The density distribution of the relative vector field amplitude is shown in the colored background. The electric field
exponentially decays away from the interface.
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FIG. 12. The virtual SPhP electric field pattern near the TyNx surface of PPLN at 599.87 MHz under the SRA. Unlike the real SPhP, the
electromagnetic field strength in the vacuum close to the interface is always stronger than or equal to the field strength in the PSL for the virtual
SPhPs.

different temperatures and superlattice constants on our SPhP
calculations. Due to the small temperature dependence of all
the parameters shown in Table I, the overall modification
of the SPhPs due to temperature variation is small but
not insignificant for atom-surface interaction. The resonant
frequency of the real SPhP on the TyNx surface of PPLN varies
from 594.25 MHz at 25 ◦ C to 589.75 MHz at 110 ◦ C. The
resonant frequency of the real SPhP dispersion relation on the
PPLT surface varies from 505.99 MHz at 25 ◦ C to 503.82 MHz
at 110 ◦ C. For such small temperature dependencies, it is
difficult to tune the resonant frequencies of SPhPs by large
frequency intervals on the PPLN and PPLT surfaces based on
temperature adjustment. However, to couple these excitations
to highly excited atoms, one must compare the spectral
linewidths, ∼10 MHz, and the tuning ranges of the SPhPs
to those of highly excited atoms, ∼10 kHz.

The tunability of the real SPhP resonance with superlattice
constant variation is shown in Fig. 13 on both PPLN and
PPLT surfaces. This plot is obtained by solving Eq. (30)
for different superlattice constants. Our results show the
SPhP’s resonant frequency largely depends on the superlattice
constant. Therefore, we can tune the SPhP resonance by

FIG. 13. The resonant frequencies of the real SPhP dispersion
relation on TyNx surfaces at room temperature with respect to
different artificial superlattice constants of PPLN (blue dashed curve)
and PPLT (red solid curve) are shown. The superlattice constant l

varies from 0.4 to 6.4 μm.

constructing PSLs with different poling periods to design
coupled Rydberg atom-SPhP systems.

VI. SUMMARY

In this paper we calculated the dielectric response for
specific PPLN and PPLT crystals and theoretically studied
the SPhPs that exist at the interface between vacuum and a
semi-infinite PSL. In the limit of small rotation of the PPLN
and PPLT crystal dielectric principal axes away from the
superlattice-surface orientation, the SPhP dispersion relations
can be calculated analytically for TM-mode SPhPs with the
SRA.

We did not consider the SPhP damping associated with the
nonradiative loss to the crystal in this work. In addition to
the intrinsic damping that exists on an ideal lossless crystal
for pseudo-SPhPs, SPhPs decay nonradiatively by interacting
with the material (phonon scattering, defect scattering, etc.)
[47]. The nonradiative damping can be included in the elastic
stiffness. The decay caused by coupling to the crystal depends
on the temperature and the composition of the crystals [48,49].
The proper damping constants of lithium niobate and lithium
tantalate are commonly chosen between γ = 0.001ωm and
γ = 0.01ωm near each resonant frequency ωm for theoretical
studies [24,33,50]. For the calculation here, our real SPhP
damping constant may be chosen approximately from 0.5 to 6
MHz. This can potentially be reduced by using thin samples
suspended in space. The actual nonradiative damping can be
obtained experimentally for specific crystals. In a real SPhP
experiment on a finite-dimension PSL chip, where the the chip
dimension is less than the size of the SPhPs, we would have
to consider the interactions among the SPhPs on all sides of
the chip surface. For the case of a thin metal or dielectric
film, where the thickness of the film is less than the size
of the supported surface polariton along the surface normal
direction, the mixture of the two surface modes on opposite
surfaces of the thin film has been studied [44,51,52]. The
dispersion relation of a small dimension PSL chip is nontrivial
to obtain with general boundary conditions on all sides of the
chip surface.

By considering the piezoelectric effect, we calculated the
dielectric response of the TM-mode electromagnetic field on
a PSL. Based on the calculated dielectric response, within the
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SRA, we determined the dispersion relations of SPhPs after
considering the anisotropic nature of the superlattices. The
SRA neglects a small intrinsic damping as the SPhP propagates
along the PPLN and PPLT surfaces. Two types of polaritons,
real SPhPs and virtual SPhPs, were shown to exist on the
surfaces for six different superlattice-surface orientations. The
real SPhPs can be supported on the TyNx surfaces for both
PPLN and PPLT. The dispersion curves of the virtual SPhPs
are similar to the real ones, but have a finite limit on the SPhP
wave numbers. The real SPhPs and some of the virtual SPhPs
are pseudosurface polaritons, but the intrinsic SPhP damping is
small. Surface guided “almost photonlike” virtual SPhPs exist
on the TyNx PPLN surface. All these SPhPs can be driven
by infrared photons, the radiation of highly excited atoms, in

the near field. Hence, the coupling of Rydberg transitions to
the SPhPs on a PSL surface connects the atom-optical system
to a solid state system and forms a quantum hybrid system
[18]. The large tunability of the resonant frequencies on PSL
surfaces provides flexibility for designing hybrid quantum
systems, particularly in the area of optomechanics.
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