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We present a study of metastability regions in the in-plane magnetic field versus temperature phase diagram
of graphene and intercalated graphite superconductors. Due to the vanishing density of states, undoped graphene
requires a finite BCS interaction Vc to become superconducting (any finite doping drives this critical value to zero).
Above Vc, superconducting graphene under in-plane magnetic field displays the conventional low temperature
first-order transition (FOT) to the normal phase, but the width of the associated metastability region (normalized
to the zero-temperature critical field) vanishes when doping goes to zero and the interaction approaches Vc.
In the case of intercalated graphite superconductors, modeled as two-dimensional two-band superconductors
(a graphene-like band and a metallic interlayer band), a critical graphene intraband interaction is required for
the appearance of a second metastability region in the superconducting region of the phase diagram. The width
of this metastability region also goes to zero as the graphene intraband interaction approaches, from above, its
critical value and the metastability region vanishes at the zero-temperature supercooling field associated with
the metallic interlayer band. Slightly above this critical value, the low-temperature FOT line bifurcates at an
intermediate temperature into a FOT line and a second-order transition line.

DOI: 10.1103/PhysRevB.93.045412

I. INTRODUCTION

In the past few years, several works have addressed
electronic interactions in graphene, or more generally, in
two-dimensional honeycomb lattices [1–7]. In the case of
repulsive interactions, a transition between semimetallic and
Mott insulating phases (that can display charge-density wave,
spin-density wave, or quantum spin Hall orders) is observed
as expected [1]. Recently, the possibility of superconducting
phases driven by repulsive interactions in two-dimensional
honeycomb lattices has also been addressed [2–5]. In particu-
lar, in the case of graphene, a chiral d-wave superconducting
state has been proposed when doping forces the Fermi energy
to the van Hove position [2]. For this particular doping value,
the high density of states (DOS) and the Fermi surface nesting
lead to a competition between superconducting and density
wave instabilities, and according to renormalization-group
calculations [2] a chiral d-wave superconducting phase is the
most stable phase. More recently, the possibility of a p + ip

superconducting state in honeycomb lattices in the very strong
repulsive Hubbard limit has also been proposed [3]. In this
case, the Nagaoka ferromagnetic phase acts as the background
where such a superconducting phase appears. On the other
hand, the possibility of s-wave superconductivity in graphene
driven by the usual effective attractive BCS interaction
(which may reflect the conventional electron-phonon BCS
mechanism) has also been addressed [6,7]. In this case, low
critical temperature values are expected due to the vanishing
DOS at the Fermi level. In our paper, we follow the latter
works [6,7] and assume s-wave BCS superconductivity in
graphene and graphite intercalation compounds (GICs).

Superconductivity is unlikely to be observed in isolated
graphene due to its low dimensionality and resulting enhanced
fluctuations, but also due to the semimetallic nature of
graphene. In fact, using a simple BCS mean-field approach,
one concludes that a critical pairing interaction is required
for a superconducting phase to be present in graphene [6].
However, when doped, the Fermi energy of graphene shifts

away from the Dirac point, where the density of states
vanishes, and the finite DOS at the Fermi energy leads to
a finite superconducting critical temperature for arbitrarily
small attractive pairing potentials [6]. One should note that the
absence of superconductivity in undoped graphene stated by
the Mermin-Wagner theorem is in apparent contradiction with
the mean-field approach. This theorem states that in materials
with D � 2 (in which D represents the dimensionality of
a material), which is the case of graphene, long-range
fluctuations can be created with little energy cost [8,9].
The appearance of such fluctuations decreases the chances
of observing superconducting-like properties in strictly 2D
materials. However, superconductivity in graphene is possible
in tridimensional graphene-based structures.

A way of inducing superconductivity in graphene is by the
proximity effect in S-G-S structures [10] (two superconducting
metals connected to a graphene sheet). These systems are
analogous to a two-band superconductor system with no
intraband interactions in one of the bands, since the Josephson
tunneling can be interpreted as an interband interaction
[11–13]. Another way of inducing superconductivity in
graphene is by intercalation of graphene sheets with metallic
sheets. In GICs, superconductivity has been known to be
present for almost half a century [14]. There has been a
strong debate in the past few decades about whether GICs
are one-band (due to the metallic interlayer band [15] or
the graphene-like band [16]) or two-band superconductors (a
graphene-like band and a metallic interlayer band) [17–24].
Recent high-resolution angle-resolved photoemission spec-
troscopy (ARPES) measurements, performed on CaC6, present
strong evidence supporting the scenario of both bands con-
tributing to the superconducting phase [25].

The degree of anisotropy in GICs can be measured by the
critical magnetic field anisotropy ratio �H = H

‖
c /H⊥

c [26],
where H

‖
c (H⊥

c ) is the critical magnetic field when applied
parallel (perpendicular) to the graphene sheets. The range
of values for �H differs greatly from stage-1 to stage-2

2469-9950/2016/93(4)/045412(9) 045412-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.045412


F. D. R. SANTOS, A. M. MARQUES, AND R. G. DIAS PHYSICAL REVIEW B 93, 045412 (2016)

GICs. Stage-1 compounds have been reported to have
�H ∼ 2–11 [27,28], whereas in stage-2 compounds �H can
have values that go up to 40 [27]. The very high anisotropy
in stage-2 GICs suggests that they can be considered as
quasi-2D materials. In these stage-2 superconducting GICs,
and due to their reduced dimensionality, strongly attenuated
orbital effects are expected when in-plane magnetic fields are
applied. In such conditions, the orbital effect of the magnetic
field becomes increasingly negligible as one moves away from
the critical temperature Tc, with decreasing temperature, and
the Zeeman effect becomes dominant. Near Tc, both Zeeman
and orbital effects should be considered in a full description.

The in-plane magnetic field versus temperature phase
diagram of quasi-2D one-band superconductors has been
known for some time [29–31]. In particular, it has been
shown that a curve of a first-order phase transition (FOT) and
the respective metastability region (the region of coexistence
of the homogeneous superconducting state and normal state
local minima in the free energy) with increasing magnetic
field are present at low temperatures, ending at a tricritical
point around T � ≈ 0.56Tc. For higher temperatures, T > T �,
the transition becomes of second-order (SOT). In quasi-2D
n-band superconductors with weak interband interactions, in
addition to the above-mentioned first-order transition curve
and metastability region, additional low-temperature FOT
curves (more precisely, n − 1 curves) and the correspond-
ing metastability regions (limited below and above by the
supercooling fields, hsc, and by the superheating fields, hsh,
respectively) appear within the superconducting region of the
phase diagram, each characterized by a large reduction in
the superconducting gap of the band directly associated with
the transition [32,33]. The additional low-temperature FOT
and metastability regions present in the phase diagram are
signaled by, respectively, additional crossings in the total free-
energy difference between the superconducting and the normal
phases, and reentrances in the band-gap solutions. Increasing
the interband couplings has the effect of approaching the
transitions within the superconducting region to the FOT to
the normal phase, eventually making them disappear after the
intersection for strong enough interband couplings.

In this work, we present a study of metastability regions
in the phase diagram of superconducting graphene and
intercalated graphite superconductors under in-plane magnetic
fields using a weak-coupling BCS approach. We find that,
due to the vanishing density of states at the Dirac point of
graphene, the width of the metastability region associated with
the low-temperature FOT to the normal phase (normalized to
the zero-temperature critical field) shows a strong dependence
on doping, vanishing at zero doping. In the case of inter-
calated graphite superconductors, modeled as 2D two-band
superconductors, a critical pairing interaction is required for
a second metastability region (associated primarily with the
intraband pairing in the graphene-like band) to be present
in the temperature versus in-plane magnetic field phase
diagram. For intermediate values of the graphene intraband
interaction above this critical value, a low-temperature FOT
bifurcates at intermediate temperature into a FOT between
superconducting phases and a SOT between the normal and
the superconducting phase. These features are not exclu-
sive to graphene-based superconductors and should also be

observed in any quasi-2D superconductor with a semimetallic
band.

II. HAMILTONIAN AND GRAPHENE DOS

In this work, we use a simple weak-coupling description of
n-band superconductors, adopting the Hamiltonian introduced
by Sulh, Matthias, and Walker [34] with an additional Zeeman
splitting term,

H − μN − σhN =
∑
kσ i

ξkσ ic
†
kσ ickσ i

−
∑
kk′ij

V
ij

kk′c
†
k↑j c

†
−k↓j ck′↑ic−k′↓i , (1)

where i,j = 1,2 is the band index in the case of a two-
band superconductor (i,j = 1 in the case of a one-band
superconductor), μ is the chemical potential, σ = ↑,↓ is
the spin component along the in-plane magnetic field, h =
μBH , μB and H are the Bohr magneton and the in-plane
applied magnetic field, respectively, ξkσ i = εki − μ − σh is
the kinetic energy term measured from μ, and V

ij

kk′ gives the
intraband (i = j ) and interband (i 	= j ) pairing interactions.
It is worthwhile to note that a rigorous study for graphene-like
band interactions above the critical interaction may require
the introduction of the strong-coupling corrections, but the
qualitative weak-coupling behavior should remain valid even
taking into account these corrections [35].

Applying the mean-field approach to this Hamiltonian,
and minimizing the respective free energy with respect to
the superconducting gaps, one obtains an expression for the
coupled superconducting gap equations [11,32], where s-wave
symmetry is assumed,

�i =
∑

j

Vij δj , (2)

with

δj = δj (T ,h,�j ,Nj (ξ ))

=
∫ ωD

0
dξ�j

Nj (ξ )

2Ej

(
tanh

Ej + h

2kBT
+ tanh

Ej − h

2kBT

)
, (3)

and where Ej =
√

ξ 2 + �2
j is the quasiparticle excitation

energy of the j band, ωD is the usual frequency cutoff, Nj (ξ )
is the DOS of the j band, T is the temperature, and kB is the
Boltzmann constant. In the case of a one-band superconductor,
one has a single gap equation (i = 1 and j = 1). In the
weak-coupling BCS approximation, the physics is dominated
by the cutoff induced by temperature or magnetic fields, and
ωD plays an irrelevant role apart from a renormalization factor,
and we can set ωD = D.

The total free-energy difference between the superconduct-
ing and the normal phase, derived in detail in [33], is given
by

Fs − Fn = kBT
∑
kσ i

ln
1 − f

(
Eσ

ki

)
1 − f

(∣∣ξσ
ki

∣∣)
+ 2

∑
|k|>kf

(ξki − Eki) +
∑

i

δi�i, (4)
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FIG. 1. (a) DOS of graphene (normalized to its value at the half-
bandwidth D) as a function of energy (normalized to D). (b) Critical
temperature at zero magnetic field (normalized to D) as a function
of the BCS pairing interaction (normalized to the critical interaction
value Vc) for several values of doping, indicated by points A, B, and
C in the top plot.

where Eki = Eσ
ki + σh is the quasiparticle excitation energy

in the absence of any applied magnetic field, and |ξσ
ki | =

|ξki | − σh is the kinetic energy of a normal electron in
band i, in state k, with spin σ , measured from the Fermi
energy.

Given that only a small strip of electron states around
the Fermi energy participates in the superconducting phase
in the weak-coupling limit of the BCS theory, it is usual to
consider a constant DOS in this region [N (ξ ) = N (0) = N ].
This approximation is no longer valid in graphene bands
since the Fermi energy coincides with the Dirac point, where
the DOS is zero, as shown in Fig. 1(a). The DOS plot of
Fig. 1(a) was taken by considering the standard tight-binding
Hamiltonian with in-plane nearest-neighbor hopping in the
graphene honeycomb lattice [36]. The energy is normalized
to the half-bandwidth D = 3t , where t is the hopping energy
constant of the honeycomb lattice.

III. SUPERCONDUCTIVITY IN GRAPHENE

In the case of a single graphene band, we can determine
from Eqs. (2) and (3) if a superconducting phase will be

present given different values of pairing strength V and doping
μ. If there is a superconducting phase, one should find a
positive finite Tc when � is set to zero. The results for three
different electron doping levels, μ/D = 0, μ/D = 0.15, and
μ/D = 0.34, are shown in Fig. 1(b) (the results are the same
if we choose to hole dope the graphene band). In undoped
graphene, there is a critical value of the pairing strength, which
we call Vc, above which the system is a superconductor [6,7].
As soon as we start doping, this critical interaction goes to
zero, that is, for arbitrarily small V , Tc is nonzero (but very
small). For a fixed V , Tc increases with μ up to the van Hove
singularity energy [point C in Fig. 1(a)], reflecting the BCS
dependence of Tc on the DOS around the Fermi energy. The
curves in Fig. 1(b) share the same asymptotic behavior for
Tc ∼ � � μ.

The distinct DOS profile of graphene shown in Fig. 1(a),
and in particular its semimetallic nature, is responsible for
new features in the superconducting phase when an in-
plane magnetic field is applied. The in-plane magnetic field
versus temperature superconducting phase diagram of a single
graphene sheet for V = 1.03Vc, where Vc/D = 0.0058, and
several values of chemical potential, μ/D = 0, μ/D = 0.15,
and μ/D = 0.34 [points A, B, and C in Fig. 1(a), respectively],
are shown in Fig. 2(a). The general behavior of the phase
diagram for the three cases follows closely the one described in
the Introduction for typical one-band superconductors, namely
having a FOT curve between superconducting and normal
phase at low temperatures, with its associated metastability
region and becoming a SOT curve above some tricritical
temperature in the high-temperature region of the phase di-
agram [29,30]. There are, however, two important differences:
the area of the normalized metastability region is not constant,
as in typical weak coupling one-band superconductors [30].
This area becomes very small (it vanishes as V goes, from
above, to the critical interaction Vc) as doping goes to zero
(that is, as the Fermi level approaches the Dirac point).
Furthermore, there is not a universal value for the tricritical
temperature, which can take values T � < 0.56Tc0, becoming
smaller as μ → 0 [see Fig. 2(a) (I)]. In the undoped case of
Fig. 2(a) (I), the region of metastability is very narrow and
becomes much larger for the intermediate doping level, at
Fig. 2(a) (II), achieving its maximum width when the doping
is such that the Fermi energy coincides with the van Hove
singularity, as in Fig. 2(a) (III), as predicted in [31]. The
evolution of the zero-temperature width of the metastability
region with doping becomes more clear in Fig. 2(b), where
it is shown for three values of the pairing strength: V =
0.78Vc, V = Vc, and V = 1.03Vc. For the latter two cases, the
zero-temperature width of the metastability region increases
sharply at low doping and nearly saturates at intermediate
dopings, reaching its maximum value when the doping factor
shifts the Fermi level to the van Hove singularity, as can be
seen in Fig. 2(b). For V = Vc, the width is zero for μ = 0.
In contrast, for V = 1.03Vc, the width is finite everywhere,
even when μ = 0. In the first case, i.e., for V = 0.78Vc the
metastability region curve has a similar behavior to the other
two cases, however in this case the low μ behavior implies
very low critical fields outside the numerical range of our
study.
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FIG. 2. (a) In-plane magnetic field [normalized to the zero-temperature superheating field hsh(0)] vs temperature [normalized to the
zero-field critical temperature Tc(0)] phase diagram of graphene, for (I) μ/D = 0, (II) μ/D = 0.15, and (III) μ/D = 0.34 for V =1.03Vc. For
μ = 0, the metastability region (yellow shaded area) is very narrow, and with doping, from (I) to (III), its normalized width increases as the
Fermi energy is shifted away from the Dirac point. (b) Zero-temperature width (normalized to the zero-temperature critical field) behavior of
the metastability region with doping, for V = 0.78Vc, V = Vc, and V = 1.03Vc. The width is zero at μ = 0 for V = Vc, but it increases sharply
for small μ. For V = 0.78Vc, low μ implies very small critical fields and temperatures, these values being out of the numerical range of our
study and consequently not shown in the figure.

IV. INTERCALATED GRAPHITE UNDER IN-PLANE
MAGNETIC FIELDS

As we mentioned in the Introduction, superconductivity
was found in GICs several decades ago. Since these com-
pounds have a graphene-like band in the band structure, it
is natural to ask how much of the behavior shown in the
previous section can be observed in these compounds. A
simple approach one can use to address superconductivity in
highly anisotropic GICs, while still preserving the essential
characteristics of real materials, is a two-band model in which
one of the bands is treated as a graphene-like band and the
other as a generic 2D metallic band. Highly anisotropic GICs
are primarily stage-2, which, by definition, are composed of
intercalated graphene bilayers. The DOS profile of graphene
bilayers is different from that of a single graphene sheet
of Fig. 1(a) [37] due to the splitting of the van Hove
singularity and to a slight modification around the Fermi
energy. Assuming that the energy scale of these features
is much smaller than the GIC superconducting gaps, these
differences can be neglected, i.e., one can assume the DOS
shown in Fig. 1(a) even in the case of stage-2 GICs.

In what follows, the metallic interlayer and graphene-like
bands are labeled bands 1 and 2, respectively. The values
considered for the matrix of potentials, necessary to find the
superconducting gaps via Eq. (2), are(

V11 V12

V21 V22

)
N1(0) →

(
0.2 0.008

0.008 V22

)
, (5)

where V11 is the intraband potential of the metallic interlayer
band, V22 is the intraband potential of the graphene-like band,
V12 = V21 is the interband potential that couples the two bands,
and N1(0) is the density of states of the metallic band at the
Fermi energy. The relation between the density of states of the
graphene-like band and the metallic interlayer band is set by
the condition N2(D) = 1.24N1(0), where N2(D) is the density
of states of the graphene-like band at the band edge. To simplify

the notation, we will drop the N1(0) term when indicating
interaction values.

The existence of a finite interband coupling implies that
the graphene-like band becomes superconducting (has a finite
superconducting gap) for any value of V22, even when the
Fermi energy coincides with the Dirac point energy of the
graphene-like band. Thus, there is not a critical value of
the graphene-like intraband coupling as in the case of the
isolated one-band graphene superconductor. This reflects the
Josephson tunneling of Cooper pairs from the metallic band
(this is similar to the effect of an external magnetic field
in a paramagnetic system) and it is also the justification
for the existence of a single critical superconducting tem-
perature in the case a two-band superconductor with two
metallic bands. However, a new critical intraband coupling
Vc2 for the graphene-like band can be defined, associated
with the appearance of a second metastability region in the
superconducting phase of the in-plane magnetic field versus
temperature phase diagram. This fact can be understood by the
fact that the second metastability region reflects the existence
of intrinsic pairing in the graphene-like band, and this requires
a finite intraband interaction. This second metastability region
is always present in a two-band superconductor when both
bands have constant DOS at the Fermi energy and the interband
coupling is weak. In the case studied here, for small V22, the
second metastability region is not present, reflecting precisely
the absence of intrinsic superconductivity in an isolated (weak
coupled) graphene layer in the weak interband coupling limit.
Since Vc2 depends on V11, V22, and V12, we do not normalize
these interactions to a critical interaction. Instead, we choose
to normalize the interactions to N1(0), as stated above.

As before, by changing the doping factor μ, we are shifting
the Fermi level in the graphene-like band, therefore changing
the profile of N2(ξ ) in Eq. (3), whereas in the case of the
metallic band, as usual in BCS theory, we consider a constant
DOS, N1(ξ ) = N1(0). First, we study our two-band model
for μ/D = 0, that is, the Fermi level coincides with the Dirac
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FIG. 3. In-plane magnetic field [normalized to the zero-temperature supercooling field hsc(0)] vs temperature [normalized to the zero-field
critical temperature Tc(0)] phase diagram of intercalated graphite (using a two-band BCS description) for (a) V22 = 0.18, (b) V22 = 0.24,
and (c) V22 = 0.26. The metastability region associated primarily with intraband pairing in the metallic (graphene) band is shown in the blue
(yellow) shaded area. From (a) to (c) the phase diagram changes from that of a typical one-band to that of a typical two-band superconductor
phase diagram. In the intermediate case (b), unusual behavior occurs: in the zoomed plot of (b) one can see, at a temperature T ≈ 0.175Tc, that
the FOT (dashed green curve C-J ) splits into an upper SOT (solid green curve J -I ) and an additional lower FOT (dashed green curve J -H ).
The labeled points correspond to those in Figs. 4 and 5(a).

point energy of the graphene-like band DOS for three different
cases: V22 = 0.18, V22 = 0.24, and V22 = 0.26, these values
being, respectively, smaller, slightly larger, and larger than
Vc2, where Vc2/D = 0.006. The in-plane magnetic field versus
temperature phase diagram for these three cases is shown in
Fig. 3, and the corresponding zero-temperature gap solutions
and the total free-energy difference between superconducting
and normal phase as functions of the magnetic field is shown
in Figs. 4(a), 4(e), and 4(i), respectively.

In the case of V22 = 0.18, the phase diagram obtained,
Fig. 3(a), has the same behavior as that of a single-band
BCS superconductor [only one metastability zone (blue shaded
area) and one FOT (green curve, which starts at the point C)
are present in the phase diagram]. This behavior can be con-
firmed from the zero-temperature band-gap solutions shown in
Fig. 4(a), where one may observe, for each band, the presence
of only one reentrance in the band-gap solutions and no cross-
ing in the free-energy difference between superconducting and
normal phase. This result implies that V22 < Vc2. Even though
the graphene-like band is also superconducting (because �2

is finite), since �2 is much smaller than �1, we may say that
the superconductor behavior of this system is due to intrinsic
superconducting correlations of the metallic interlayer band.

When one increases the graphene-like band intraband
interaction to a value a little higher than Vc2 (i.e., the case
of V22 = 0.24), the influence of the graphene-like band is
no longer negligible, and even though there is no additional
low-temperature transition between superconducting phases,
an extra metastability region, associated with the graphene-like
band, appears (small yellow shaded region delimited by points
D, E, and J in Fig. 3). This behavior can be checked
in Fig. 4(e), where one observes that there is no crossing
in the free energy, but one observes the presence of two
reentrances (points A-B and D-E) in the zero-temperature
band-gap solutions. Since an additional FOT should be present
in the phase diagram for it to be considered one of a typical
two-band superconductor, for V22 � Vc2 the system can be

seen as an intermediate case between a one-band and a
two-band superconductor. Furthermore, for temperatures in
the 0.175Tc < T < 0.3Tc range, the system exhibits a rather
unusual feature. One may see in the zoomed plot of Fig. 3 that
the low-temperature FOT (dashed green curve that starts at
point C) splits, at an intermediate temperature (point J ), into
an upper SOT (solid green curve J -I ) between the normal and
the superconducting phase and into a lower FOT (dashed green
curve J -H ) that reflects a transition between superconducting
phases. This is understood as a consequence of the crossing
of the metastability regions associated with the graphene-like
band and the metallic band as the graphene-like intraband
pairing interaction is increased. The bifurcation occurs because
the metastability region of the graphene-like band is much nar-
rower than that of the metallic band. These two transitions are
not the continuation of the low-temperature FOT. In fact, in this
case the SOT is the continuation of an additional supercooling
field at low temperature (dashed blue curve that goes from
point E to point J ). We can confirm the splitting of the FOT by
analyzing the band-gap solutions and the free energy, for T =
0.26Tc, shown in Fig. 5(a). On the one hand, the band-gap so-
lution curves go smoothly to zero (point I ) at large fields (i.e.,
a SOT occurs), but on the other hand, the crossing in the free
energy (point H ) occurs before the SOT between the supercon-
ductor and the normal phase (i.e., an additional FOT occurs).

It is expected that by increasing V22 even more, the
superconducting phase diagram will finally change into a
typical two-band superconductor phase diagram. Indeed, for
V22 = 0.26, two FOTs (dashed green curves that start at C

and F ) and the two respective metastability regions (points
A-B and D-E, respectively) are present at low temperature in
the phase diagram, Fig. 3(c). One of them corresponds to the
superconducting to normal transition (yellow shaded area) and
is due to the graphene-like band, and the other (blue shaded
area), which is due to the metallic interlayer band, corresponds
to an FOT between different superconducting phases. The
additional low-temperature FOT between superconducting
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FIG. 4. Zero-temperature solutions of the coupled gap equations (normalized to the maximum gap) and the total free-energy difference
between the superconducting and the normal phases (normalized to its zero-field value) of intercalated graphite. The in-plane magnetic fields
are normalized to the zero-temperature critical field hc(0). The first, second, and third columns correspond to V22 = 0.18 (a)–(d), V22 = 0.24
(e)–(h), and V22 = 0.26 (i)–(l), respectively, and the first to the fourth rows correspond to μ = 0, μ/D = 0.05, μ/D = 0.15, and μ/D = 0.34,
respectively. For V22 = 0.18, with increasing doping, the phase diagram changes from that of a typical one-band [(a)] to that of a two-band
superconductor [(d)], as an additional reentrance (curve D-E) and FOT (point G) appear in the superconducting phase diagram. In (e), even
though one identifies two reentrances, an additional FOT between superconducting phases only appears when we dope the graphene-like band
(point F ). In (i), the phase diagram shows typical two-band superconductor behavior.

phases can be observed in the zero-temperature band-gap
solutions, Fig. 4(i), where the crossing in the free energy, at
point C, occurs before it changes its sign at point F .

The profile change of the phase diagram from that of a
one-band to that of a two-band superconductor due to the
increase of V22 is shown in detail in Figs. 6(a)–6(e) for,

IH

1

2

s

F

G

(a)

FIG. 5. (a) Solutions of the coupled gap equations and the total free-energy difference between the superconducting and the normal phases
of a two-band intercalated graphite superconductor at T = 0.26Tc for V22 = 0.26 and a zoomed region showing a crossing in the free energy
before the SOT to the normal phase. The labeled points correspond to those in Fig. 3.
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FIG. 6. Zero-temperature gap solutions for intercalated graphite for (a) V22 = 0.26, (b) V22 = 0.262, (c) V22 = 0.266, (d) V22 = 0.268, and
(e) V22 = 0.28. Other parameters are as follows: μ/D = 0, V11 = 0.28, and V12 = 0.008. In (c), a small additional reentrance arises in the
gap solution curves at the supercooling field associated with the metallic interlayer band. This reentrance widens as we increase V22, and an
additional FOT between superconducting phases occurs in (e) at point A.

respectively, V22 = 0.26, V22 = 0.262, V22 = 0.266, V22 =
0.268, and V22 = 0.28, and fixed parameters V11 = 0.028 and
V12 = 0.008. At V22 = 0.266 [Fig. 6(c)], a small reentrance
appears in both gap solution curves and grows as we increase
V22. An additional FOT between superconducting phases
occurs when V22 = 0.28 [Fig. 6(e), point A]. An interesting
feature of these plots is that the additional reentrance arises at
the supercooling field associated with the metallic interlayer
band. This can be understood as a natural consequence of going
from the gap curves of a one-band superconductor [which
have only one reentrance at zero temperature; see Figs. 4(a)
and 4(b)] to the typical behavior of a two-band superconductor
where the superconducting gaps show two reentrances at
zero temperature [see Figs. 4(c)–4(e)]. Furthermore, using a
different V11 from the case of Fig. 4, we show that Vc2 depends
on V11. Comparing the values of V11 and Vc2 between the
case of Fig. 4 (V11 = 0.2, Vc2 = 0.24) with that of Fig. 6
(V11 = 0.28, Vc2 = 0.266), one concludes that an increase of
V11 leads to an increase of Vc2.

We conclude that increasing V22 from V22 < Vc2 to V22 >

Vc2 causes the system to behave as a typical two-band
superconductor. Let us now consider what happens if we fix
V22 and instead dope the graphene layer. The zero-temperature
gap solutions for the V22 = 0.18, V22 = 0.24, and V22 = 0.26
cases for small doping, μ/D = 0.05, intermediate doping,
μ/D = 0.15, and large doping, μ/D = 0.34, are shown in
Figs. 4(b)–4(d), 4(f)–4(h), and 4(j)–4(l).

In the case of the left column [Figs. 4(a)–4(d)], increasing
μ allows for the appearance of the additional reentrance [see
Fig. 4(c), points D and E]. However, the crossing in the free-
energy difference between the superconducting and the normal
phase, at point F , occurs after it changes its sign. For large
μ, Fig. 4(d), the system finally shows the additional transition
between superconducting phases since the crossing in the free-
energy difference between the superconducting and the normal
phase, at point G, occurs before it changes its sign. Thus, in
this case, the phase diagram behaves like that of a typical
two-band superconductor. In the case of the middle column
[Figs. 4(e)–4(h)], due to the fact that V22 � Vc2, a small μ

is enough to obtain a phase diagram such as that of a two-
band superconductor since one observes the appearance of
the additional FOT [Fig. 4(f), point F ]. In the case of the
right column [Figs. 4(i)–4(l)], one observes the increase of

the metastability region width, associated with the graphene-
like band, with increasing doping [Figs. 4(j)–4(l)]. In general,
doping the graphene-like band causes a change in the GICs
phase diagram from a one-band superconductor-like phase
diagram to a two-band superconductor-like phase diagram.
Furthermore, when the metastability region associated with the
graphene-like band is present, its normalized width increases
with doping, a feature that is expected when taking into account
what we concluded in the previous section.

V. CONCLUSION

In conclusion, we studied metastability regions in the
phase diagram of superconducting graphene and intercalated
graphite superconductors under an in-plane magnetic field in
both doped and undoped cases using a simple BCS multiband
approach. In the case of a single undoped graphene band, a
critical intraband interaction is required for a superconducting
phase to be present in undoped graphene, but this critical
intraband interaction vanishes for any finite doping. We
showed that the introduction of doping in a graphene band
also affects the behavior of the metastability region of the
in-plane magnetic field versus temperature phase diagram. The
normalized area of the metastability region and the tricritical
temperature value become smaller as doping goes to zero, in
contrast with the case of a doped metallic band.

We have also studied the in-plane magnetic field ver-
sus temperature phase diagram of an intercalated graphite
superconductor, modeled as a two-dimensional two-band
superconductor with one graphene-like band and a metallic
interlayer band. In this case, finite interband pairing interac-
tions imply the existence of a superconducting phase with
finite superconducting gaps in both bands, that is, there is
no critical intraband interaction for the graphene-like band.
However, we found a new intraband critical interaction for the
graphene-like band associated with the appearance of a second
metastability region in the phase diagram. The phase diagrams
obtained for a smaller and larger intraband interaction (of the
graphene-like band) than the critical interaction are those of a
typical one-band and two-band superconductor, respectively.
When the intraband interaction of the graphene-like band
is just slightly larger than this critical interaction, new
features are observed in the phase diagram, such as the
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absence of the low-temperature first-order transition between
superconducting phases and at an intermediate temperature,
and the bifurcation of the low-temperature first-order transition
curve into a first-order transition between superconducting
phases and a second-order transition between the normal
and the superconducting phase. The second metastability
region arises with increasing graphene-like band intraband
interaction, emerging at the zero-temperature supercooling
field associated with the metallic interlayer band.

The phase diagrams of Fig. 3 provide a background against
which future experimental data concerning superconductivity
on GICs should be interpreted. If future measurements of
superconducting in-plane critical fields in GICs find two
low-temperature first-order transitions, this would imply that
both the graphene-like band and the metallic interlayer band
participate in the superconducting phase [17–24]. On the other

hand, the presence of only one low-temperature first-order
transition would not, by itself, conclusively disprove a two-
band description in favor of a one-band description [15,16]
since, as we showed in Fig. 3(a), both bands can be
superconducting even if the in-plane magnetic field versus
temperature phase diagram is that of a typical one-band
superconductor.
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