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Ground state of the holes localized in II-VI quantum dots with Gaussian potential profiles

M. A. Semina, A. A. Golovatenko, and A. V. Rodina
Ioffe Institute, 194021, St. Petersburg, Russia

(Received 3 August 2015; revised manuscript received 21 December 2015; published 12 January 2016)

We report on a theoretical study of the hole states in II-IV quantum dots of spherical and ellipsoidal shapes,
described by smooth potential confinement profiles that can be modeled by Gaussian functions in all three
dimensions. The universal dependencies of the hole energy, g factor, and localization length on the quantum
dot barrier height, as well as the ratio of effective masses of the light and heavy holes are presented for the
spherical quantum dots. The splitting of the fourfold degenerate ground state into two doublets is derived for
anisotropic (oblate or prolate) quantum dots. Variational calculations are combined with numerical ones in the
framework of the Luttinger Hamiltonian. Constructed trial functions are optimized by comparison with the
numerical results. The effective hole g factor is found to be independent of the quantum dot size and barrier
height and is approximated by a simple universal expression depending only on the effective mass parameters.
The results can be used for interpreting and analyzing experimental spectra measured in various structures with
quantum dots of different semiconductor materials.
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I. INTRODUCTION

Quantum dots (QDs), sometimes referred to as nanocrystals
(NCs) in literature, are systems with good prospects for
nanotechnology. Physically, the QDs are tiny semiconductor
nanoparticles, which are formed in various dielectric or
semiconductor matrices by different methods. Among them,
the basic ones are the chemical synthesis and epitaxy used
to fabricate, respectively, the colloidal and epitaxial QDs.
Depending on the used semiconductors and the fabrication
methods, QDs can have various shapes and sizes. Carrier
localization in QDs makes the interaction between charge
carriers more efficient as compared with bulk materials,
and many effects that are weak in bulk materials become
observable. Thus the development of new methods for the
calculation of the wave functions and energy spectra of charge
carriers is very important for designing QD structures.

The incentive to our study was the renewed interest in
II-VI QDs for various applications. In particular, the epitaxial
CdSe/Zn(S,Se) QDs have been successfully used as an active
region in laser heterostructures pumped optically or by an
electron beam [1,2]. Besides, they have been recognized
as promising candidates for room-temperature single-photon
emission and production of photon pairs due to strong carrier
confinement and distinct biexciton performance [3–5]. The
self-formation of these nanostructures takes place when a CdSe
insertion of a fraction monolayer (ML) thickness is deposited
within a Zn(S,Se) matrix. Previously, this insertion was
considered as a disordered quantum well, where nanoislands
with high Cd content, x, are formed within the matrix with
lower x [6,7]. Thorough transmission electron microscopy
(TEM) studies [8], however, have shown that the Cd content
in the Cd-rich nanoislands can be as high as 80% in the center,
decreasing towards the periphery, while the Cd concentration
in the surrounding area approaches 20% only. The average
lateral sizes of the nanoislands are about 5 nm, while the
sizes in the growth direction are somewhat smaller. These
findings make it possible to consider the nanoislands as
oblate ellipsoidal QDs. Such an asymmetric shape influences
the energy splitting of both exciton and biexciton states in

the single CdSe/ZnSe QD [9], which is important for the
generation of entangled photon pairs. The CdSe/Zn(S,Se)
structures exhibited long-lived electron spin coherence, related
likely to the three-dimensional localization potential [10].
Recently, it has been demonstrated that at a certain deposited
amount of CdSe the nanoislands can be quite isolated [11].
Importantly, the change of the concentration between the dot
and barrier regions in the epitaxial CdSe/Zn(S,Se) QDs is not
abrupt but gradual due to diffusion and segregation processes.

The II-VI QDs with such a gradual composition variation
are expected to demonstrate an improved radiative emis-
sion. Indeed, for a long time, the biexciton performance
of the chemically synthesized colloidal QDs was suffering
from a high rate of nonradiative Auger recombination. To
overcome this problem, colloidal CdSe-based nanocrystal
heterostructures with gradually changing composition were
synthesized and reported in Ref. [12]. The nonradiative Auger
processes are suppressed in such structures due to smoothing
of the confining potential [13–16]. Further progress in the
analysis of optical phenomena in the II-VI QDs and the
manufacturing of efficient nanoemitters of quantum light
requires an elaborated model description of quantum states
in the ellipsoidal QDs with a smooth potential profile. Among
a variety of theoretical methods, including atomistic tight-
binding [17,18] or pseudopotential calculations [19], and kp
theory, the latter provides a reasonable compromise between
accuracy and computational complexity. The kp method is
particularly suitable for nanostructures with a smooth potential
profile, where interface effects play a minor role.

In the most simple effective mass model of a nondegenerate
parabolic band, various kinds of confinement potentials for
QDs were theoretically studied: an abrupt potential with
infinite and finite barriers [20–25], a parabolic potential
[26,27], and various kinds of smooth potentials with finite
height [28–31]. The parabolic potential was also shown to be a
good approximation for the in-plane smooth profile of the
lens-shaped self-assembled QDs [32]. However, to describe
properly the energy spectra of the holes confined in QDs,
one has to take into account the complex structure of the va-
lence band. In widely used semiconductors (including II-VI),
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the top of the valence band is fourfold degenerate and has �8

symmetry and can be described by the Luttinger Hamiltonian
[33]. The fine energy structure of the hole states defines
the selection rules for interband transitions. Moreover, the
Zeeman splitting in the external magnetic field is determined
by the light- and heavy-hole splitting and mixing [25,34,35].
Therefore understanding the characteristic properties of the
hole states in QDs is important for designing structures with
the required optical properties.

For the spherical NCs [36–38] and the disklike QDs [25]
modeled by an abrupt potential with an infinite barrier, it was
shown that the mixing of the heavy- and light-hole states
can significantly modify the energy spectrum and the wave
function of the hole ground state, as well as its splitting.
which can be caused by the anisotropy of the QD shape, the
intrinsic crystal field, and an applied magnetic field [39]. Later,
a full multiband k p model was developed for spherical NCs
[40] and NC heterostructures with abrupt potential barriers
[41], as well as for the pyramidal and disk-shaped epitaxial
QDs [42–44]. Several models of parabolic potential with
the valence-band degeneration taken into account were used
for QDs of different shapes [35,45,53], not only within the
effective mass approach but also as a modeling tool along
with more elaborated atomistic calculations [46]. However,
to the best of our knowledge, QDs with smooth but finite
height potential confinement in all three spatial dimensions
have been considered only within the single-band effective
mass approximation so far. This simplified approximation can
hardly be used for both epitaxial CdSe/ZnSe and colloidal
CdSe/CdS QDs with a gradually varying composition [7,8,12].

In the present paper, we consider QDs with a shape that
is close to either the spherical or the ellipsoidal one, and
a smooth potential profile, which can be described by the
Gaussians in all three spatial directions. We focus on the
characteristics of a hole localized in such a potential taking into
account the complex valence band structure in the framework
of the Luttinger Hamiltonian. It is shown that the properties
of the hole localized in potential with smooth profile, e.g.,
energy splittings caused by the shape anisotropy or an external
magnetic field, might be very different from the properties
of the hole localized in boxlike QDs with abrupt potential
barriers.

The paper is organized as follows. In Sec. II, we introduce
the regularities of our problem on the most intuitive example of
a material with a single-band isotropic parabolic dispersion.
In Sec. III, we move on to the characteristic properties of a
hole localized in a spherically symmetric quantum dot with a
top of the valence band that can be described by the Luttinger
Hamiltonian. In Secs. IV and V, we consider the hole ground-
state splitting due to the anisotropy of the QD potential, crystal
field, and an external magnetic field. In the end, we summarize
our results.

II. LOCALIZATION OF A PARTICLE IN QD WITH
PARABOLIC OR GAUSSIAN PROFILE:

SINGLE-BAND APPROXIMATION

To introduce the specifics of the carrier localization in
the quantum dots described by the smoothly varying spatial
potential V (r) (r is the radial coordinate), we consider the

Schrödinger equation [Ĥ + V (r)]� = E� with the single-
band isotropic effective mass Hamiltonian

Ĥ = �
2k̂2

2m∗ . (1)

Here, k = −i∇ is the wave-vector operator and m∗ = me(h)

is the electron (hole) effective mass. We consider the cases
of the spherical symmetry V (r) = V (r) and axial symmetry
V (r) = V (ρ,z) potentials, where r2 = x2 + y2 + z2 = ρ2 +
z2 and x,y,z are are the Cartesian coordinates.

A. Spherically symmetric QD

We start with the spherical parabolic (harmonic oscillator)
potential, which is the limiting case for the Gaussian potential

V0(r) = κ

2
r2, (2)

where κ is the spring constant. In the framework of the single-
band effective mass approximation, the exact solutions of the
problem with such a potential are well known. The spherical
oscillator wave functions can be easily found as

�nlm(r) = Rnl(r)Ylm(�),

Rnl(r) = 1

L3/2+l

[
2n!

�(n + l + 3/2)

]1/2

rl

× exp

(
− r2

2L2

)
Ll+1/2

n

(
r2

L2

)
, (3)

and correspond to the equidistant eigenenergies

EN = �ω(N + 3/2), N = 2n + l = 0,1,2 . . . . (4)

Here, ω = √
κ/m∗ and L = √

�/m∗ω are the characteristic
oscillator frequency and oscillator length, respectively, n, l,
and m are principal, orbital, and magnetic quantum numbers,
respectively, Ylm are the spherical angular harmonics [48], and
L

l+1/2
n are the generalized Laguerre polynomials [47]. The

ground-state energy and radial wave function of the particle
localized in V0(r) are characterized by n = 0, l = 0 and given
by

E0 = 3

2
�ω = 3

2

�
2

m∗L2
(5)

and

R0(r) = 2

π1/4L3/2
exp

(
− r2

2L2

)
. (6)

The parabolic potential describes the QD with a smooth
profile, however, yet it does not permit us to consider the QDs
with a finite potential barrier outside the dot. To do so, we
consider a potential of the Gaussian form,

VG(r) = Voff

[
1 − exp

(
− r2

a2

)]
, (7)

where Voff is the energy step (band offset) between the QD
center and the surrounding medium, determined as r > 3a,
while a can be used as a rough estimation of the QD radius.
Near the QD center, at r � a, the Gaussian potential can
be approximated as parabolic VG(r) ≈ V0(r) with the spring
constant κ = 2Voff/a

2. To simplify the comparison of the
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FIG. 1. (a) Dimensionless parabolic and Gaussian potentials with
Ṽoff = 8, 2, and 1. (b) Probability distribution R̃2

0(r̃) for different Ṽoff.
Vertical dashed lines on (a) and (b) show the characteristic radii ã

for Ṽoff = 1 and 2 and 2ã for Ṽoff = 1. Horizontal dotted lines in (a)
show the potential depth Ṽoff and energy level E/E0 for Ṽoff = 1.

potentials characterized by the same spring constant k at
the QD center and different potential barriers Voff, we chose
the parameters of the single-band parabolic problem – the
ground-state energy E0 and the oscillator length L – to
be the energy and length units for all QDs. In these units,
the parabolic and Gaussian potentials take the form

Ṽ0(r̃) = V0(r/L)/E0 = 1

3
r̃2, (8)

ṼG(r̃) = VG(r/L)/E0 = Ṽoff

[
1 − exp

(
− r̃2

3Ṽoff

)]
, (9)

where Ṽoff = Voff/E0 and r̃ = r/L. Note that the spring
constant is not included explicitly in Eqs. (8) and (9). It is,
however, contained in expressions for our units L and E0.
This fact allows us to obtain the universal dependence of the
localized particle wave function and energy spectrum on Ṽoff.
The dimensionless parabolic and Gaussian potentials with
different Ṽoff are shown in Fig. 1(a), the chosen values of
Ṽoff correspond to characteristic radii ã = a/L =

√
3Ṽoff ≈

1.73, 2.45, and 4.9. The vertical dashed lines show the
characteristic radii ã for the shallowest dots with Ṽoff = 1
and 2; for Ṽoff = 8, the value of ã lies outside the scale of the
figure, the parabolic potential has an infinite effective radius.

Since no exact solution exists for the particle in Gaussian
potential, we found the wave function and energy of the
ground state by two methods: numerical and variational. A
numerical solution can be found by expanding the radial wave

FIG. 2. (a) Dependence of the hole ground-state energy E/E0

on the Ṽoff = Voff/E0, the inset shows the dimensionless dif-
ference between the localization energy and particle energy.
(b) Dependencies of the variational parameter α and the localization
radius rloc/a on Ṽoff.

functions over the basis of the oscillator functions (3) and by
diagonalizing the resulting matrix.

To obtain the ground-state energy by the variational
procedure, we chose the dimensionless probe function R̃0(r̃) =
R0(r/L)L3/2 in the form

R̃0 = 2α3/4

π1/4
exp

(
−αr̃2

2

)
(10)

with α being the only trial parameter. With the probe function
(10), we have the following expression for the particle ground-
state energy as a function of α:

E(α)/E0 = α

2
+ Ṽoff − 3

√
3α3/2Ṽ

5/2
off

(1 + 3αṼoff)3/2
. (11)

Figure 1(b) shows the dimensionless probability distri-
bution R̃2

0(r̃) for the Gaussian QDs with different Ṽoff and
for parabolic QDs. Figure 2(a) shows the dependencies of
the dimensionless ground-state energy E/E0 on the Ṽoff =
Voff/E0 and Fig. 2(b) shows the dependence of the minimizing
value of the trial parameter α on Ṽoff. Panels (a) of Figs. 1 and 2
demonstrate that with the increase of Ṽoff the ground-state
energy and the wave function in the Gaussian potential
approach those of the harmonic oscillator. While with a
decrease of Ṽoff the quantization energy E/E0 decreases, the
localization energy Eloc/E0 = (Voff − E)/E0 also decreases
and becomes smaller than E for Ṽoff < 2 [see inset in Fig. 2(a)].
The bound state exists up to Ṽoff ≈ 0.55 as it is shown by
the numerical calculation; the variational calculation gives the
bound state up to Ṽoff ≈ 0.65.

The localization of the particle inside the QD can be char-
acterized by the localization radius r̃loc = rloc/L =

√
〈r̃2〉 =
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√∫ ∞
0 R̃2

0 r̃
4dr̃ . We find r̃loc ≈ 1.23 for the parabolic potential

and Ṽoff = 8, and r̃loc ≈ 1.39 and r̃loc ≈ 1.76 for Ṽoff = 2 and
1, respectively. One can see that r̃loc ≈ 1.76 only slightly
exceeds the effective radius ã ≈ 1.73 for Ṽoff = 1 and r̃loc < ã

for Ṽoff = 2 and higher potential barriers. In spite of the
very small localization energy in the dots with Ṽoff < 2, the
probability density |R̃0(r̃)|2 is well localized inside these dots
up to Ṽoff = 1. The dependence of rloc/a = r̃loc/ã on Ṽoff is
also shown in Fig. 2(b). Note that the radius 2a corresponds
to the point where the Gaussian potential saturates: VG(2a) ≈
Voff . For the probe function (10), r̃loc = √

1.5/α and rloc/a =
r̃loc/ã =

√
1/(2αṼoff).

B. Axially symmetric nonspherical QD

Now we consider ellipsoidal axially symmetric QDs, where
a parabolic confinement potential can be written as

V a
p (r,z,μ) = κρ

2
ρ2 + κz

2
z2 = V0(r) + 
V a

p (ρ,z,μ), (12)


V a
p (ρ,z,μ) = κμ

(
z2 − 1

3
r2

)
. (13)

Here, the average spring constant is κ = (2κρ + κz)/3 and we
introduce the QD anisotropy parameter as

μ = 3

2

(κz/κρ − 1)

(κz/κρ + 2)
= (κz − κρ)

2κ
. (14)

One can see that μ > 0 corresponds to the case κz > κρ and
thus describes a stronger confinement along the z direction
(oblate QD). In the opposite case of μ < 0, the confinement
is stronger in the xy plane (prolate QD). Note that Eq. (12) is
exact. It follows from (14) that

κρ = κ

(
1 − 2

3
μ

)
, κz = κ

(
1 + 4

3
μ

)
(15)

and the condition that kρ,z � 0 leads to only μ in the range
−3/4 � μ � 3/2 having a physical sense.

The exact solutions for the axially symmetric harmonic
potential (12) are also well known. We introduce parameters
Lx,Ly,Lz as oscillator lengths along x,y,z axes correspond-
ingly, and note that in the axially symmetric potential Lx =
Ly = L. In this case, the wave functions can be calculated from
the Schrödinger equation for an axially symmetric harmonic
oscillator:

�nx,ny ,nz
(x,y,z) = 1√

2nx+ny+nznx!ny!nz!

π−3/4

L
√

Lz

×Hnx

[ x

L

]
Hny

[ y

L

]
Hnz

[
z

Lz

]
× exp

(
−x2 + y2

2L2
− z2

2L2
z

)
, (16)

and correspond to the equidistant eigenenergies

Enx,ny ,nz
= �ω(nx + ny + 2) + �ωz(nz + 1),

(17)
nx,ny,nz = 0,1,2, . . . .

Here, Hn[x] are Hermite polynomials [47], ω = √
kρ/m, ωz =√

kz/m, and L = √
�/mω,Lz = √

�/mωz. For the ground-
state energy, we obtain

Ea
0 = 1

2

(
2�

2

mL2
+ �

2

mL2
z

)
= 2E0

3

(√
1 − 2μ/3 + 1

2

√
1 + 4μ/3

)
≈ E0

(
1 − μ2

9

)
.

(18)

One can see that (18) contains no linear μ correction to the
ground-state energy. The same result can be readily observed
by treating 
V a

p (ρ,z,μ) as a perturbation.
We consider the anisotropic Gaussian potential with axial

symmetry in the form

V a
G(r,z,μ) = Voff

[
1 − exp

(
−x2 + y2

a2
x

− z2

a2
z

)]
. (19)

The ground-state energy of the particle in such a potential can
be found numerically by expanding the wave functions over
the basis of the oscillator functions (16), diagonalizing the
resulting matrix. The anisotropy can also be considered in the
framework of the perturbation theory by two ways. One way
is to find the isotropic and anisotropic parts of the Hamiltonian
(19) as it was done in (12):

V a
G(r,z,μ) = Voff

[
1 − exp

(
−x2 + y2

a2
x

− z2

a2
z

)]
≈ VG(r) + 
V a

p (r,z,μ), (20)


V a
G(r,z,μ) = exp

(
− r2

a2

)

V a

p (r,z,μ),

where a = √
3axaz/

√
a2

x + 2a2
z . The effective spring con-

stants are introduced by analogy with the spherical QD: κρ =
2Voff/a

2
x and κz = 2Voff/a

2
z . The anisotropy parameter μ is

defined in the same way as for the parabolic potential (14). The
approximate expansion (20) keeps only terms linear on μ and is
applicable for μ < 1. Again, the first-order energy correction
to the s symmetry ground state for the perturbation 
V a

G(r,z,μ)
vanishes. Using a numerical approach for μ < 1, we found that
the shift of the ground-state energy in the anisotropic Gaussian
potential can be described as Ea(μ) ≈ Ea(μ = 0)[1 − μ2/9]
by analogy with expression (18).

Alternatively, the anisotropy of the Gaussian potential can
be treated by replacing the coordinates as x −→ x(ax/a),
y −→ y(ax/a) and z −→ z(az/a). The potential energy be-
comes isotropic in the new coordinates. However, the kinetic
energy operator Ĥ acquires the additional term


Ĥ a
k = 2μ

3

�
2

2m

(
k̂2 − 3k̂2

z

)
. (21)

Again, the linear on μ energy correction to the ground state
from 
Ĥ a vanishes.

III. SPHERICAL SYMMETRY PROBLEM FOR THE
�8 VALENCE BAND

We consider now the hole in the fourfold degenerate �8

valence subband for semiconductors with large spin-orbit
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splitting. The Luttinger Hamiltonian for such semiconductors
in the spherical approximation can be written [33,49] as

ĤL = �
2

2m0

[(
γ1 + 5

2
γ

)
k̂2 − 2γ (k̂ j )2

]
. (22)

Here, m0 is the free electron mass, j is the hole internal angular
momentum operator for j = 3/2, γ1 and γ = (2γ2 + 3γ3)/5
are Luttinger parameters related to the light and heavy hole
effective masses as mlh,hh = m0/(γ1 ± 2γ ).

The first energy level of holes in spherical QDs in a
semiconductor with a degenerate �8 valence band is the 1S3/2

state [36,38]. It has a total angular momentum J = j + l
with J = 3/2 and is fourfold degenerate with respect to its
projection on the z axis. The wave functions of this state can
be written as [49,50]

�M = 2
∑
l=0,2

(−1)M−3/2(i)lRl(r)

×
∑

m+μ=M

(
l 3/2 3/2
m μ −M

)
Yl,muμ, (23)

where (i k l
mnp) are the Wigner 3j symbols, and uμ (μ = ±1/2, ±

3/2) are the Bloch functions of the fourfold degenerate
valence band �8 that can be found in Ref. [55]. The radial
wave functions R0 and R2 in Eq. (23) are normalized,∫

(R2
0 + R2

2)r2dr = 1, and satisfy the system of differential
equations (6) from Ref. [49,53], where the QD potential V (r)
instead of the Coulomb one is taken. Below we find R0 and R2

by numerical and variational methods.

A. Numerical method

To calculate numerically the energy spectrum and the eigen
wave functions of the hole in a parabolic or a Gaussian quantum
dot, we follow the approach described in Refs. [51,52]. We
diagonalize the hole Hamiltonian matrix [49] calculated on a
nonorthogonal basis, consisting of Gaussian functions times
the polynomials of the lowest power, which behave correctly
at r = 0:

R0 =
Nmax=80∑

i=1

Ai exp(−αi r̃
2),

(24)

R2 =
Nmax=80∑

i=1

Bir̃ exp(−αi r̃
2).

Here, Ai and Bi are coefficients that are to be found by the
diagonalization of the Hamiltonian matrix, αi are chosen in
the form of a geometrical progression from 10−6 to 103. The
convergence of the calculation was controlled by modifying
the basis (24): changing αi and Nmax. The calculation was be-
lieved to be converged if the basis modification did not change
the result. A rather large Nmax, as compared with Ref. [51],
is necessary to obtain reliable results in the case of β → 0,
where β = mlh/mhh is light to heavy hole effective mass ratio.
For the limiting case β = 1, all Bi = 0 with a good accuracy
and the use of the basis (24) gives the same results as the use
of the basis (3). For β → 0, the numerically calculated hole

radial functions satisfy the exact differential condition [49]

dR0

dr
+ dR2

dr
+ 3

r
R2 = 0 (25)

with a good accuracy.

B. Variational method

We chose the trial functions R0 and R2 for the arbitrary
value of β allowing them to satisfy the hole Hamiltonian [49]
in two limits β = 1 and β = 0. If β = 1, the limiting case
of the simple band dispersion is realized, and for the ground
state, the probe radial functions should be chosen as R2 = 0
and R0 as given by (10). The exact solution for β = 0 is not
known, however, the functions R0 and R2 must satisfy (25).
Using these conditions and comparing the resulting functions
with the numerically found solutions, we arrived at

R2(r) = C

L3/2

αr̃2

2

[
exp

(
−αr̃2

2

)
− α2 exp

(
−αβ0.3r̃2

2

)]
,

R0(r) = C

L3/2

3

2

[
exp

(
−αr̃2

2

)
+ α0 exp

(
−αβ0.3r̃2

2

)]
−R2(r), (26)

where α, α0, and α2 are the trial parameters and C is the
normalization constant. The oscillator length L is defined as
for the single band with heavy hole effective mass mhh and
r̃ = r/L. Note that taking α0 = β3/2 and α2 = β2 and using
β0.5 instead of β0.3 in the second exponent in R0 and R2, we
arrive at the trial function used in Ref. [53] for the parabolic
confinement potential.

C. Results: ground-state energy and radial wave functions

The ground-state energy E1S3/2 (β) is expressed in units of
E0 (with m∗ = mhh) as follows:

E1S3/2 (β) = 3

2

�
2

mhL2
ε3/2(β) = E0ε3/2(β). (27)

The dimensionless function ε3/2(β) calculated variationally
and numerically is shown in Fig. 3(a) for the parabolic potential
and for the Gaussian potential with Ṽoff = 8; 2; 1. Figure 3(b)
shows ε3/2 as a function of Ṽoff for β = 0.1, 0.3, 0.7, and 1.
There is a good matching between the two methods demon-
strating the high accuracy of the variational method, which
slightly decreases only for a very shallow dot potential (small
Ṽoff or very small β). This fact allows us to validate our choice
of the trial function in the form (26). The critical value of Ṽoff

defining the appearance of the hole bound state increases with
the decrease of β. Figures 4(a) and 4(b) show the dependencies
of the ratio rloc/a on Ṽoff and β, where the localization

radius rloc is defined as rloc =
√

〈r2〉 =
√∫ ∞

0 (R2
0 + R2

2)r4dr .
Figure 5 shows the dependencies of the variational parameters
α, α0(1 − β), and α2 on β for Ṽoff = 8, 2, and 1.

IV. ANISOTROPIC SPLITTING OF THE
HOLE GROUND STATE

In this section, we consider the hole states in ellipsoidal
QDs with V (r) given by Eqs. (12) and (19). Additionally,
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FIG. 3. Dimensionless ground-state energy ε3/2 of the hole as a
function of β for a parabolic potential and a Gaussian potential with
Ṽoff = 8; 2; 1 (a) and as a function of Ṽoff for β = 0.1, 0.3, 0.7, and 1
(b). Solid lines correspond to the numerical calculation, dotted lines,
to the variational calculation. Dashed lines in (b) indicate the energy
in the limit of the harmonic oscillator for the respective values of β.

we consider the effect of the internal crystal field in wurtzite
semiconductors, for example, CdSe, in the framework of
the quasicubic approximation. The respective addition to the
Hamiltonian is described by V̂ cr = 
cr(5/8 − j 2

z /2), where

cr is the energy splitting of the light- and heavy-hole
valence-band edge states in the bulk semiconductor [56].

The internal crystal field in wurtzite semiconductors and
the axial anisotropy of the confinement potential lifts the
degeneracy of the 1S3/2 hole ground-state in the quantum dot.
The fourfold degenerate hole state is split into two doublets
with |M| = 3/2 and 1/2:

E1S3/2,M = Ea
1S3/2

+ 


2

(
5

4
− M2

)
, (28)

where 
 = 
int + 
Ea, 
int describes the effect of the in-
ternal crystal field, 
Ea = E1S3/2,1/2 − E1S3/2,3/2 and Ea

1S3/2
=

(E1S3/2,1/2 + E1S3/2,3/2)/2 describe the hole ground-state

FIG. 4. Ratio of the localization radii and the characteristic dot
radii, rloc/a, the function of β for the parabolic potential and the
Gaussian potential with Ṽoff = 8, 2, and 1 (a) and as the function of
Ṽoff for β = 0.1, 0.3, 0.7, and 1 (b). Solid lines correspond to the
numerical calculation and dotted lines to the variational calculation.

splitting and the energy shift induced by the QD anisotropy,
respectively. We calculate 
int, 
Ea, and Ea

1S3/2
numerically

(see method description below) and determine the range of
parameters where the effect of the crystal field and QD shape
anisotropy can be considered as a perturbation. For these
parameters, the splittings are calculated by the perturbation
theory combined with the variationally found radial wave
functions R0 and R2 of the spherical approximation.

A. Numerical method

To describe the hole states in nonspherical QDs, in general,
one has to use the Hamiltonian ĤL + V (r) with allowance
for V (r) to be fully asymmetric. In order to calculate the
hole energy spectrum and eigenfunctions, we diagonalize the
Hamiltonian matrix, calculated on the orthonormal basis of
anisotropic harmonic oscillator eigenfunctions:

�nx,ny ,nz
(x,y,z) = ψnx

(x)ψny
(y)ψnz

(z),
(29)

nx,ny,nz = 1, . . . ,N,

where

ψnt
(t) = 1√

2nt nt !

(
1

πl̃2
t

)1/4

exp

(
− t2

2l̃2
t

)
Hnt

(
t

l̃t

)
,

(30)
t = x,y,z
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FIG. 5. Dependencies of the variational parameters α (a), α0(1 −
β) (b), and α2 (c) on β for parabolic potential and Ṽoff = 8, 2, and 1
and dependencies of the variational parameter α on Ṽoff for β =
0.1, 0.3, 0.7, and 1 (d).

are the eigenfunctions of the harmonic oscillator with
oscillator lengths l̃x = [�2(γ1 + γ )/m0κx]1/4,l̃y = [�2(γ1 +
γ )/m0κy]1/4,l̃z = [�2(γ1 − 2γ )/m0κz]1/4. Such a basis cor-
responds to hole eigenfunctions, formed by Bloch states
with momentum projection jz = ±3/2 on the direction of
the anisotropy axis. In order to check the convergence of
the calculation, the second basis, corresponding to the holes
formed by the Bloch states with a momentum projection jz =
±1/2, is used. Note that even in the isotropic case, where κx =
κy = κz, l̃x,y 
= l̃z due to the difference of hole effective masses
along the coordinate axes. The possible asymmetry of this basis
may make it possible to account better for the QD potential
geometry and increase the convergence rate of the calculation.

B. Results: comparison of numerical and
perturbational calculations

1. Effect of the internal crystal field

The dependencies of the hole ground-state splitting 
int on

cr, calculated numerically for the holes confined in parabolic

FIG. 6. (a) The hole ground-state splitting, calculated for β =
0.15, as a function of parameter 
cr/E0 for parabolic and Gaussian
potentials with Ṽoff = 8, 2, and 1. (b) The dimensionless function
vint(β) as a function of the light-hole to heavy-hole effective mass
ratio β. Solid lines: results of numerical calculations, dotted lines:
perturbation theory with the use of the trial functions.

and Gaussian potentials are shown on Fig. 6(a) for β = 0.15.
It is clear that for small values of 
cr the corresponding curves
can be linearized, and the effect of the crystal field can be
considered as a perturbation [39,57]:


int = 
crvint = 
cr

∫
drr2

[
R2

0(r) − (3/5)R2
2(r)

]
. (31)

The function vint depends on the ratio β and, generally, may
depend on the form of the QD potential. The dependencies
of vint(β) for the parabolic and Gaussian potentials with
Ṽoff = 8, 2, and 1 calculated numerically and obtained by
using Eq. (31) with the trial function R0 and R2 in the form
(26) are shown in Fig. 6(b). A good agreement between the
two methods can be seen. The function vint(β) only slightly
depends on the value of Ṽoff, but the |M| = 3/2 states always
correspond to the ground hole state [39,57]. The function vint

increases from 0.2 for β = 0 to 1 for β = 1. The value of vint

at β = 0 is determined by Eq. (25) resulting in
∫

R2
2r

2dr =∫
R2

0r
2dr = 1/2. For β = 1, vint = 1 is explained by the

vanishing of R2.

2. Effect of the shape anisotropy

Figure 7(a) shows the dependencies of the anisotropy
induced hole ground-state splitting 
Ea calculated numeri-
cally for parabolic and Gaussian potentials on the anisotropy
parameter μ. This figure shows that in a rather wide range of
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FIG. 7. (a) The dimensionless splitting of the hole ground state,
calculated numerically, 
Ea/E0 (solid lines), and by two perturbation
theory methods: 
a

p/E0 (dotted lines) and 
a
k/E0 (dashed lines),

calculated with numerically obtained functions R0(r) and R2(r) for
parabolic and Gaussian QDs. (b) The coefficient of the linearization,
C = 
Ea/(E0μ), calculated numerically (solid curves) and using
the trial functions via a perturbation in kinetic (dotted curves) and
potential (dashed curves) energies. (c) The relative energy splitting,
ush = −
Ea/(2μE3/2 = −C/2ε3/2, calculated for the parabolic
(solid curve) and abrupt infinite potential (dashed curve).

μ these dependencies can be approximated as linear with a
good accuracy. In this case, the splitting can be also found by
the perturbation theory in two ways. One way is to consider
as a perturbation the correction to the potential energy, Vp,
introduced in Eq. (12) for parabolic potentials and in Eq. (20)
for the Gaussian potentials. For such a perturbation, the hole
energy splitting 
Ea = 
a

p can be found as [53]


a
p = 4μ

15

�
2

mhL4

∫
drr4R0(r)R2(r) (32)

In the second way, one can use the change of coordinates
(21) in order to obtain the perturbation correction to the hole

kinetic energy [58,59]:

Ĥ a
k = 2μ

3

�
2

2m0

((
γ1 + 5

2
γ

)(
k̂2 − 3k̂2

z

)
− 2γ {(k̂ j )2 − 3[(k̂ j )k̂zjz]}

)
, (33)

where {ab} = (ab + ba)/2. Then the hole energy splitting

Ea = 
a

k can be found as [58]


a
k = μ�

2

3mh

[
I a

1 − 1

5
I a

2 + 4

5
I a

3 − 1

β

(
I a

1 − 1

5
I a

2 − 4

5
I a

3

)]
,

(34)

where

I a
1 =

∫
r2dr

[
dR0(r)

dr

]2

,

I a
2 =

∫
r2dr

{[
dR2(r)

dr

]2

+ 6R2(r)2

r2

}
,

I a
3 =

∫
r2drR2(r)

[
d2R0(r)

dr2
− dR0(r)

rdr

]
.

Calculations using the radial wave functions R0 and R2

found by the numerical method result into 
a
p = 
a

k = CμE0

with a good accuracy for small μ, as shown in Fig. 7(a),
and for all values of light-to-heavy hole effective mass
ratio β. Figure 7(b) shows the linear coefficients C as
functions of β. Dotted curves are calculated numerically,
solid and dashed curves correspond to C = 
a

k/μ/E0 and
C = 
a

p/μ/E0 calculated with the wave functions found via
the variational procedure. This figure shows that the accuracy
of the variational method is rather good. Moreover, the
kinetic energy and potential energy corrections found with
the variational wave functions give estimations of the value of
C from above and from below, respectively.

For small values of μ, linear corrections to the energy shift
of the central level position vanish and Ea

1S3/2
= (E1S3/2,1/2 +

E1S3/2,3/2)/2 ≈ E1S3/2 . Numerical calculations show that for a
complex valence band the following approximation Ea

1S3/2
≈

E1S3/2 [1 − ξμ2/9] is valid, with the factor ξ being different
from unity by no more than 10%. The parameter ξ is a function
of β and Voff. Figure 7(c) shows the relative to the quantum
size energy splitting, ush = − 
Ea

2μE3/2
= − C

2ε3/2
, introduced in

Refs. [39,58] (the sign “−” is because of the opposite definition
of the sign of anisotropy parameter μ) and calculated for
parabolic and abrupt potentials. One can see that there is a
significant difference between the dependencies caused by the
different shape of the QD potential. The shape anisotropy at
the abrupt potential in general induces a much larger relative
splitting than that at the smooth one. Moreover, ush changes
sign for an abrupt potential at β ≈ 0.15, while remains always
of the same sign in a smooth potential.

V. HOLE EFFECTIVE g FACTOR

In this section, we consider the effect of an external
magnetic field on the hole states localized in quantum dots
with a shape close to spherical. For this purpose, we follow the
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conventional approach [25,33–35,39,55,56,60,61] and explore
the hole representation of the Luttinger Hamiltonian with
the external magnetic field B included in the spherical
approximation [61]. In a weak magnetic field, the top of the
degenerated valence band is split according to the Zeeman
term

ĤZ = −2μB�( j B). (35)

Here, μB is the Bohr magneton, � is the Luttinger magnetic
parameter, and the lowest valence hole state has projection
jz = 3/2 on the direction of the magnetic field for the
semiconductors with � > 0.

The effect of a weak external magnetic field on the
holes confined in a potential of spherical symmetry can be
considered as a perturbation. The resulting Zeeman splitting
of the localized hole states is given by [35,39,61,62]

Ĥeff = −μBgh( J B). (36)

Here, gh is the hole effective g factor. For the hole ground state
with J = 3/2, its value can be determined via the radial wave
functions R0 and R2 as [61]

gh = 2� + 8

5
γ I

g
1 + 4

5
[γ1 − 2(γ + �)]I g

2 , (37)

where

I
g
1 =

∫ ∞

0
r3R2(r)

dR0(r)

dr
dr,I

g
2 =

∫ ∞

0
r2R2

2(r)dr. (38)

The integrals I
g
1 and I

g
2 describe the effect of the light- and

heavy-hole mixing induced by the confining potential. Their
values depend on the light-to-heavy hole effective mass ratio
β and do not depend on the QD size [39,62]. In the limit
β = 1, the hole mixing vanishes and gh(β = 1) = 2�. In the
opposite case, β → 0, the values of the mixing integrals can be
found analytically as I

g
1 = −3/4 and I

g
2 = 1/2 in any spherical

symmetry potential using the differential condition (25). This
results in [61]

gh(β = 0) = 6

5
� + 2

5
γ1 − 2γ. (39)

Using the relation � = −2/3 + 5γ /3 − γ1/3 [62,63], we
obtain from Eq. (39) that gh(β = 0) ≈ −0.8 corresponding
to the lowest hole state with projection M = −3/2 on the
magnetic field. Thus, in semiconductors with small values of
β, the mixing of the valence subbands may result in different
ordering of the Zeeman sublevels comparing with the free
valence-band edge states.

We examine further the effect of the valence-band mixing
on the hole effective g factor in the QDs with different potential
profiles. The dependencies of the mixing integrals I

g
1 and I

g
2

on β, calculated variationally (dotted lines) and numerically
(solid lines) for the parabolic (black lines) and Gaussian, with
Ṽoff = 1, smooth potentials and the infinite abrupt potential,
respectively, are shown on Fig. 8. In fact, the difference
between the values calculated variationally and numerically
for smooth potentials is very small for any mass ratio and

FIG. 8. Dimensionless integrals I
g
1 and I

g
2 , defining the hole

ground-state g factor in a spherical quantum dot, Eq. (37), with
parabolic, Gaussian with Ṽoff = 1, and abrupt infinite potentials [39]
as a function of β. Solid lines correspond to the variational calculation,
dotted lines to the numerical calculation, dashed lines correspond to
the abrupt infinite potential.

can be hardly seen in this figure; this is also true for the
difference between the values calculated for the parabolic and
Gaussian smooth potentials. This demonstrates the exceptional
accuracy of the variational method. Moreover, I

g
1 and I

g
2 are

practically independent of Ṽoff (as long as a confined level
in a Gaussian QD exists), while the hole wave functions are
strongly dependent on Ṽoff (see, for example, Fig. 5 showing
the resulting trial parameters). As a result, the g factor for the
hole in the parabolic and Gaussian QDs can be estimated with
a good accuracy using a simple universal approximation of the
β dependence for mixing integrals:

I
g
1 ≈ e−5.145β (1 − β)

× (−29.77β5 − 37.97β3 + 7.15β2 − 7.77β − 0.75),

I
g
2 ≈ 0.5e−7.35β1.127

(1 − β)(14.23β2.58 + 1). (40)

In contrast, Fig. 8 shows a noticeable difference between
mixing integrals I

g
1 and I

g
2 calculated for smooth potentials

and for an infinite abrupt potential, respectively [39]. It means
that the magneto-optical properties of QDs with smooth and
abrupt potentials can be quite different.

In the spherically symmetric QDs, the hole ground-state in
zero magnetic field is fourfold degenerate with respect to the
momentum projection M . Hence, in agreement with Eq. (36),
in weak magnetic fields, the ground state splits into four
equidistant sublevels (see the inset in Fig. 8). So, two effective
g factors can be introduced in this case: g1/2 = gh for the
splitting of the states with a momentum projection M ± 1/2
on the magnetic field direction and g3/2 = 3gh for the states
with a momentum projection M = ±3/2. The lowest hole
state is always M = −3/2 for semiconductors with β → 0
and M = +3/2 (M = −3/2) for semiconductors with � > 0
(� < 0) and β → 1.

In the axially symmetric QD, the joint effect of the
anisotropy and magnetic field depends on the direction of the
magnetic field with respect to the direction of the anisotropy
axis z. In the case of small anisotropy, for B||z, the hole
effective g factors for M = ±3/2 and M = ±1/2 states
remains the same: g3/2 = 3gh and g1/2 = gh, respectively [35].
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For B ⊥ z, they become strongly anisotropic: the linear on B
splitting of ±3/2 states vanishes, whereas the splitting of ±1/2
states is described by an effective g factor equal to g⊥

1/2 = 2gh.
Such a consideration is valid while the magnetic field induced
splitting is smaller than the zero-field energy splitting 
Ea. In
addition, the B ⊥ z mixes the hole states with M = ±3/2 and
±1/2 [39,62].

In the case of highly anisotropic QDs, i.e., in the limit of the
quantum disk or quantum wire, it can be convenient to describe
the hole states in the framework of the Luttinger spinors
introduced in Ref. [25] and classify the hole states by the parity
quantum number and the z component of the total angular
momentum, which determine their splitting in the magnetic
field. In these cases, the hole g factors are substantially
different from the values of g3/2 and g1/2, calculated above.
The respective anisotropic g factor values were calculated in
Ref. [35] for the model of the parabolic potential.

VI. DISCUSSION

In this paper, we presented a detailed study of the hole
states in quantum dots with a smooth potential shape of
rotational symmetry, which can be realized in II-VI structures.
We developed a variational approach with only three trial
parameters, which allowed us to calculate with a good accuracy
not only the hole energy but also its g factor and energy
splitting of ground state caused by the anisotropy of the
quantum dot shape or the crystal field. These quantities proved
to be strongly dependent on the wave function and, therefore,
very sensitive to the choice of the trial function. For example,
we have found that the simplified trial functions with the only
trial parameter from Ref. [53] predict the hole ground-state
energy with a good accuracy, however, they do not allow to
calculate the hole g factor and anisotropy-induced splittings.
The accuracy of the these trial functions and the developed
variational method are verified by comparing the obtained
results with numerical calculations. The advantage of the
variational method is to allow one to have the hole envelope
wave function in a simple analytical form that can be rather
easily used for further modeling, e.g., of the multiexciton states
in the QDs. At the same time, the developed numerical method
allows one to calculate the whole energy spectrum including
the excited states of the holes in a smooth Gaussian-like
potential. To the best of our knowledge, neither a variational
method nor numerical calculations (including the atomistic
approaches) for the hole states in QDs with such a potential
profile have been reported before.

The general dependencies of the hole ground-state char-
acteristics (energy and localization radius) on the QD po-
tential depth and light-to-heavy hole effective mass ratio

are calculated for spherical QDs. The effect of the QD
anisotropy (potential shape or internal crystal field) on the
hole ground state is considered. General dependencies of
the hole ground-state splitting on the potential depth and
light-to-heavy hole effective mass ratio are obtained. In
addition, the Zeeman splitting of the hole ground state due
to the external magnetic field is studied. It is shown that the
dependence of the hole effective g factor on the depth of
the QD potential is negligible and its dependence on β for
the QDs with an approximately spherical shape can be well
approximated by universal analytical expressions. Moreover,
the results obtained in Ref. [35] for the hole effective g

factors in QDs modeled by ellipsoidal parabolic potential
profiles of arbitrarily anisotropy can be used for the case of
the Gaussian-shaped QDs as well. Thus, in the limit of weak
magnetic fields, the effective hole g factor is determined solely
by the potential profile type but does not depend on its size
and barrier height. These results are in line with the known
independence of the effective g factor of the localization
energy of a hole bound to a deep or Coulomb-like acceptor
center [61,64,65] and of the QD size [39,62]. In contrast, the
Zeeman splittings and the zero field splittings caused by the
QD shape anisotropy are quite different for the abrupt and
the smooth confining potentials. Such a difference may include
even a different ordering of the hole states both in zero and
in an external magnetic field. Therefore the combination of
the smooth and abrupt potentials, e.g., by variation of the
QD composition, opens new possibilities for the design of
structures with the needed properties of the hole states.

Let us discuss the applicability of the developed model
to the II-VI QDs with a gradually varying concentration
[7,8,12]. The potential profile in such dots, indeed, can be
approximated by the Gaussian shape. However, a variation
of the concentration implies also a spatial variation of the
effective mass parameters. In II-VI QDs, the variation of
the effective mass parameters is not large and for the first
approximation the mean values can be used with our model.
The energy corrections caused by the effective mass spatial
variation are expected to be of the same order of magnitude
as the corrections caused by the nonparabolicity of the
energy dispersion (terms ∝ k̂4) [66]. Therefore they should
be considered in the framework of the Kane k p model taking
into account the interaction between the conduction and the
valence bands, and that may be a subject of a future study.
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