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Valley depolarization dynamics and valley Hall effect of excitons in monolayer and bilayer MoS2
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We investigate the valley depolarization dynamics and valley Hall effect of exciton due to the electron-hole
exchange interaction in mono- and bilayer MoS2 by solving the kinetic spin Bloch equations. The effect of
the exciton energy spectra by the electron-hole exchange interaction is explicitly considered. For the valley
depolarization dynamics, in the monolayer MoS2, it is found that in the strong scattering regime, the conventional
motional narrowing picture in the conventional strong scattering regime is no longer valid, and a novel valley
depolarization channel is opened. For the valley Hall effect of exciton, in both the mono- and bilayer MoS2, with
the exciton equally pumped in the K and K′ valleys, the system can evolve into the equilibrium state where the
valley polarization is parallel to the effective magnetic field due to the exchange interaction. With the drift of
this equilibrium state by applied uniaxial strain, the exchange interaction can induce the momentum-dependent
valley/photoluminesence polarization, which leads to the valley/photoluminesence Hall current. Specifically, the
disorder strength dependence of the valley Hall conductivity is revealed. In the strong scattering regime, the
valley Hall conductivity decreases with the increase of the disorder strength; whereas in the weak scattering
regime, it saturates to a constant, which can be much larger than the one in Fermi system due to the absence of
the Pauli blocking.
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I. INTRODUCTION

In recent years, as a new candidate to realize the val-
leytronics, monolayer (ML), and bilayer (BL) transition metal
dichalcogenides (TMDs) have attracted much attention [1–6].
To efficiently control the valley degree of freedom in ML and
BL TMDs, both the optical [2,7–19] and electrical [3,20–22]
techniques have been explored. For the optical method, the
chiral optical valley selection rule allows for the optical
creation of the valley polarization, which is mainly realized
by the excitonic excitation [2,7–19]. For the electrical method,
due to the contrast Berry curvature for the electron or hole in
the K and K′ valleys, the valley Hall effect of electron or hole
has been predicted [3], and then confirmed by the experiments
in ML [21] and BL [22] MoS2. Furthermore, the method
combining both the optical and electrical techniques to realize
the valley Hall effect of trion is proposed theoretically [23].
This proposal is based on the fact that the four configurations
of the trions in ML TMDs can obtain nonzero Berry curvature
due to the electron-electron, hole-hole, and electron-hole (e-h)
exchange interactions [23]. It can be seen that ML [2,3,7–
15,20] and BL [16–19] TMDs provide an ideal platform to
study the rich valley dynamics based on the valley polarization
or valley current. Accordingly, on one hand, it is important to
study the lifetime of the valley polarization, i.e., the valley
depolarization dynamics; on the other hand, it is useful to
explore efficient methods to create and control the valley
current.

The valley depolarization dynamics in ML and BL TMDs
has been extensively studied, showing rich features for
different members [2,3,7–19]. In ML TMDs, it has been
experimentally found that the steady-state valley polarization
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can be large (around 50%) in MoS2, WS2, and WSe2 [2,12,14],
whereas extremely small (around 5%) in MoSe2 [11,15]. Fast
valley depolarization with the lifetime about picoseconds due
to the intervalley exciton transition is observed [24,25]. It is
theoretically shown that due to the strong Coulomb interaction,
the e-h exchange interaction [26–30] can provide an efficient
valley depolarization channel based on the Maialle-Silva-
Sham (MSS) mechanism [31,32]. Including the long-ranged
e-h Coulomb exchange interaction including the intra- and
intervalley processes derived in Ref. [26], the Hamiltonian of
the exciton expressed by the center-of-mass momentum k is
written as

HML = �
2k2

2mex
+ Q(k)

(
k2 −k2

+
−k2

− k2

)
, (1)

in which the first and second terms represent the kinetic energy
and e-h exchange interaction, respectively. mex = me + mh is
the exciton mass with me and mh being the electron and hole
masses; Q(k) = e2

2ε0κ0(|k|+κsc) |φ2D
1s (0)|2αML and k± = kx ± iky .

Here, ε0 and κ0 stand for the vacuum permittivity and
relative dielectric constant; κsc is the screening wave vector;
φ2D

1s (r) =
√

8/πa2
B e−2r/aB represent the exciton ground-state

wave function with r being the relative coordinate of the
electron and hole, and aB denoting the exciton radius; αML

is the material parameter [26].
This exchange interaction can cause the “precession” of

the exciton states with a k-dependent frequency �(k), which
causes the inhomogeneous broadening [31,32]. In analogy to
the D’yakonov-Perel’ (DP) mechanism [33], in the strong scat-
tering regime with |�(k)|τk � 1 with τk being the momentum
relaxation time, the valley depolarization time is estimated to
be τ−1

s = 〈�2(k)〉τk . Here 〈· · ·〉 denotes the ensemble average.
Accordingly, it seems that the valley depolarization should be
always suppressed by the momentum scattering in the strong
scattering regime. Nevertheless, Yu et al. showed that with the
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e-h exchange interaction, the energy spectra of the exciton is
modified to be the Dirac cone [23]. With this large modification
of the exciton spectra, the momentum scattering should also be
markedly influenced by the exchange interaction. Although it
is then pointed out that the Dirac cone does not exist due to the
existence of the intravalley e-h exchange interaction [28–30],
it is demonstrated that the exchange interaction modifies the
energy spectra of the exciton markedly [28–30]. This motivates
us to study the valley dynamics with the exchange interaction
explicitly modifying the energy spectra.

Similar to the ML situation, in BL TMDs, the exchange
interaction between the four degenerate states labeled by
the valley and layer indices is also expected to cause the
photoluminesence (PL) depolarization [34]. However, it is
experimentally found that different from the ML situation, the
steady-state PL polarization in the BL WS2 and WSe2 can be
much larger than the one in ML under the same experimental
conditions [16–19]. Then it is theoretically predicted that for
the BL WS2, with the isotropic dielectric constant, there exists
a steady state with the PL polarization being always half of the
initial one due to the specific form of the exchange interaction,
indicating that the valley depolarization time can be very
long in BL TMDs [34]. Specifically, the exchange interaction
Hamiltonian between the four degenerate intralayer exciton
states is written as

H BL
ex (k) ≈ Q̃(k)

⎛
⎜⎜⎜⎜⎜⎝

k2 γ k2
+ −k2

+ −γ k2

γ k2
− k2 −γ k2 −k2

−
−k2

− −γ k2 k2 γ k2
−

−γ k2 −k2
+ γ k2

+ k2

⎞
⎟⎟⎟⎟⎟⎠. (2)

Here, Q̃(k) = e2

2ε0κ‖(|k|+κsc) |φ̃2D
1s (0)|2α̃BL with κ‖ denoting the

intralayer relative dielectric constant; γ = √
κ‖/κ⊥ with κ⊥

being the interlayer relative dielectric constant. The tilde labels
that the parameters in the BL situation can be different from
the ones in ML. Similar to the ML situation, this exchange
interaction can also markedly modify the energy spectra of
the exciton, which is also expected to influence the valley
dynamics. Moreover, the study for the PL depolarization
dynamics for the anisotropic dielectric constant [35] is still
lacking.

From above analysis, it can be seen that by treating
“valley” as “spin” in ML TMDs, the exchange interaction
actually plays the role of the spin-orbit coupling (SOC) in
the electronic system. In the electronic system, the intrinsic
spin Hall effect has been well understood in the system with
the SOC in the weak scattering limit, which is absent for the
Rashba but can exist for another type of the SOC [36–45].
Moreover, it is found that the intrinsic spin Hall conductivity
is a constant in the clean sample, which is nevertheless less
studied in the strong scattering regime [36–45]. Then it is
natural to expect that in analogy to the intrinsic spin Hall
effect of electrons [36–45], there exists the “valley” Hall effect
of exciton due to the exchange interaction in ML TMDs.
Accordingly, with the generation of the exciton current, which
can be realized by applying the uniaxial strain [46], the valley
current perpendicular to the exciton current can emerge in ML
TMDs. However, in the BL TMDs, the exchange interaction

exists between four rather than two degenerate exciton states,
which is very different from the electronic system with two
degenerate spin bands. It is an interesting problem to study
whether there exists the valley Hall effect of exciton for
the four-state system. It is emphasized that in the previous
works, the “spin” Hall effect of exciton has been proposed
[47,48]. However, it is different from the proposal here. In
the work of Wang et al. [47], the “spin” Hall effect arises
due to the different strength of the SOC experienced by the
electron and hole in the exciton; whereas in the work of Yao
et al. [48], it arises from the Berry curvature, which is in
analogy to the intrinsic anomalous Hall effect of the electron
[49,50].

In the present work, by explicitly considering exciton
energy spectra modified by the e-h exchange interaction,
we investigate the valley depolarization dynamics and valley
Hall effect of exciton in ML and BL MoS2 by solving the
kinetic spin Bloch equations (KSBEs) [51]. For the valley
depolarization dynamics, in the ML MoS2, it is found that
with the exchange-interaction-modified energy spectra, in the
strong scattering regime, the conventional relation τs ∝ τ−1

k is
no longer valid. It is shown that a novel valley depolarization
channel is opened in the strong scattering regime, where the
valley lifetime first decreases and then increases with the
increase of the disorder strength, showing the Elliott-Yafet
[52,53] (EY)-like behavior in the DP mechanism from the
point of view of the spin relaxation [51,54–58]. This channel
comes from the inhomogeneous broadening from the module
of the momentum of the exciton in the exciton-disorder
scattering, in which the same energy corresponds to a different
momentum module with the exchange-interaction-modified
energy spectra. This is very different from the conventional
situation, in which the inhomogeneous broadening comes
from the angular anisotropy of the momentum in the exciton-
disorder scattering [31,32]. Moreover, due to the enhancement
of the module-dependent inhomogeneous broadening by the
momentum scattering, it shows EY-like behavior in the MSS
mechanism. For the BL MoS2, the PL depolarization dynamics
with both the isotropic and anisotropic dielectric constants
is investigated. With the isotropic dielectric constant, it is
shown that with the exchange interaction modifying the energy
spectra, the steady state revealed in our previous work [34]
still exists. Whereas with the anisotropic dielectric constant,
the steady state vanishes. However, it is found that when the
dielectric constant is close to the isotropic situation, the PL
polarization first decreases fast and then slowly, indicating
that the effective depolarization time can also be much longer
than the ML situation.

For the valley Hall effect of exciton, the valley Hall
conductivity for the ML and BL MoS2 in both the weak
and strong scattering regimes are calculated by the KSBEs.
It is shown that with the exciton in the K and K′ valleys
equally pumped, the system evolves into the equilibrium
state where the valley polarization is parallel to the effective
magnetic field due to the exchange interaction. With the drift
of this equilibrium state due to the applied uniaxial strain, this
parallelism is broken and hence the effective magnetic field
can induce the momentum-dependent out-of-plane valley/PL
polarization, which accounts for the valley/PL current of
exciton. Furthermore, the disorder strength dependence of
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the valley Hall conductivity is revealed. For both the ML
and BL MoS2, in the strong scattering regime, the valley
Hall conductivity decreases (∝τ 2

k ) with the increase of the
disorder strength, whereas in the weak scattering regime, the
valley Hall conductivity saturates to a constant. Specifically,
it is found that the valley Hall conductivity in the weak
scattering regime is proportional to the population of the
exciton with zero momentum. By further considering that with
the Bose distribution (therefore without the Pauli blocking),
this population can be extremely large at low temperature and
high exciton density. Accordingly, the valley Hall conductivity
for the exciton can be much larger than the one for the Fermi
system. All these behaviors can be well understood analytically
in the weak exchange interaction limit.

This paper is organized as follows. In Sec. II, we set
up the model and KSBEs. In Sec. III, we study the valley
depolarization dynamics and valley Hall effect of exciton
in ML MoS2. Specifically, in Sec. III A, a novel valley
depolarization channel is presented; in Sec. III B, the disorder
strength dependence of the valley Hall effect of the exciton is
studied first numerically and then understood analytically. In
Sec. IV, the valley depolarization dynamics and valley Hall
effect of the exciton are further discussed in BL MoS2. We
summarize in Sec. V.

II. MODEL AND KSBEs

We start the investigation from the setup of the kinetic
equation for the exciton by considering the exciton-disorder
scattering. We first present the effective Hamiltonian for
the exciton-disorder interaction expressed by the center-of-
mass coordinate of the exciton, which is derived in Refs.
[59,60]. The Hamiltonian in the disordered system is written
as [

− �
2

2me

∇2
e − �

2

2mh

∇2
h − e2

4πε0κ0|re − rh| + We(re)

+Wh(rh)

]

η(re,rh) = Eη
η(re,rh), (3)

where We(re) and Wh(rh) denote the intravalley disorder
potential for the electron and hole, respectively, and η labels
the exciton state including the valley and layer indices.
The exciton-disorder interaction can arise from the surface
roughness or the interface roughness between the MoS2

layer and substrate. For ML MoS2, we do not consider the
intervalley scattering, which is suppressed for the hole with
large splitting of the valence band, because the spin-flip
scattering is forbidden unless the mirror reflection symmetry
is broken [26,61–63]. For BL MoS2, the interlayer scattering
is further neglected because only the hole with the same spin
can hop between different layers, which is nevertheless very
weak due to the large splitting of the valencen bands, and
the interlayer hopping for the electron is forbidden due to
the lattice symmetry [16–19,34]. When the disorder is not
very strong, which does not influence the relative motion of
the exciton, the exciton-disorder interaction can be treated
perturbatively and expressed by the center-of-mass coordinate
[59,60]. By focusing on the ground state (1s state), the

center-of-mass part of the Hamiltonian reads[
− �

2∇2
R

2mex
+ Vex(R)

]

1s(R) = E1s
1s(R), (4)

where R = (mere + mhrh)/mex. Here, with me ≈ mh in ML
and BL MoS2,

Vex(R) ≈ 4
∫

dR′∣∣φ2D
1s (2R′ − 2R)

∣∣2
[We(R′) + Wh(R′)] (5)

describes the effective exciton-disorder interaction. From
Eq. (5), one notices that the charged impurity is inefficient for
the exciton-disorder interaction because We(R′) + Wh(R′) =
0 for the electron and hole carrying opposite charges.

Furthermore, with the e-h exchange interaction Hamilto-
nian Hex(k) included in Eq. (4), the exciton dynamics under
the uniaxial strain can be described by the KSBEs including
the coherent, drift, and scattering terms [51]:

∂tρk = ∂tρk|coh + ∂tρk|drift + ∂tρk|scat. (6)

In these equations, ρk represent the n × n density matrices
of exciton with the center-of-mass momentum k at time t ,
in which the diagonal terms describe the exciton distribution
functions and off-diagonal terms represent the interstate
coherence. Specifically, n = 2 and 4 for the ML and BL MoS2,
respectively.

In the collinear space, i.e., the basis of the density matrix
is the exciton state labeled by the valley and layer indices
[26,34], the coherent term is given by

∂tρk|coh = −(i/�)[Hex(k),ρk], (7)

where [ , ] stands for the commutator. The drift term is
denoted as

∂tρk|drift = −(F/�) · ∇kρk, (8)

where F represents the external force field due to the applied
uniaxial strain. Finally, the scattering term ∂tρ(k,t)|scat due to
the exciton-disorder scattering is written as

∂tρk|scat = −π

�

∑
k′η1η2

|Uk−k′ |2δ(Ek′,η1 − Ek,η2

)
× [(

Tk′,η1Tk,η2ρk − Tk,η2Tk′,η1ρk′
) + H.c.

]
. (9)

In Eq. (9),

|Uq|2 =
∫ ∫

drdr′〈[U (r) − U0][U (r′) − U0]〉e−iq·(r−r′)

=
∫ ∫

drdr′C(r − r′)e−iq·(r−r′) ≡ Cq, (10)

with U0 being the average value of the disorder potential. C(q)
is taken to be the Gaussian correlation function [59,60],

C(q) = πV 2
Rσ 2

R exp
( − σ 2

Rq2/4
)
, (11)

where VR is the potential amplitude and σR denotes the radius
of the correlation length of the disorder. Specifically, when
σRq � 1, Eq. (11) actually describes the short-range exciton-
disorder interaction. Ek,η and Tk,η are the energy spectra of the
exciton and the projection matrix, whose expressions are given
explicitly in Appendix A for both the ML and BL situations.
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TABLE I. Parameters used in the computation for ML MoS2.

me/m0 0.35a T (K) 20
mh/m0 0.44a, 0.43b nex (cm−2) 1011

κ0 3.43a ne (cm−2) 1.6 × 1010

aB (nm) 3.0 σR (nm) 6

αML (Å
2
) 4.91c VR0 (meV) 4.4 × 10−2

F (eV/cm) 10

aReference [64].
bReferences [65,66].
cReference [26].

III. MONOLAYER MoS2

In this section, we investigate the valley depolarization
dynamics and valley Hall effect for the A exciton in the
ML MoS2. All parameters including the band structure and
material parameters used in our computation are listed in
Table I.

In Table I, T denotes the temperature, which is low enough
that the exciton-phonon interaction is neglected [59–63]; nex

is the exciton density. According to the experiments [65,66],
the ML and few-layer MoS2 crystals are n doped. Therefore,
the electron density ne is included in our calculation, which
is chosen to be much smaller than the exciton density.
Accordingly, the doped electron can contribute to the screening
of the Coulomb interaction [Eq. (1)], which suppresses
the e-h exchange interaction. With these parameters, κsc =

e2me

2�2ε0κ0

1
e−μe/(kB T )+1 ≈ 1.5 × 109/m, with μe being the chemical

potential of electron.

A. Novel valley depolarization dynamics

In this subsection, we investigate the valley depolarization
dynamics, and especially focus on a novel valley depo-
larization channel in ML MoS2. The valley depolarization
time is obtained by solving the KSBEs from the temporal
evolution of the valley polarization P (t) = ∑

k Sz
k(t)/nex =∑

k Tr[ρk(t)σ̂z]/nex, with σ̂z being the ẑ component of the
Pauli matrix. According to the chiral optical valley selection
rule [2,9], by using the elliptically polarized light, the system
is initialized to be

ρk(0) = Bk↑ + Bk↓
2

+ Bk↑ − Bk↓
2

σ̂z. (12)

In Eq. (12), Bkσ = {exp[(εk − μσ )/(kBT )] − 1}−1 is the Bose-
Einstein distribution function at temperature T , with εk =
�

2k2/(2mex) and μ↑,↓ standing for the chemical potentials
determined by the exciton density nex=

∑
k Tr[ρk] and the

initial valley polarization P (0). P (0) = 10% in our numerical
calculation.

1. Analytical analysis on the conventional situation

For comparison with the novel valley depolarization
channel addressed in the next subsection (Sec. III A 2), we
first present the analytical analysis of the conventional MSS
mechanism [31–33], which has been used to understand the
recent experimental results [13,14]. As we know, when the
splitting energy due to the exchange interaction, which is
referred to as the “exchange energy” in this work, is much

smaller than the kinetic energy εk, the exchange energy can
be neglected in the energy spectra, i.e., Ek,η ≈ εk in Eq. (9).
Based on this approximation, Eq. (9) becomes

∂tρk|scat ≈ −2π

�

∑
k′

|Uk−k′ |2δ(εk′ − εk)(ρk − ρk′). (13)

To find the valley depolarization time, we transform the KSBEs
from the collinear space to the helix one, in which the density
matrix is in the basis diagonalizing the Hamiltonian Eqs. (1)
and (2), by the unitary transformation ρ̃k = U

†
kρkUk [67].

Here,

Uk = 1√
2

(
−e2iθk e2iθk

1 1

)
, (14)

with θk being the angle of the momentum of exciton. In the
helix representation, the KSBEs become

∂t ρ̃k + i
(
εex
k /�

)
[σ̂z,ρ̃k] + (2π/�)a2

∑
k′

δ(εk′ − εk)

× (ρ̃k − Skk′ ρ̃k′Sk′k) = 0, (15)

where the exchange energy εex
k = Q(k)k2 and Skk′ = U

†
kUk′ .

Here, for simplicity, we consider the situation with σR|k −
k′| � 1, hence |Uk−k′ |2 is replaced by the constant a2 =
πV 2

Rσ 2
R in Eq. (15). After Fourier analysis with ρ̃k =∑

l ρ̃
l
ke

ilθk , one finds that the zeroth order of the density matrix
ρ̃0

k forms a closed equation,

∂ρ̃0
k

∂t
+ i

�
εex
k

[
σ̂z,ρ̃

0
k

] + ρ̃0
k

2τ
− 1

2τ
σ̂xρ̃

0
k σ̂x = 0, (16)

which is not obvious in the collinear representation [68]. Here,
1/τ = mexa

2/�
3 is the momentum scattering rate.

By further noticing that S̃x
k = Sz

k, one obtains from Eq. (16)
that

Sz
k(t) = P (0)

2

⎛
⎝1 + 1√

1 − 16�2
kτ

2

⎞
⎠e(− t

2τ
+ t

2τ

√
1−16�2

kτ
2)

+ P (0)

2

⎛
⎝1 − 1√

1 − 16�2
kτ

2

⎞
⎠e(− t

2τ
− t

2τ

√
1−16�2

kτ
2),

(17)

where �k = εex
k /� is the precession frequency between dif-

ferent exciton states. Moreover, according to the conventional
DP mechanism for spin relaxation [33], 2〈�k〉τ ≈ 1 labels the
boundary between the weak and strong scattering regimes,
because 2�kτ � 1 (2�kτ � 1) means that the precession
angle of “spins” around the effective magnetic field due to
the exchange interaction is relatively large (small) between
adjacent scattering events. From Eq. (17), it is obtained that in
the strong scattering limit with �kτ � 1,

Sz
k(t) ≈ P (0) exp

( − 4�2
kτ t

)
, (18)

and hence the valley depolarization time τv ≈ [4〈�2
k〉τ ]−1

is inversely proportional to the momentum scattering time,
which is the motional narrowing effect in the random-walk
theory [51,54–58]. Whereas in the weak scattering limit with
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�kτ � 1,

Sz
k(t) ≈ P (0)e−t/(2τ ) cos(2�kt). (19)

Hence, two factors influence the valley depolarization in the
weak scattering limit. On one hand, the momentum scattering
opens a valley depolarization channel due to the factor e−t/(2τ );
on the other hand, the factor cos(2�kt) can cause free induction
decay due to different precession frequency with different
momentum (inhomogeneous broadening) [51,68].

However, with the same initial state [Eq. (12)], the above
conventional picture obtained by the weak exchange energy
approximation is no longer valid when the exchange energy is
comparable to or even larger than the kinetic one [26,28–30],
which is shown in the next subsection.

2. Momentum scattering dependence of the novel
valley depolarization

In ML MoS2, due to the strong Coulomb interaction and
the large exciton mass, the exchange energy is comparable
to the kinetic one [26,28–30]. This is true even when the
screening effect due to the residue electron in the sample
is considered (Table I). Therefore, the exchange energy
should enter the energy spectra in the scattering term when
calculating the valley depolarization time. Consequently, a
novel valley depolarization channel in the strong scattering
regime, in which the valley depolarization is enhanced rather
than suppressed by the momentum scattering, showing the
EY-like behavior [52,53], is switched on.

To understand the new valley depolarization channel,
we focus on a simplified model, where only the diagonal
elements in the projection matrix [Eq. (A2)] are retained. The
corresponding scattering term reads

∂tρk|scat ≈ − 1

4τ

∑
η1η2

∫
dεk′δ

(
Ek′,η1 − Ek,η2

)(
ρk − ρ0

k′
)
,

(20)
where ρ0

k′ = 1
2π

∫
dθk′ρk′ . Furthermore, by means of the

Fourier analysis, the density matrix is expanded as ρk = ρ0
k +∑

l �=0 ρl
ke

ilθk , where the zeroth and nonzeroth components are
written separately. It can be seen that for the zeroth order of
ρk, the scattering term,

∂tρk|scat ≈ − 1

4τ

∑
η1η2

∫
dεk′δ

(
Ek′,η1 − Ek,η2

)(
ρ0

k − ρ0
k′
)
,

(21)
is nonzero for the exciton-disorder scattering between different
energy branches, whereas it is forbidden in the conventional
situation from Eq. (13).

Therefore, Eq. (21) opens an additional valley depolar-
ization channel by causing the module-dependent inhomo-
geneous broadening. This is very different from the con-
ventional situation, in which the inhomogeneous broadening
arises from the angular anisotropy of the momentum in the
exciton-disorder scattering [31,32]. With this enhancement
of the inhomogeneous broadening, the valley depolarization
tends to be enhanced. However, this additional channel
also enhances the momentum scattering, which tends to
suppress the valley depolarization. Therefore, there exists the
competition between the effective inhomogeneous broadening

 1

 10

10-3 10-2 10-1 100 101

(VR/VR0)2

τ v
 ( 

ps
 )

T=20K

s-range: τv
τ*

v
σR=6 nm: τv

convention: τv
τ*

v
simplified model

l≠0: τv

FIG. 1. Disorder strength dependence of the valley depolarization
time in ML MoS2. The boundary between the weak and strong
scattering regimes [2〈�k〉τ ≈ 1] is denoted by the vertical cyan
dashed line. The valley depolarization times with both the short-range
scattering (the red solid curve with circles) and Gaussian correlation
function with σR = 6 nm (the blue dashed curve with squares)
are shown. With short-range scattering, the red solid curve with
circles for τv and gray dashed curve for τ ∗

v correspond to the valley
depolarization times fitted from

∑
k Sk and

∑
k |Sk|, respectively. For

comparison, the conventional situation is plotted by the blue (τv from∑
k Sk) and orange (τ ∗

v from
∑

k |Sk|) dashed curve with crosses.
Finally, the green chain curve corresponds to the simplified model
[Eq. (20)], and the pink chain curve represents the situation with
Eq. (21) removed from Eq. (9).

and momentum scattering in this new channel. It is demon-
strated that the EY-like behavior exactly comes from this
enhancement of the inhomogeneous broadening. It is shown
in Fig. 1 that compared to the full calculation (the red solid
curve with circles), when the additional valley depolarization
channel is removed, the EY-like behavior vanishes in the pink
chain curve.

Figure 1 shows the disorder strength dependence of the
valley depolarization time computed, based on the material
parameters shown in Table I. In Fig. 1, the boundary between
the weak and strong scattering regimes [(VR/VR0)2 ≈ 0.06] is
shown as the vertical cyan dashed line. Accordingly, it is shown
that with both the short-range (the red solid curve with circles)
and Gaussian correlation function (the blue dashed curve with
squares) in the scattering term, in the weak scattering regime,
the valley depolarization time increases with the increase of the
disorder strength; whereas in the strong scattering regime, the
valley depolarization is first enhanced and then suppressed by
the momentum scattering, which is referred to as the EY-like
and normal strong scattering regimes. Furthermore, these two
curves for the short-range and Gaussian correlation function
coincide with each other, showing that the short-range scatter-
ing is a good approximation for the exiton-disorder scattering
here. This is because for the Bose-Einstein distribution at
low temperature here, qσR � 1 is satisfied, and hence the
exponential function in Eq. (11) can be neglected. In this
situation, the momentum scattering time with the Gaussian
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correlation function [Eq. (11)], i.e.,

τ−1
k = mexa

2

2π�3

∫ 2π

0
exp

{ − 2σ 2
Rk2[1 − cos(θk − θk′)]

}
× [1 − cos(θk′)]dθk′, (22)

is reduced to τ without momentum dependence.
For comparison, the conventional situation is also com-

puted, shown by the blue dashed curve with crosses in Fig. 1.
It can be seen that with the increase of the disorder strength,
the valley depolarization time increases monotonically in
both the weak and strong scattering regimes. In the strong
scattering regime, this confirms Eq. (18) where the valley
depolarization is suppressed by the momentum scattering.
Whereas in the weak scattering regime, from Eq. (19), it
seems that the valley depolarization should be enhanced
by the momentum scattering. However, because the energy
dispersion in the Bose-Einstein distribution, the free induction
decay dominates the valley depolarization, which can be
suppressed by the momentum scattering. To see this point, we
plot the valley depolarization time τ ∗

v fitted from incoherently
summed spin polarization

∑
k |Sk| [69–72], where the free

induction decay is destroyed. It is shown by the orange dashed
curve with crosses that with the increase of the disorder
strength, τ ∗

v decreases in the weak scattering regime because
the momentum scattering can directly open a channel for the
valley depolarization [e−t/(2τ ) in Eq. (19)], but increases in the
strong scattering regime.

It is interesting to see that the behavior of the valley depolar-
ization with the exchange-interaction-modified energy spectra
is similar to the conventional situation in the weak scattering
regime, but very different in the strong scattering regime. In the
weak scattering regime, the new valley polarization channel is
not important, which can be seen from Fig. 1 that the valley
depolarization with (green chain curve) and without (pink
chain curve) this channel almost coincides with each other.
Therefore, same as the conventional situation, due to the sup-
pression of the free induction decay by the scattering, the valley
depolarization time increases with the increase of the dis-
order strength. By further fitting τ ∗

v from incoherently summed
spin polarization

∑
k |Sk| (gray dashed curve), one observes

τ ∗
v decreases with the increase of the disorder strength in

the weak scattering regime due to the destruction of the
free induction decay. In the EY-like regime, the enhancement
of the valley depolarization by the scattering comes from
the enhancement of inhomogeneous broadening due to the
novel valley depolarization channel [Eq. (21)]. Finally, to
show the trend of the valley depolarization time with further
increasing the scattering strength, we extend our calculation
to the regime 〈�k〉τ � 1, i.e., the normal strong scattering
regime. In this regime, the enhancement of the momentum
scattering in Eq. (21) becomes more important than the
enhancement of the inhomogeneous broadening, and hence
the valley depolarization is suppressed by the momentum
scattering.

Finally, it can be seen from Fig. 1 that the green chain
curve calculated from the simplified model [Eq. (20)] almost
coincides with the one by full calculation (the red solid curve
with circles). Therefore, it seems that the off-diagonal elements
in the projection matrix play a less important role in the

valley depolarization in the regimes we study. However, it
influences the behavior of the temporal evolution of the valley
polarization in the normal strong scattering regime, leading to
the oscillations of the valley polarization (refer to Appendix B).

B. Valley Hall effect of exciton

In this part, we study the valley Hall effect of exciton in
ML MoS2 both numerically and analytically. In the calculation,
the initial state is set to be the equally populated Bose-Einstein
distribution in the K and K′ valleys, i.e.,

ρk(0) = B0
k Î , (23)

where B0
k is the Bose-Einstein distribution function. The

computation parameters are listed in Table I. With this
experimentally realized initial state [2,9], we first show that the
system can evolve to the equilibrium state in which the “spin”
vectors [Sx

k = Tr(ρkσ̂x), Sy

k = Tr(ρkσ̂y), and Sz
k] are parallel to

the k-dependent magnetic field due to the exchange interaction
[Sec. III B 1]. Then we show that with this equilibrium state,
after applying the external force field due to the uniaxial strain
[46,48], the drift of this equilibrium state can induce the valley
Hall current of exciton (Sec. III B 2).

1. Equilibrium state without external force field

Before the concrete study of the valley Hall effect of the
exciton in ML MoS2, it is important to know the property of the
equilibrium state with the exciton initially equally populated
in the K and K′ valleys. In Figs. 2(a) and 2(b), it is shown
that after a long time, the system evolves into the equilibrium
state which corresponds to the “spin” separation for Sx

k and
Sy

k in the momentum space, respectively. Specifically, in this
equilibrium state, the spin vectors Sx

k and Sy

k are parallel to the
k-dependent magnetic field due to the exchange interaction
�x

k = −2εex
k cos(2θk) and �

y

k = −2εex
k sin(2θk). Below we

analytically demonstrate this property in the weak exchange
interaction limit.

In the weak exchange interaction limit, we expand the
energy spectra in the linear order of the exchange energy in
the scattering term [Eq. (9)], and then derive the equilibrium
state to be (the derivation is referred to Appendix C)

ρe
k ≈ B0

k Î + H ex
k ∂B0

k

/
∂εk. (24)

Here, with the diagonal elements contributing to the energy
spectra, the exchange interaction Hamiltonian,

H ex
k = εex

k

(
0 −e2iθk

−e−2iθk 0

)
, (25)

only contains the off-diagonal elements. This equilibrium state
corresponds to the spin vectors,

Sx
k = −2εex

k cos(2θk)∂B0
k

/
∂εk, (26)

S
y

k = −2εex
k sin(2θk)∂B0

k

/
∂εk. (27)

Obviously, the spin vectors Sx
k and S

y

k are parallel to the k-
dependent magnetic field �x

k and �
y

k, respectively.
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FIG. 2. Momentum distribution of the “spin” vectors Sx
k (a) and

Sy

k (b) in the equilibrium state. k0 ≈ 7.9 × 107/m is the Fermi wave
vector of the system. The calculation shows that in the equilibrium
state, Sx

k ∝ cos(2θk) and Sy

k ∝ sin(2θk), which are parallel to the
in-plane effective magnetic field due to the exchange interaction
along the x̂ direction [�x

k = −2εex
k cos(2θk)] and ŷ direction [�y

k =
−2εex

k sin(2θk)], respectively.

2. Valley Hall effect of exciton

In this subsection, we study the valley Hall effect of exciton.
Specifically, we explicitly show the disorder strength (momen-
tum scattering) dependence of the valley Hall conductivity
σ z

x . From the initial state Eq. (23), we numerically calculate
the steady-state density matrix with the applied field after a
long temporal evolution by the KSBEs. Then the valley Hall
conductivity is calculated. With the valley Hall current defined
as

jz
x =

∑
k

Tr

[
ρk

1

2
(σ̂zv̂y + v̂y σ̂z)

]
= σ z

x F/|e|, (28)

the valley Hall conductivity σ z
x is expressed as

σ z
x = |e|

2F

∑
k

Tr[ρk(σ̂zv̂y + v̂y σ̂z)]. (29)

Here, |e| is the electron charge and v̂y = �ky/mex +
∂H ML

ex (k)/∂ky is the velocity operator.
The results are shown in Fig. 3. With the weak external

force field, the system is in the linear regime, as shown

10-4
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10-1

100

101

102

10-3 10-2 10-1 100 10-4

10-3

10-2

10-1

100

101

102

σ x
z  (|

e|
/h

)

(VR/VR0)2

τ p
 (p

s)

T=20 K

σx
z: s-range
σR=6nm

τp:  s-range
σR=6nm

FIG. 3. Disorder strength dependence of the valley Hall con-
ductivity and the momentum scattering time (note the scale is on
the right-hand side of the frame). The cyan dashed line labels the
boundary between the weak and strong scattering regimes. The green
chain (short-range) and orange dashed (Gaussian correlation) curves
with squares show that the momentum scattering time is linearly
dependent on the disorder strength. For the valley Hall conductivity,
it can be seen from the red solid curve with squares (short-range)
and blue dashed curve with circles (Gaussian correlation) that in the
strong scattering limit, the valley Hall conductivity decreases with
the increase of the disorder strength with the dependence σ z

x ∝ τ 2,
whereas in the weak scattering regime, the valley Hall conductivity
saturates to a constant.

in Fig. 3, and the momentum scattering time reveals linear
dependence on the disorder strength. In this regime, it can be
seen from Fig. 3 that in the strong scattering regime, the valley
Hall conductivity decreases with the increase of the disorder
strength, showing the dependence σ z

x ∝ τ 2, whereas in the
weak scattering regime, the valley Hall conductivity saturates
to a constant. Below we show analytically that these features in
the momentum scattering dependence can be well understood
in the weak exchange interaction approximation.

Here, we outline the main results to obtain the physical
picture of the valley Hall effect of the exciton. It has been
shown that without the external force field, the density matrix
in the equilibrium state is written as Eq. (24), which commutes
with the exchange interaction Hamiltonian. After applying the
external force field, the density matrix in the steady state is
derived in Appendix D, as shown by Eq. (D5). It is shown that
based on the equilibrium state [Eq. (24)], after applying the
external field, the drift part of the density matrix is [Eq. (D2)]

ρ
(1)
k = −Fτ

�

∂

∂kx

(
B0

k Î + H ex
k

∂B0
k

∂εk

)
. (30)

Obviously, this drift density matrix no longer commutes
with the exchange interaction Hamiltonian, i.e., it can induce
the momentum-dependent “spin” polarization along the ẑ

direction (valley polarization). This can be seen as follows.
In Eq. (D5), the induced density matrix responsible for the
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valley polarization is written as

ρ in
k ≈ i

�2
F

∂B0
k

∂εk

τ 2

1 + 4�2
kτ

2

[
H ex

k ,
∂H ex

k

∂kx

]
. (31)

Then with the exchange interaction Hamiltonian [Eq. (25)], it
can be obtained that

∂H ex
k /∂kx ≈ −2Qkxσ̂x + 2Qkyσ̂y ; (32)[

H ex
k ,∂H ex

k /∂kx

] ≈ 4iQ2k2kyσ̂z. (33)

In the derivation, we have used the fact that when the screening
effect due to the residue electron is considered, Q(k) is
approximately a constant with our computation parameters
(Table I). From Eq. (33), one observes that the induced density
matrix is proportional to σ̂z and dependent on the momentum
ky .

Then the valley Hall conductivity can be calculated. With
the definition of the valley Hall conductivity [Eq. (29)], only
the third term on the right-hand side of Eq. (D5), i.e., Eq. (31),
contributes to the valley Hall conductivity. From Eq. (29), one
has

σ z
x = −|e|

h

∫ ∞

0
dεk

dB0
k

dεk

4�2
kτ

2

1 + 4�2
kτ

2
. (34)

From the above equation, one finds that in the strong scattering
regime, with �kτ � 1,

σ z
x ≈ −4|e|

h

∫ ∞

0
dεk

dB0
k

dεk

�2
kτ

2, (35)

which is proportional to τ 2. Whereas in the weak scattering
regime with �kτ � 1,

σ z
x ≈ |e|

h
B0

k=0, (36)

which is independent on the exchange interaction strength and
momentum scattering. Specifically, one observes that σ z

x is
proportional to B0

k=0, which can be extremely large when the
system is close to the Bose-Einstein condensation. Here, with
the computation parameters (Table I), B0

k=0 ≈ 0.6, and hence
σ z

x ≈ 0.6|e|/h, which gives a good estimate to the calculated
one 0.4|e|/h with strong exchange interaction. Moreover,
from Eq. (36), one observes that with the higher exciton
density and/or lower temperature, B0

k=0 is large and hence the
valley Hall conductivity. According to our calculation, with the
exciton density nex = 5 × 1011 cm−2 at 10 K, σ z

x ≈ 5.5|e|/h

in the weak scattering limit. This is much larger than the one
in the Fermi system, with the latter being limited by the Pauli
blocking [43,44].

Finally, we summarize the physical picture of the valley
Hall effect of the exciton as follows. First of all, it is understood
that in the equilibrium state, the “spin” vector of any momen-
tum k is parallel to the k-dependent effective magnetic field due
to the e-h exchange interaction (Sec. III B 1). Then by applying
the force field due to the uniaxial strain [46], the “spin” vector is
no longer parallel to the effective magnetic field. Accordingly,
the “spin” vector can rotate around the effective magnetic field,
and the momentum-dependent valley polarization is induced.
Specifically, for the exciton with opposite ky , the x̂ component
of the effective magnetic field is along the opposite direction,

and hence the induced valley polarization is also opposite.
Consequently, the valley current perpendicular to the driven
exciton current is established.

It is emphasized that the physical picture addressed above
is in analogy to the intrinsic spin Hall effect of the electron
[36,43–45]. Nevertheless, two new features in this mechanism
are further revealed here. On one hand, it is revealed that in
the dirty sample corresponding to the strong scattering regime,
the intrinsic “spin” Hall effect is markedly suppressed by the
momentum scattering, with its conductivity proportional to
τ 2. On the other hand, in the weak scattering regime, the Bose
system with no Pauli blocking provides an ideal platform to
realize large “spin” Hall conductivity, which can be much
larger than the one in the Fermi system, especially when the
system is close to the Bose-Einstein condensation.

IV. BILAYER MoS2

In this section, we investigate the valley depolarization
dynamics and valley Hall effect for the A exciton, which is
fourfold degenerate, in BL MoS2. In our previous work, a
steady state in the PL depolarization dynamics in BL WS2

with the isotropic dielectric constant was revealed in the
situation without the energy spectra modified by the exchange
interaction [34]. However, with the exchange-interaction-
modified energy spectra, as revealed in ML MoS2 (Sec. III), the
valley dynamics becomes very different from the conventional
situation and the valley Hall effect of exciton can arise.
So far, the PL depolarization dynamics for BL TMDs with
the anisotropic dielectric constant is still lacking. These
motivate us to calculate the related PL dynamics for the
fourfold-degenerate states in the BL system with the energy
spectra modified by the exchange interaction. All parameters
including the band structure and material parameters used in
our computation are listed in Table II.

It is emphasized that in BL TMDs, the centro-inversion
symmetry exists [16–19,21,22]. Hence, no valley polarization
but the PL polarization can be created by the chiral optical
valley selection rule [16–19]. Similarly, no valley current but
the PL current can be created by the valley Hall effect due
to the symmetry, which can be measured at the edges of the
device channel in the experiment [21,22].

A. PL depolarization dynamics

In this part, we focus on the new feature of the PL
depolarization dynamics arising in the BL system compared to

TABLE II. Parameters used in the computation for BL MoS2.

me/m0 0.39a T (K) 20
mh/m0 0.47a,b nex (cm−2) 1011

κ‖ 4.8c ne (cm−2) 3.3 × 1010

aB (nm) 3.0 σR (nm) 6

αBL (Å
2
) 4.51d VR0 (meV) 5.4 × 10−2

F (eV/cm) 10

aReference [64].
bReferences [65,66].
cReference [35].
dReference [34].
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FIG. 4. Temporal evolution of the PL polarization in the BL
MoS2 with isotropic dielectric constant (γ = 1) and different disorder
strength. It is shown that no matter the disorder strength is weak or
strong, there is always a steady state with the PL polarization being
half of the initial one. The red solid curve is calculated without the
exchange-interaction-modified energy spectra [34].

the ML situation. The PL depolarization dynamics is obtained
by solving the KSBEs from the temporal evolution of the PL
polarization P (t) = ∑

k Tr[ρk(t)Îz]/nex with

Îz =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠. (37)

In the calculation, the initial condition is set to be

ρk(0) = Bk↑ + Bk↓
2

+ Bk↑ − Bk↓
2

Îz. (38)

P (0) is set to be 10% in our numerical calculation. Below,
the PL depolarization dynamics with isotropic and anisotropic
dielectric constants are investigated, respectively.

For the isotropic dielectric constant (γ = 1), it is shown
in Fig. 4 that no matter the system lies in the weak or strong
scattering regime, there is always a steady state with the PL
polarization being half of the initial one. This is the same
as our previous prediction without the exchange-interaction-
modified energy spectra (the red solid curve in Fig. 4) [34].
However, when the exchange interaction markedly modifies
the energy spectra, the density matrix in the steady state is
found to be different from the previous one [34].

In our previous work, with the initial condition Eq. (38),
when the system lies in the steady state, the density matrix is
found to be [34]

ρs
k = Bk↑ + Bk↓

2
+ Bk↑ − Bk↓

4

⎛
⎜⎜⎜⎝

1 0 0 1

0 −1 −1 0

0 −1 −1 0

1 0 0 1

⎞
⎟⎟⎟⎠. (39)

Here, with the exchange interaction markedly modifying the
energy spectra, the form of the density matrix in the steady
state is different, in which no zero elements arise and hence all

states are correlated to each other. This can be understood in
the weak exchange interaction approximation. As a simplified
model, with the diagonal and off-diagonal elements entering
the energy spectra of the exciton, the effective exchange
interaction in BL MoS2 is written as

H̃ ex
k ≈ ε̃ex

k

⎛
⎜⎜⎜⎜⎝

0 γ e2iθk −e2iθk 0

γ e−2iθk 0 0 −e−2iθk

−e−2iθk 0 0 γ e−2iθk

0 −e2iθk γ e2iθk 0

⎞
⎟⎟⎟⎟⎠, (40)

where ε̃ex
k = Q̃(k)k2. In the weak exchange interaction approx-

imation, the KSBEs for the BL MoS2 are similar to the ML
situation (Appendixes C and D),

∂ρk

∂t
+ F

�

∂ρk

∂kx

+ i

�

[
H̃ ex

k ,ρk
] + ρk − ρ0

k

τ
− π

τ

∫
dθk′

(2π )2

× dδ(εk′ − εk)
{
H̃ ex

k − H̃ ex
k′ ,ρk − ρk′

} = 0, (41)

where {,} denotes the anticommutator. Without the applied
field, in the steady state, the first three terms in the left-hand
side of Eq. (41) are zero. Based on the conventional density
matrix in the steady state [Eq. (39)] and following the iteration
technique introduced in Appendix C, one obtains the steady
state here (γ = 1),

ρ̃s
k ≈ ρs

k + (1/2)
{
H̃ ex

k ,∂ρs
k/∂εk

}
= ρs

k + (1/2)H̃ ex
k (∂Bk↑/∂εk + ∂Bk↓/∂εk). (42)

Obviously, Eq. (42) commutes with the exchange interaction
Hamiltonian Eq. (40). Specifically, due to H̃ ex

k in Eq. (42), all
states become correlated to each other.

For the anisotropic dielectric constant, it is seen from Fig. 5
that compared to the isotropic case γ = 1, when the dielectric
constant is tuned to be anisotropic with γ = 1.1 (the blue

 0
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FIG. 5. Temporal evolution of the PL polarization in the BL MoS2

with anisotropic dielectric constant. When the dielectric constant is
tuned to be anisotropic with γ = 1.1 (the blue chain curve) and 1.2
(the green dashed curve), the steady state vanishes. For comparison,
the time evolution of the valley polarization in ML MoS2 is also
plotted, which is shown as γ = 0 by the orange dashed curve.
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chain curve) and 1.2 (the green dashed curve), the steady state
vanishes.

However, when γ is close to the isotropic situation, the PL
polarization first decreases fast and then slowly. Accordingly,
the effective depolarization time can also be much longer than
the ML situation, shown as γ = 0 by the orange dashed curve.

B. Valley Hall effect of exciton

In this subsection, we investigate the valley Hall effect of
the exciton in BL MoS2. In the calculation, the initial state is
set to be the equally populated Bose-Einstein distribution in
the K and K′ valleys in both the upper and lower layers, i.e.,

ρk(0) = B0
k Î4×4. (43)

From the KSBEs, with the applied force field, the steady-state
density matrix is calculated and then used to calculate the
valley Hall conductivity. In analogy to the ML situation, with
the PL current which carries the PL polarization defined as

j̃ z
x =

∑
k

Tr

[
ρk

1

2
(Îzv̂y + v̂y Îz)

]
= σ̃ z

x F/|e|, (44)

the valley Hall conductivity σ̃ z
x in BL MoS2 is expressed as

σ̃ z
x = |e|

2F

∑
k

Tr[ρk(Îzv̂y + v̂y Îz)]. (45)

Here, v̂y = �ky/m̃ex + ∂H BL
ex (k)/∂ky . The calculated results

with both the isotropic and anisotropic dielectric constants are
summarized in Fig. 6.
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FIG. 6. Disorder strength dependence of the valley Hall con-
ductivity in BL MoS2. The blue chain (γ = 1) and orange dashed
(γ = 1.2) curves with squares represent the momentum scattering
time, showing the system lies in the linear regime with the applied
field (note the scale is on the right-hand side of the frame). It is shown
that no matter the dielectric constant is isotropic with γ = 1 (the red
solid curve with squares) or anisotropic with γ = 1.2 (the blue dashed
curve with squares), in the strong scattering regime, the valley Hall
conductivity decreases with the increase of the disorder strength,
showing the dependence σ̃ z

x ∝ τ 2, whereas in the weak scattering
regime, the valley Hall conductivity saturates to a constant.

In Fig. 6, the disorder strength dependence of the valley
Hall conductivity and momentum scattering time is plotted.
The curves for the momentum scattering time show that the
system lies in the linear regime. It can be seen from Fig. 6 that
in this regime, no matter the dielectric constant is isotropic with
γ = 1 (the red solid curve with squares) or anisotropic with
γ = 1.2 (the blue dashed curve with squares), in the strong
scattering regime, the valley Hall conductivity decreases with
the increase of the disorder strength, showing the dependence
σ̃ z

x ∝ τ 2, whereas in the weak scattering regime, the valley Hall
conductivity saturates to a constant. This shows that although
the PL depolarization dynamics in the BL MoS2 is different
from the ML situation, the properties of the valley Hall
conductivity between them are similar. Below, the valley Hall
conductivity is also derived in the weak exchange interaction
approximation, with the steady-state density matrix with the
applied field derived in Appendix D.

As a simplified model, the exchange interaction Hamilto-
nian Eq. (40) is used. From Eq. (45), it can be seen that only
the third term on the left-hand side of Eq. (D5) contributes to
the valley Hall conductivity. In Eq. (D5), with the exchange
interaction Eq. (40), one finds[

H̃ ex
k ,∂H̃ ex

k /∂kx

]
≈ 4iQ̃2k2ky

×

⎛
⎜⎜⎜⎜⎝

(γ 2 + 1) 0 0 −2γ

0 −(γ 2 + 1) 2γ 0

0 2γ −(γ 2 + 1) 0

−2γ 0 0 (γ 2 + 1)

⎞
⎟⎟⎟⎟⎠.

(46)

It is noted that here when the screening effect is considered,
Q̃(k) has been treated as a constant. Accordingly, the valley
Hall conductivity in BL MoS2 is written as

σ̃ z
x = −2(γ 2 + 1)

|e|
h

∫ ∞

0
dεk

dB0
k

dεk

4�̃2
kτ

2

1 + 4�̃2
kτ

2
, (47)

where �̃k = ε̃ex
k /�. Obviously, for the valley Hall conductivity

in BL MoS2, it is interesting to see that Eq. (47) is similar
to Eq. (34) in ML MoS2. Therefore, in the weak and
strong scattering regimes, similar features for the valley Hall
conductivity to the one in ML situation can be obtained, as
addressed in Sec. III B 2.

V. SUMMARY

In summary, we have investigated the valley depolarization
dynamics and valley Hall effect of the exciton in ML and
BL MoS2 by solving the KSBEs [51]. The effect of the
exchange-interaction-modified energy spectra is explicitly
considered. For the valley depolarization dynamics, in ML
MoS2, it is interesting to find that the conventional motional
narrowing relation τs ∝ τ−1

k in the strong scattering regime is
no longer valid. It is revealed that in this regime, a novel valley
depolarization channel is opened, where the valley lifetime
first decreases and then increases with the increase of the
disorder strength, showing the EY-like [52,53] behavior from
the point view of the spin relaxation [54–58]. This channel
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comes from the newly module-dependent inhomogeneous
broadening in the exciton-disorder scattering, in which the
same energy corresponds to different momentum modules due
to the exchange-interaction-modified energy spectra. This is
very different from the conventional situation, in which the in-
homogeneous broadening comes from the angular anisotropy
of the momentum in the exciton-disorder scattering [31,32].
Moreover, due to the enhancement of the inhomogeneous
broadening by this channel, EY-like behavior arises in the
MSS mechanism.

For BL MoS2, the PL depolarization dynamics with both the
isotropic and anisotropic dielectric constants is investigated,
which are found very different from the ML situation. With
the isotropic dielectric constant, it is shown that with the
exchange-interaction-modified energy spectra, the steady state
revealed in our previous work [34] still exists. Whereas with
the anisotropic dielectric constant, the steady state vanishes.
However, it is found that when the dielectric constant is close to
the isotropic situation, the PL polarization first decreases fast
and then slowly, indicating that the effective depolarization
time can be much longer than the ML situation.

For the valley Hall effect of exciton, the valley Hall
conductivity for ML and BL MoS2 in both the weak and strong
scattering regimes are studied numerically and analytically. We
show that with the exciton equally pumped in the K and K′
valleys, the exciton states evolve into the equilibrium state with
the valley polarization parallel to the momentum-dependent
effective magnetic field due to the exchange interaction. Then
with the drift of this equilibrium state due to the applied
uniaxial strain, this parallelism is broken and hence the
effective magnetic field can induce the momentum-dependent
valley/PL polarization, which accounts for the valley/PL
current. This mechanism is in analogy to the intrinsic spin
Hall effect of the electron [36,43–45].

Furthermore, it is found that although the valley/PL depo-
larization dynamics is very different between the ML and BL
situations, the valley Hall effect shows similar features in the
momentum scattering dependence. Specifically, in the strong
scattering regime, the valley Hall conductivity decreases with
the increase of the disorder strength (∝ τ 2); whereas in the
weak scattering regime, the valley Hall conductivity saturates
to a constant, which is proportional to the population of the
exciton with k = 0. Therefore, on one hand, in the dirty sample
corresponding to the strong scattering regime, the valley Hall
effect is markedly suppressed by the momentum scattering; on
the other hand, in the weak scattering regime, the Bose system
with no Pauli blocking provides an ideal platform to realize
large “spin” Hall conductivity, which can be much larger than
the one in the Fermi system, especially when the system is
close to the Bose-Einstein condensation.
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APPENDIX A: ENERGY SPECTRA AND
PROJECTION MATRIX

In this Appendix, we present the energy spectra and
projection matrix for ML and BL MoS2. The derivation of
the projection matrix is given in Refs. [51,67,73]. For the ML
situation, the energy spectra read

EML
k,± = �

2k2/(2mex) + Q(k)k2 ± Q(k)k2. (A1)

The projection matrices are

T ML
k,± = 1

2k2

(
k2 ∓k2

+
∓k2

− k2

)
. (A2)

For the BL situation, the energy spectra are

EBL
k,1 = EBL

k,2 = �
2k2/(2m̃ex),

EBL
k,3 = �

2k2/(2m̃ex) + 2(1 − γ )Q̃(k)k2,

EBL
k,4 = �

2k2/(2m̃ex) + 2(1 + γ )Q̃(k)k2. (A3)

The corresponding projection matrices are given by

T BL
k,1 = 1

2k2

⎛
⎜⎜⎜⎝

0 0 0 0

0 k2 0 k2
−

0 0 0 0

0 k2
+ 0 k2

⎞
⎟⎟⎟⎠, (A4)

T BL
k,2 = 1

2k2

⎛
⎜⎜⎜⎝

k2 0 k2
+ 0

0 0 0 0

k2
− 0 k2 0

0 0 0 0

⎞
⎟⎟⎟⎠, (A5)

T BL
k,3 = 1

4k2

⎛
⎜⎜⎜⎜⎝

k2 −k2
+ −k2

+ k2

−k2
− k2 k2 −k2

−
−k2

− k2 k2 −k2
−

k2 −k2
+ −k2

+ k2

⎞
⎟⎟⎟⎟⎠, (A6)

and

T BL
k,4 = 1

4k2

⎛
⎜⎜⎜⎜⎝

k2 k2
+ −k2

+ −k2

k2
− k2 −k2 −k2

−
−k2

− −k2 k2 k2
−

−k2 −k2
+ k2

+ k2

⎞
⎟⎟⎟⎟⎠. (A7)

APPENDIX B: ROLE OF OFF-DIAGONAL ELEMENTS OF
EQ. (A2) ON VALLEY DEPOLARIZATION

Here, we address the role of the off-diagonal elements in
the projection matrix [Eq. (A2)] on the temporal evolution of
valley polarization in ML MoS2. It is shown in Fig. 7 by the
dashed curves that without the off-diagonal elements in the
projection matrix, the valley depolarization is a little enhanced
compared to the full calculation by the solid curves in the weak
scattering [(V/VR0)2 = 0.01], EY-like [(V/VR0)2 = 0.5], and
normal strong scattering [(V/VR0)2 = 10] regimes. Moreover,
in the normal strong scattering regime, the off-diagonal
elements of Eq. (A2) cause the oscillations in the temporal
evolution of the valley polarization, shown as the black solid
curve. By removing the off-diagonal elements in the projection
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FIG. 7. Temporal evolution of the valley polarization in ML MoS2

with (solid curves) and without (dashed curves) the off-diagonal
elements in Eq. (A2). The role of the off-diagonal elements in the
weak scattering [(V/VR0)2 = 0.01], EY-like [(V/VR0)2 = 0.5], and
normal strong scattering [(V/VR0)2 = 10] regimes are shown.

matrix, the oscillation vanishes and the valley polarization
becomes just the oscillation exponential decay (the blue dashed
curve).

APPENDIX C: ANALYSIS ON THE EQUILIBRIUM STATE

We focus on the situation where the exchange energy is
much smaller than the kinetic one. With the weak exchange
interaction H ex

k , the delta function in Eq. (9) is expanded, e.g.,

δ(Ek′,+ − Ek,+) = δ
(
εk′ − εk + εex

k′ − εex
k

)
≈ δ(εk′ − εk) + ∂δ(εk′ − εk)

∂εk′

(
εex
k′ − εex

k

)
.

(C1)

With the linear order of the exchange energy retained in the
scattering term [Eq. (9)], the KSBEs are written as

∂ρk

∂t
+ i

�

[
H ex

k ,ρk
]

= 2π

�
a2

∑
k′

δ(εk′ − εk)(ρk′ − ρk)

+ π

�
a2

∑
k′

dδ(εk′ − εk)

dεk′

{
H ex

k − H ex
k′ ,ρk − ρk′

}
. (C2)

In the equilibrium state, ∂tρ
e
k = 0 and [H ex

k ,ρe
k] = 0.

Hence, one obtains

ρe
k = ρ0

k +
∫

dθk′

4π
dδ(εk′ − εk)

{
H ex

k − H ex
k′ ,ρe

k − ρe
k′
}
.

(C3)

This integral equation can be approximately solved by us-
ing the iteration technique. It is assumed that ρe

k = B0
k Î +∑∞

n=1 ρ
(n)
k . By substituting B0

k Î + ρ
(1)
k on the left-hand side

and B0
k Î on the right-hand side of Eq. (C3), one obtains

ρ
(1)
k = H ex

k ∂B0
k /∂εk . By repeating this process, one finds ρ

(2)
k

is proportional to (εex
k )2. Here, we only keep the linear order

in the exchange energy, i.e.,

ρe
k ≈ B0

k Î + H ex
k ∂B0

k /∂εk. (C4)

Obviously, ρe
k commutes with H ex

k .

APPENDIX D: SOLUTION OF KSBEs WITH
AN APPLIED FIELD

When the exchange interaction is weak, in the steady state
(∂tρk = 0), the KSBEs with the external force field can be
simplified to be

F

�

∂ρk

∂kx

+ i

�

[
H ex

k ,ρk
] + 1

τ

(
ρk − ρ0

k

) − 1

2τ

{
H ex

k ,
∂ρ0

k

∂εk

}

− π

τ

∫
dεk′dθk′

(2π )2

dδ(εk′ − εk)

dεk′

{
H ex

k′ ,ρk′
} = 0. (D1)

Equation (D1) is an integral-differential equation, which can
be solved by the iteration technique approximately. The
density matrix is assumed to be ρk = ρe

k + ∑∞
n=1 ρ

(n)
k with

ρ
(n)
k ∝ (εex

k )n.
The zeroth order of Eq. (D1) is exactly Eq. (C3), whose

solution has been expressed by ρe
k [Eq. (24)]. The first order

of Eq. (D1) reads

ρ
(1)
k = −Fτ

�

∂ρe
k

∂kx

= −Fτ

�

∂

∂kx

(
B0

k Î + H ex
k

∂B0
k

∂εk

)
, (D2)

which is just the drift form of the equilibrium state.
One notes that the drift density matrix ρ

(1)
k no longer

commutes with H ex
k , which causes the precession of the “spin”

vectors around the k-dependent effective magnetic field. The
nth order (n � 2) density matrix satisfies

F

�

∂ρ
(n−1)
k

∂kx

+ i

�

[
H ex

k ,ρ
(n−1)
k

] + 1

τ

[
ρ

(n)
k − ρ̄

(n−1)
k

]

− 1

2τ

{
H ex

k ,
∂ρ̄

(n−1)
k

∂εk

}
+ 1

2τ

∫
dθk′

2π
dδ(εk′ − εk)

× {
H ex

k′ ,ρ
(n−1)
k′

} = 0, (D3)

where ρ̄
(n)
k = 1/(2π )

∫
dθkρ

(n)
k . Equation (D3) is complex, but

fortunately it can be much simplified if only the density matrix
in the linear order of F is retained (linear regime). Furthermore,
ρ̄

(n)
k (n � 1) and the last term on the left-hand side of Eq. (D3)

are exactly zero due to the angle integration. Finally, one
obtains (n � 2),

(i/�)
[
H ex

k ,ρ
(n−1)
k

] + ρ
(n)
k /τ = 0. (D4)

With ρ
(1)
k [Eq. (D2)] known, ρ

(n)
k (n � 2) can be obtained.

By summing ρ
(n)
k , one comes to a closed form of the density

matrix for ML MoS2 (for BL MoS2, one replaces H ex
k by

H̃ ex
k , and �k by �̃k),

ρk ≈
(

B0
k Î + H ex

k
∂B0

k

∂εk

)
− F

�
τ

∂B0
k

∂kx

Î+ i

�2
F

∂B0
k

∂εk

τ 2

1 + 4�2
kτ

2

×
[
H ex

k ,
∂H ex

k

∂kx

]
− F

�

∂H ex
k

∂kx

∂B0
k

∂εk

τ

1 + 4�2
kτ

2
. (D5)

045414-12



VALLEY DEPOLARIZATION DYNAMICS AND VALLEY . . . PHYSICAL REVIEW B 93, 045414 (2016)

[1] K. F. Mak, C. G. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys.
Rev. Lett. 105, 136805 (2010).

[2] A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim,
G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).

[3] D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.
Lett. 108, 196802 (2012).

[4] X. D. Xu, W. Yao, D. Xiao, and T. F. Heinz, Nat. Phys. 10, 343
(2014).

[5] H. Y. Yu, X. D. Cui, X. D. Xu, and W. Yao, Natl. Sci. Rev. 2, 57
(2015).

[6] M. M. Glazov, E. L. Ivchenko, G. Wang, T. Amand, X. Marie,
B. Urbaszek, and B. L. Liu, Phys. Status Solidi B 252, 2349
(2015).

[7] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan,
E. Wang, B. Liu, and J. Feng, Nat. Commun. 3, 887 (2012).

[8] G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han,
Y. Lu, P. H. Tan, T. Amand, B. L. Liu, and B. Urbaszek, Phys.
Rev. B 86, 081301(R) (2012).

[9] K. F. Mak, K. He, J. Sahn, and T. F. Heinz, Nat. Nanotech. 7,
494 (2012).

[10] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nat. Nanotech. 7,
490 (2012).

[11] G. Wang, E. Palleau, T. Amand, S. Tongay, X. Marie, and B.
Urbaszek, Appl. Phys. Lett. 106, 112101 (2015).

[12] C. R. Zhu, K. Zhang, M. Glazov, B. Urbaszek, T. Amand, Z. W.
Ji, B. L. Liu, and X. Marie, Phys. Rev. B 90, 161302(R) (2014).

[13] G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet,
M. Vidal, A. Balocchi, and B. Urbaszek, Phys. Rev. Lett. 114,
097403 (2015).

[14] T. F. Yan, X. F. Qiao, P. H. Tan, and X. H. Zhang,
arXiv:1502.07088.

[15] A. M. Zhang, J. H. Fan, Y. S. Li, J. T. Ji, G. H. Zhao, T. L. Xia, T.
F. Yan, X. H. Zhang, W. Zhang, X. Q. Wang, and Q. M. Zhang,
arXiv:1503.08631.

[16] B. R. Zhu, H. L. Zeng, J. F. Dai, Z. R. Gong, and X. D. Cui,
Proc. Nat. Acad. Sci. 111, 11606 (2014).

[17] B. R. Zhu, X. Chen, and X. D. Cui, Sci. Rep. 5, 9218 (2015).
[18] G. Wang, X. Marie, L. Bouet, M. Vidal, A. Balocchi, T. Amand,

D. Lagarde, and B. Urbaszek, Appl. Phys. Lett. 105, 182105
(2014).

[19] A. M. Jones, H. Yu, J. S. Ross, P. Klement, N. J. Ghimire, J. Q.
Yan, D. G. Mandrus, W. Yao, and X. D. Xu, Nat. Phys. 10, 130
(2014).

[20] T. Olsen and I. Souza, Phys. Rev. B 92, 125146 (2015).
[21] K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, Science

344, 1489 (2014).
[22] J. Lee, K. F. Mak, and J. Shan, arXiv:1508.03068.
[23] H. Y. Yu, G. B. Liu, P. Gong, X. D. Xu, and W. Yao, Nat.

Commun. 5, 3876 (2014).
[24] C. Mai, A. Barrette, Y. Yu, Y. G. Semenov, K. W. Kim, L. Cao,

and K. Gundogdu, Nano Lett. 14, 202 (2014).
[25] Q. Wang, S. Ge, X. Li, J. Qiu, Y. Ji, J. Feng, and D. Sun, ACS

Nano 7, 11087 (2013).
[26] T. Yu and M. W. Wu, Phys. Rev. B 89, 205303 (2014).
[27] M. M. Glazov, T. Amand, X. Marie, D. Lagarde, L. Bouet, and

B. Urbaszek, Phys. Rev. B 89, 201302 (2014).
[28] F. C. Wu, F. Y. Qu, and A. H. MacDonald, Phys. Rev. B 91,

075310 (2015).
[29] Y. N. Gartstein, X. Li, and C. W. Zhang, Phys. Rev. B 92, 075445

(2015).

[30] D. Y. Qiu, T. Cao, and S. G. Louie, Phys. Rev. Lett. 115, 176801
(2015).

[31] M. Z. Maialle, E. A. de Andrada e Silva, and L. J. Sham, Phys.
Rev. B 47, 15776 (1993).

[32] A. Vinattieri, J. Shah, T. C. Damen, D. S. Kim, L. N. Pfeiffer,
M. Z. Maialle, and L. J. Sham, Phys. Rev. B 50, 10868 (1994).

[33] M. I. D’yakonov and V. I. Perel’, Zh. Eksp. Teor. Fiz. 60, 1954
(1971) [Sov. Phys. JETP 33, 1053 (1971)].

[34] T. Yu and M. W. Wu, Phys. Rev. B 90, 035437 (2014).
[35] A. Kumar and P. K. Ahluwalia, Phys. B: Condens. Matter 407,

4627 (2012).
[36] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and

A. H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004).
[37] E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Phys. Rev.

Lett. 93, 226602 (2004).
[38] S. Murakami, Phys. Rev. B 69, 241202(R) (2004).
[39] J.-i. Inoue, G. E. W. Bauer, and L. W. Molenkamp, Phys. Rev.

B 70, 041303(R) (2004).
[40] O. Chalaev and D. Loss, Phys. Rev. B 71, 245318 (2005).
[41] O. V. Dimitrova, Phys. Rev. B 71, 245327 (2005).
[42] S. Y. Liu, X. L. Lei, and N. J. M. Horing, Phys. Rev. B 73,

035323 (2006).
[43] A. Khaetskii, Phys. Rev. B 73, 115323 (2006).
[44] M. Glazov and A. Kavokin, J. Lumin. 125, 118 (2007).
[45] K. Shen, R. Raimondi, and G. Vignale, Phys. Rev. B 90, 245302

(2014).
[46] S.-i. Kuga, S. Murakami, and N. Nagaosa, Phys. Rev. B 78,

205201 (2008).
[47] J. W. Wang and S. S. Li, Appl. Phys. Lett. 91, 052104

(2007).
[48] W. Yao and Q. Niu, Phys. Rev. Lett. 101, 106401 (2008).
[49] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P.

Ong, Rev. Mod. Phys. 82, 1539 (2010).
[50] N. A. Sinitsyn, J. Phys.: Condens. Matter 20, 023201 (2008).
[51] M. W. Wu, J. H. Jiang, and M. Q. Weng, Phys. Rep. 493, 61

(2010).
[52] Y. Yafet, Phys. Rev. 85, 478 (1952).
[53] R. J. Elliott, Phys. Rev. 96, 266 (1954).
[54] Semiconductor Spintronics and Quantum Computation, edited

by D. D. Awschalom, D. Loss, and N. Samarth (Springer, Berlin,
2002).
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