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Reduction of thermal conductance by coherent phonon scattering in two-dimensional phononic
crystals of different lattice types
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The impact of lattice type, period, porosity, and thickness of two-dimensional silicon phononic crystals on the
reduction of thermal conductance by coherent modification of phonon dispersion is investigated using the theory
of elasticity and the finite element method. Increases in the period and porosity of the phononic crystal affect
the group velocity and phonon density of states and, as a consequence, reduce the in-plane thermal conductance
of the structure as compared to the unpatterned membrane. This reduction does not depend significantly on the
lattice type and thickness of phononic crystals. Moreover, the reduction is strongly temperature dependent and
strengthens as the temperature is increased.
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I. INTRODUCTION

Phononic nanostructures are regarded as possible candi-
dates for applications involving phonon management [1–3]
due to the possibility to manipulate the flux of vibrational
energy (i.e., heat or sound) by band engineering. Indeed, on
one hand, phononic crystals may exhibit complete phononic
band gaps, i.e., regions of frequency where the propagation of
elastic waves is forbidden in any direction; the physics of this
phenomenon has been investigated both theoretically [3–9]
and experimentally [5,10] in various types of two-dimensional
(2D) phononic crystals. On the other hand, Bragg diffraction
and local resonances in the periodic media result in the
flattening of branches in phonon dispersion in a wide range
of frequencies. This change in phonon dispersion leads to
changes in the group velocities of phonons [11–13] and the
density of states (DOS) [11,13–15]. These effects originate
from the wave nature of phonons and are associated with
coherent scattering, which is the process when phonons
preserve their phase after a scattering event, in contrast
to various incoherent scattering processes when phonons
do not preserve their phase. Such modifications of phonon
dispersion are thought to have the ability to reduce the thermal
conductivity of nanostructures in addition to reduction by
incoherent scattering mechanisms, such as surface [16–18],
impurity [19], and umklapp [17,20] scattering processes.
Recent experiments demonstrated very low values of thermal
conductivity at room temperature in freestanding thin-film
silicon nanostructures with 2D square [14,21] and hexagonal
[22] arrays of holes. To explain these low values of thermal
conductivity, Dechaumphai and Chen [12] developed a model
that takes into account both coherent and incoherent scattering
mechanisms, and Lacatena et al. [23] used a molecular
dynamic approach, whereas Jain et al. [24] and Ravichandran
and Minnich [25] argued that coherent scattering is unlikely
to appear at room temperature and some of these experimental
results could be explained by treating phonons as particles with
bulk properties. However, Zen et al. [11] demonstrated that, in
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2D phononic structures, at sub-Kelvin temperatures, thermal
conductance is totally controlled by coherent modifications
of phonon dispersion, whereas incoherent mechanisms play
a negligible role. An overview of recent theoretical and
experimental investigations shows that coherent scattering
of phonons can play an important role in heat transport,
whereas its dependence on the geometry and temperature of
the structure remains a disputable matter.

In this study, we use the theory of elasticity and the
finite element method (FEM) to investigate theoretically the
impact of the phononic structure design on the reduction of
the group velocity and DOS in the in-plane directions. We
demonstrate the dependence of thermal conductance reduction
on the period, thickness, radius-to-period ratio, and lattice type
of the phononic crystal structure and discuss the temperature
dependence of this effect.

II. SIMULATION OF PHONONIC CRYSTALS

We simulate infinite periodic arrays of holes in thin free-
standing silicon membranes [Fig. 1(a)] with various periods
(a), thicknesses (h), and hole radii (r). An infinite structure is
simulated by considering a three-dimensional unit cell of finite
thickness with Floquet periodic boundary conditions applied
on the x−y plane [6]. At the low-temperature limit, the wave-
lengths of phonons are longer than the atomic scale, so we can
use classical elasticity theory to compute the phonon modes.
We use FEM, implemented by COMSOL MULTIPHYSICS

R© v4.4
software, to calculate numerically the phonon dispersion ω(k)
from the elastodynamic wave equation,

μ∇2u + (μ + λ)∇(∇ · u) = −ρω2u, (1)

with u as the displacement vector, ρ = 2329 kg m−3 as the
mass density, and λ = 84.5 and μ = 66.4 GPa as the Lamé
parameters of silicon. First we calculate the eigenfrequencies
for the wave vectors at the periphery of the irreducible
triangle of the first Brillouin zone (BZ) [Fig. 1(b)], and then
we evaluate the eigenfrequencies in the interior of the first
BZ as an extrapolation of the values at the periphery within
the triangle [Fig. 1(c)] [26]. As a reference structure we use
an unpatterned membrane of the same thickness in which
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FIG. 1. (a) Scheme of the simulated structure, and the first BZ with high-symmetry points: �(0,0), X(π/a,0), and M(π/a,π/a). (b)
Unsorted band diagram of the structure with a = 160 nm, r/a = 0.45, and h = 80 nm plotted at the high-symmetry points. (c) Sorted band
diagram plotted in the interior of the irreducible triangle of the first BZ. Spectra are shown for (d) the average group velocity, (e) DOS, and (f)
heat flux.

case the dispersion is obtained from analytic Rayleigh-Lamb
equations [27]. To study the in-plane heat transport through
the structure, we calculate the heat flux spectra Q(ω,T ) at a
given temperature (T ) as

Q(ω,T ) ∝
∑
m

∫ FBZ

0
�ωm|�vm(k)|f (ωm,T )d�k, (2)

where vm is the group velocity calculated with close attention
to the band intersections and f is the Bose-Einstein distribution
[28]. The integrals are evaluated over the entire first BZ for
each mode (m) and then summed. Figures 1(d)–1(f) show
typical spectra of the average group velocity, DOS, and heat
flux calculated from the obtained band diagram. In this paper
the average group velocity at a given frequency is calculated
as an average between group-velocity values obtained for
different modes and in all in-plane directions at this frequency.

To verify the validity of our calculation, we simulated the
same structures as those studied in the literature [4,6,12,29] and
found obtained band diagrams and group-velocity spectra to
be in agreement with the literature. Moreover, we found good
agreement with heat flux spectra and thermal conductance
results reported by Zen et al. [11] and Maasilta and Kühn [30],
which proves that extrapolation of the eigenfrequencies in the
interior of the first BZ and imperfection of our band sorting
algorithm do not produce significant inaccuracy.

III. IMPACT OF THE DESIGN

In this paper we mainly study phononic crystals of the same
dimensions and lattice types as those studied experimentally
in our recent work [36], i.e., 80-nm-thick square, hexagonal
[Fig. 2(a)], and honeycomb [Fig. 2(b)] lattice structures with
periods of a few hundreds of nanometers. Figures 2(c) and 2(d)
show the corresponding phonon dispersions of hexagonal and
honeycomb lattices, respectively.

Despite the similarities between the lattices, the band
diagrams are completely different, yet the corresponding
spectra of the heat flux are quite similar [Fig. 2(e)], which show
that the density of bands in the band diagrams does not reflect
heat transport properties. Analyzing the appearance of the
phononic band gap in the different lattices, we found the same

trends as those known from the literature [4,8,9,11,29,31]: The
width of the band gap increases as a function of the r/a ratio,
whereas, as a function of the h/a ratio, the widest band gaps
are expected at around the values of 0.5 and 1. However, the
band gap alone may play only a limited role in the suppression
of thermal conductance at temperatures above the sub-Kelvin
range as is evident from the heat flux spectra [Fig. 2(e)]: The
region covered by the band gap is rather small even at 0.5 K as
compared to the whole range of frequencies, and structures
with and without a band gap do not exhibit a significant
difference in thermal conductance reduction as we will see
in the following sections. For this reason, we focus our study
on the changes in the group velocity and DOS.

To illustrate how coherent modifications of phonon dis-
persion impact heat transport, we consider two square lattice
nanostructures with the same thickness (80 nm) and r/a ratio
(0.4) but different periods (80 and 320 nm). Figure 3(a)
demonstrates that both phononic structures show significant
reduction in the group velocity as compared to the unpatterned
membrane, but this reduction is larger in the structure with a
longer period (a = 320 nm). This reduction is a direct con-
sequence of band flattening in phononic crystals [11,12,32].
The DOS of the phononic structures are similar to that of
the membrane. Yet again, the structure with a = 320 nm
demonstrates a lower DOS, whereas the DOS of the structure
with a = 80 nm even exceeds that of the membrane in the
low-frequency part [Fig. 3(b)]. As a consequence, the heat
flux, which is proportional to the product of the group velocity
and DOS, shows a reduction for both phononic structures as
compared to the membrane, except for the low-frequency part
[13] [Fig. 3(c)]. This reduction is stronger in the structure
with a longer period due to the lower DOS and slightly lower
group-velocity spectra. The same reduction is observed also
in hexagonal and honeycomb lattices. This result is consistent
with recent experimental and theoretical data where the heat
flux in SiN phononic structures was also reduced significantly
as the period was increased [11].

To compare quantitatively structures with different designs,
we evaluate the thermal conductance of the structure as [11]

G(T ) ∝ 1

2π2

∑
m

∫ FBZ

0
�ωm

∣∣∣∣dωm

d�k

∣∣∣∣∂f (ω,T )

∂T
d�k. (3)
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FIG. 2. Schemes of the structures and first BZs with high-
symmetry points for (a) a hexagonal lattice: �(0,0), J (4π/3a,0),
and X(π/a, π/

√
3a) and (b) honeycomb lattices: �(0,0),

J ′(4π/3
√

3a,0), and X′(π/
√

3a, π/
√

3a). The band diagrams for
(c) hexagonal, (d) honeycomb structures, and (e) the heat flux spectra
in square, hexagonal, and honeycomb structures at 0.5 K (r/a = 0.45,
a = 160, and h = 80 nm).

Note that this is a more correct approach than the one used
in our previous work [13] where the thermal conductivity
data are mistaken by 10%–20%. In the present paper we
mostly consider relative thermal conductance given by the
GPnC/GMembrane ratio, where GPnC and GMembrane are the
thermal conductance of the phononic crystals and a membrane,
respectively. Figure 4 shows the relative thermal conductance
in phononic structures of different designs. All three lattices
demonstrate decreasing trends as a function of the r/a ratio
[Fig. 4(a)]. This fact is mostly explained by the reduction
in group velocity due to the band flattening as the hole size
is increased [12], although the reduction of DOS also plays a
role. Therefore, the strongest reduction in thermal conductance
takes place in the structures with the highest r/a ratio possible
since it is optimal for both coherent and incoherent [16,18,24]
scattering mechanisms. This conclusion is also supported by
recent molecular dynamics calculations [23].

FIG. 3. Spectra of (a) the average group velocity, (b) the DOS,
and (c) the heat flux at 0.5 K, calculated for the membrane (black) and
square lattice phononic structures with periods of a = 80 (red) and
a = 320 nm (blue), and r/a = 0.4 for both structures. The thickness
of all structures is h = 80 nm.

As a function of the period (with constant r/a), the
reduction of thermal conductance is increased for the structures
of all lattice types [Fig. 4(b)]. This dependence is explained
mostly by the change in phonon density of states: Increases
in the period lead to a shift of the bands to lower frequencies.
Such a reduction of thermal conductance with the period is
in agreement with recent experimental observations on 2D
phononic crystals [11,33] as well as with experimental [34]
and theoretical [35] works on one-dimensional superlattices.
An interesting consequence of this effect is that phononic
structures with a relatively small period (a < 60 nm) can
even demonstrate an enhancement of the thermal conductance,
which is studied in detail in Ref. [13]. These data imply that in
the presence of coherent scattering, a reduction of the period
does not result necessarily in a more efficient phonon scattering
as expected from incoherent surface scattering due to an
increase in the surface-to-volume ratio [36] or porosity [16,21].

Next, we study the dependence of thermal conductance on
the thickness of the structures. For the unpatterned membranes
this dependence has already been investigated theoretically
in the literature [30,33,37]. Here we study the thickness
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FIG. 4. Relative thermal conductance in phononic structures with square (red), hexagonal (blue), and honeycomb (black) lattices, calculated
at 0.5 K as (a) a function of r/a ratio with constant thickness h = 80 and period a = 160 nm, (b) a function of the period with constant thickness
h = 0.4 and period a = 160 nm, and (c) a function of the thickness with constant r/a = 0.4 and period a = 160 nm. Enlarged data points
indicate structures with a phononic band gap.

dependence of the thermal conductance reduction by phononic
crystals. This reduction is not changing significantly as the
thickness is changed. The actual values of thermal conductance
in both phononic crystals and membranes are increasing with
thickness, but the GPnC/GMembrane ratio remains approximately
constant, decreasing only slightly as shown in Fig. 4(c).
This result is explained by the fact that whereas changes in
the period and radius-to-period ratio affect only phononic
structures, change in thickness affects the dispersion of both
the phononic structure and the unpatterned membrane by
scaling the frequencies as 1/h, so the relative changes in the
dispersion of phononic structure remain approximately the
same. Therefore, an increase in thickness leads to only slight
changes in the GPnC/GMembrane ratio caused by the shift of
modes to the low-frequency part, and this consequently leads
to an increase in the role of high-frequency modes where the
reduction of thermal conductance is stronger.

As far as different lattices are concerned, all three lattices
demonstrate very similar trends of thermal conductance reduc-
tion. Yet, the thermal conductance in the structures with the
same radius, period, and thickness but different lattices seems
to be lowest in honeycomb and highest in hexagonal structures,
although as the period is increased this difference becomes
negligible. This can be explained by the fact that a major
difference in heat flux spectra appears at low frequencies,
whereas high-frequency parts are rather similar [Fig. 2(e)].
However, this finding implies that the choice of the lattice
type can be made in order to achieve the best mechanical
or electrical properties or the strongest incoherent surface
scattering.

IV. IMPACT OF TEMPERATURE

Since thermal conductance depends on the Bose-Einstein
distribution, its reduction in phononic crystals can be affected
by temperature as more and more high-frequency bands
become occupied at higher temperatures. Figure 5 shows the

temperature dependence of the reduction of thermal conduc-
tance in phononic crystals as a function of temperature. At the
low-temperature limit, the thermal conductance of phononic
crystals approaches, and, in the case of a short period, even
overcomes that of the membrane (i.e., GPnC/GMembrane > 1).
This reflects the thermal conductance boost effect [13]: At
temperatures of about 0.1 K, only the first few bands are
occupied, and these bands in the phononic crystals have
DOS higher than that in the membrane [Fig. 3(b)], whereas
the reduction of group velocity in this region is moderate
[Fig. 3(a)]. However, as the temperature is increased, the
reduction of thermal conductance strengthens for the structures
of all periods. This is caused by an increasing impact of the
bands in the high-frequency range where the band flattening is
very strong, so the heat flux spectrum is reduced much stronger
than at low temperatures as shown in the inset of Fig. 5.

FIG. 5. Relative thermal conductance in square lattice phononic
structures (h = 80 nm, r/a = 0.4) with different periods (a = 80,
160, and 320 nm) as a function of temperature. The inset shows the
reduction in heat flux spectra in phononic crystals with a = 80 and
320 nm as compared to the unpatterned membrane.
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On the other hand, the wave picture of phonons, discussed
in this paper, is relevant probably only at relatively low
temperatures when the thermal phonon wavelengths are com-
parable to the characteristic size of the structure [11,12,24].
Indeed, at room temperature, the phonon wavelengths are in
the 1–5-nm range [25,38], which is often comparable to the
surface roughness. But according to the formula of Ziman
[39]: p = exp(−16π3δ2/λ2), the wavelength (λ) should be
at least on the order of 100 nm to achieve a specularity
(p) of 0.5 for a surface roughness (δ) of a few nanometers.
So at room temperature the phonon boundary scattering is
mostly incoherent (or diffusive) [24,25], and wave interference
cannot develop. However, at low temperatures, thermal phonon
wavelengths become longer, and coherent phonon scattering
may play an important role. Zen et al. [11] demonstrated
that at sub-Kelvin temperatures it even can fully control the
phonon transport, whereas Marconnet et al. [40] estimated that
coherent scattering significantly impacts thermal conductivity
in nanoscale structures only below 10 K. These estimations
are in agreement with our recent experimental studies where
signs of coherent scattering were found only at temperatures
below 7 K and the reduction of thermal conductivity caused
by this scattering was about 15% at 4 K [36,41]. Therefore,
since on one hand the reduction due to coherent scattering
strengthens with temperature, whereas on the other hand
coherent scattering itself becomes weaker, one may expect
the existence of an optimal temperature (related to the surface
roughness of a given structure) at which the reduction of
thermal conductance reaches its maximum. This idea seems to
in agreement with recent experimental observations [11,33]

where the reduction of thermal conductance in phononic
crystals strengthened according to the theoretical predictions
only up to certain temperatures (around 0.5 K) and then
weakened again. Thus, the applications of coherent phonon
control in phononic crystals are probably limited to low-
temperature devices, such as transition edge sensors [33].

V. CONCLUSION

We have investigated theoretically the impact of structure
design on the efficiency of coherent phonon scattering in 2D
phononic crystals. Our results demonstrate that the reduction
of thermal conductance by phononic nanopatterning becomes
stronger as a function of the period and radius-to-period ratio,
whereas the thickness of the structure has much weaker impact.
As far as different lattice types are concerned, the structures
of all three lattices demonstrate very similar values and trends
of the reduction of thermal conductance, yet slightly stronger
reduction is found in the honeycomb lattice and the weakest
in the hexagonal lattice. Our study also demonstrates that the
reduction of thermal conductance is temperature dependent
and significantly strengthens with temperature, yet in realistic
nanostructures coherent scattering plays an important role only
at relatively low temperatures.
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