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Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS,
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We present results on the radiative lifetimes of excitons and trions in a monolayer of metal dichalcogenide
MoS,. The small exciton radius and the large exciton optical oscillator strength result in radiative lifetimes in the
0.18-0.30 ps range for excitons that have small in-plane momenta and couple to radiation. Average lifetimes of
thermally distributed excitons depend linearly on the exciton temperature and can be in the few picoseconds range
at small temperatures and more than a nanosecond near room temperature. Localized excitons exhibit lifetimes
in the same range and the lifetime increases as the localization length decreases. The radiative lifetimes of trions
are in the hundreds of picosecond range and increase with the increase in the trion momentum. Average lifetimes
of thermally distributed trions increase with the trion temperature as the trions acquire thermal energy and larger
momenta. We expect our theoretical results to be applicable to most other 2D transition metal dichalcogenides.
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I. INTRODUCTION

The unique electrical and optical properties of two-
dimensional (2D) metal dichalcogenides (TMDs) have made
them interesting for a variety of different applications [1-7].
Particularly distinguishing features of 2D metal dichalco-
genides are the large exciton and trion binding energies in these
materials. The exciton and trion binding energies in 2D chalco-
genides are almost an order of magnitude larger compared
to other bulk semiconductors [1,3,4,8-10]. The large exciton
and trion binding energies imply that many body interactions
play an important role in determining the optical properties of
these materials. For most optoelectronic applications, knowing
the radiative lifetimes of elementary excitations is critical.
Excitons and trions in metal dichalcogenides have small radii
and, therefore, large oscillator strengths and, consequently, one
expects their radiative lifetimes to be particularly short.

In recent work [8], we quantitatively determined the
oscillator strengths of excitons and trions in monolayer metal
dichalcogenide MoS, from the experimentally measured op-
tical absorption spectra. Our work showed that the traditional
Wannier-Mott exciton model [11], with a few modifications,
is able to describe the excitons and trions fairly well in 2D
dichalcogenides. The applicability of the Wannier-Mott model
for excitons in dichalcogenides was also found recently by
Chernikov et al. [10]. In this paper we report the radiative
lifetimes of excitons and trions.

Our results show that the small exciton radius and the
large exciton optical oscillator strength in MoS, monolayers
result in radiative lifetimes in the 0.18-0.30 ps range for
small in-plane momentum excitons. These lifetimes are almost
two orders of magnitude shorter than those of 2D excitons
in III-V semiconductor quantum wells [12]. Average exciton
lifetimes in a thermal ensemble depend linearly on the exciton
temperature, as is expected for excitons in 2D [12]. Localized
excitons exhibit lifetimes that increase with the decrease in the
localization length L, as ~L:? and can exceed a nanosecond
for localization lengths smaller than ~1 nm. In the case of
trions we find that the radiative lifetimes are in the hundreds

“fr37 @cornell.edu

2469-9950/2016/93(4)/045407(11)

045407-1

of picosecond range and increase with the increase in the
trion momentum. Average lifetimes of thermally distributed
trions increase with the trion temperature as the trions acquire
thermal energy and larger momenta. We also find that in highly
doped samples at low temperatures the average trion lifetimes
can become very long because the carrier (electron or hole) that
is left behind when a trion recombines has difficulty finding
an unoccupied state in the band. Our results also show that
in many commonly encountered experimental situations the
ensemble averaged radiative lifetimes of thermally distributed
excitons and trions can be comparable. In the main text of the
paper we have used Fermi’s golden rule to obtain radiative
rates. In the Appendix, we show that a many-body Green’s
function approach gives the same results and also shows
that, contrary to recent suggestions [13,14], exciton dispersion
within the light cone is not modified as a result of long-range
exchange interactions.

Although the discussion in this paper focuses on MoS;
monolayers, the analysis and the results presented here are
expected to be relevant to all 2D metal dichalcogenides
(TMDs), and are expected to be useful in designing metal
dichalcogenide optoelectronic devices as well as in helping
to understand and interpret experimental data [15—17]. Recent
experimental results [18-20] on the lifetimes of excitons in
TMD monolayers have yielded numbers that are in good
agreement with the numbers calculated in this paper.

II. ENERGY BANDS IN MoS;

The valence band maxima and conduction band minima
in a MoS; monolayer occur at the K and K’ points in the
Brillouin zone. Most of the weight in the conduction and
valence band Bloch states near the K and K’ points resides
on the d orbitals of M atoms[9,21-23]. The spin up and down
valence bands are split near the K and K’ points by 0.1-0.2 eV
due to the spin-orbit coupling [9,22-24]. In comparison, the
spin-orbit-coupling effects in the conduction band are much
smaller [24]. Assuming only d orbitals for the conduction
and valence band states, and including spin-orbit coupling,
one obtains the following simple spin-dependent tight-binding
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Hamiltonian (in matrix form) near the K (K’) points [22],

|:A/2 hvk_ :|

: ()
hvk, —A/2+ ito

Here, A is related to the material band gap, o = =1 stands for
the electron spin, T = =1 stands for the K and K’ valleys, 2\
is the splitting of the valence band due to spin-orbit coupling,
k+ = tk, £ ik, and the velocity parameter v is related to the
coupling between the orbitals on neighboring M atoms. From
density functional theories [23,25], v & (5-6) x 10° m/s. The
wave vectors are measured from the K(K') points. The d-
orbital basis used in writing the above Hamiltonian are |d2)
and (|dy2—y2) + it|dxy))/«/§ [22]. We will use the symbol s
for the combined valley () and spin (o) degrees of freedom.
Defining A as A — Ato, the energies and eigenvectors of the
conduction and valence bands are [22,26]

v(k) 227 VA, 27 + ok, 2
|y cos@, g /e
[orl = [ T sin(@, 7, /22 | ©)

Here, y = 1 (or —1) stands for the conduction (or the valence)
band, ¢; is the phase of the wave vector k, and

Ag
=Y T s @
Near the conduction band minima and valence band maxima,
the band energy dispersion is parabolic with effective masses,
m, and my, for electrons and holes, respectively. The momen-
tum matrix element between the conduction and valence band
states near K (K') points follows from the above Hamiltonian,

ﬁvc,s(]zvl_é) ( vk3|P|vas)

= myvklog  cos(téy) — i sin(tdyp)]
+itmyvy[cos(toy) —iag  sin(zdp)]l.  (5)
Here, m, is the free electron mass. Near the band extrema,
ap — land Pl,C Y(k k) — m,v (X +it$H)e "% . The Hamil-
tonian given above is accurate only near the band edges. Later

in this paper, we will need to modify the Hamiltonian and
obtain results that are also accurate for large wave vectors.

III. EXCITON STATES

A. Electron and hole Hamiltonian

The Hamiltonian describing the electron states in the
conduction and valence bands is [27],

H, = Z Ec.s(k)cgsc,;.s + Z Ev,s(k)bgsb,;’s + Hy.  (6)
lz,s E,s
Here, Chs and b,;’x are the destruction operators for the

conduction band and valence band, respectively. The Coulomb
interaction H., between the electrons and holes is
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V(g) is the 2D Coulomb potential and equals e /2¢,€(q)q. The
wave-vector-dependent dielectric constant €(g) for monolayer
M082 is given by Zhang et al. [8] and Berkelbach et al. [9].

Fsy (k k' ,q) is [26]

FJJ/(k’k ’q) = <Uc,lz+q s|vc k, s> (Uu,/?uq,s/|vu,/2',s'>- (8)
Near the band extrema, where hvk < Ay, one obtains [26,27]
FooR.3) = Tt st gn, ()

Given the large band gap of MoS,, the above approximation
for the Coulomb matrix element has been found numerically
to be adequate to describe the lowest bound exciton energy
state in MoS,.

B. Exciton states with nonzero momentum

We assume that the ground state |v,) of the semiconductor
monolayer consists of a completely filled valence band and
a conduction band with an electron density n, distributed
according to the Fermi-Dirac distribution fc(l_é). The ground
state thus belongs to a thermal ensemble. A bright exciton
state with in-plane momentum é can be constructed from the
ground state as follows [26,27]:

Vs A(k)
Vo= ﬁz B 56 g binds Vol (0
k

Here, wéqs(/}') is the exciton wave function. A, + A, = 1 in

order to ensure that the above state has a momentum Q In
the case of parabolic bands, A, = m,/me and Ay, = m, [/ me,
where me, = m, +mj, is the exciton mass. These values
ensure minimum coupling between the exciton relative and
center-of-mass wave functions. For nonparabolic bands, these
expressions for A« still hold provided the average values of
the inverse electron and hole effective masses with respect to
the exciton relative wave function are used, as described by
Siarkos et al. [28]. For conduction and valence bands with
symmetric energy band dispersions, as in (2), A, = A, = 0.5.
The normalization factor NQ(I;) equals v'1 — f.(k + X Q).
The exciton state is normalized such that {ex (Y5 V5 >ex}m

1, where the curly brackets represent averaging with respect
to the thermal ensemble. This normalization gives

d*k
(2m)?

Using the exciton state given in (10) as a variational state, the
exciton wave function ¥ ((k) is found to satisfy the Hermitian
eigenvalue equation,

[E_‘c,s(lz + )\e Q) - Ev,s(]: - )‘h é)]l/fé,s(;)
V1= fek+1.0)
A
X Y V(§)Fysk =G+ 20k —214,0.9)
q

s (v () =1. (11)

x oK — W1 = £k — G +2.0)
= Eexs(Q)¥ 5, (k). (12)
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The Coulomb potential term is gauge dependent, a fact that
has often been overlooked in the literature. If one writes the
exciton wave function as

Vg, (K) =

then, assuming the approximation in (9) for F, the ex-

citon wave function ¢4 (k) satisfies the eigenvalue equa-
tion [8,9,27],

[Ecs(k +1e0) — Ey sk — 2 D, (k)

V1= fulk+1.0)

-~ Y V@G, k- )
q

.o (ye!Prea T2, (13)

A

X\/l - fc(lz - 67 +)‘eé)
= Eex.s(0), (k) (14)

with an eigenvalue Eex,s(é). Note that all the phase factors
cancel out and do not appear in the exciton eigenvalue
equation. The probability of finding an electron and a hole
at a distance 7 from each other in the exciton state 1V 5.5 ex is
195, (7)1, where ¢Q ,(F) is the Fourier transform of b5, é(l_cb)

and not of ¥ (k) which also includes extra phase factors
[see (13)]. Although the lowest energy exciton state (1s)
considered in this paper is not much affected by the Coulomb
matrix element approximation in (9), the exact expression for
the Coulomb matrix element is needed to describe the effects
of Berry’s phase on the higher exciton energy levels and the
resulting small energy splittings between the exciton states of
opposite angular momentum [%9,30].

If the exciton momentum Q is assumed to be small (onllf
excitons with very small momenta couple to radiation), the Q
dependence of the Fermi distributions can be ignored in (14)
and the band energy dispersions can be Taylor expanded to
express Eex,s(é) as

h2 QZ

exb +
2Mey

Eex,s(Q) = Eg,s - (15)
where Ecyp is the exciton blndlng energy and the band | gap
is Eg g = EC,S(k =0)—-E, s(k = 0). The energy Ee, S(Q) is
measured with respect to the energy of the ground state
[¥,). The spin-valley subscript can be dropped from Eex,s(é)
without causing confusion since the fundamental exciton
energies are the same in the two valleys in TMDs.

C. Exciton exchange interactions, self-energy, and dispersion

Recently, it was suggested that exciton dispersion in TMD
monolayers is modified as a result of exchange interactions re-
sulting in Dirac-cone-like features [13,14]. The most important
exciton exchange interactions are long-range dipole-dipole
interactions and require retarded electromagnetic potentials
for an accurate description. In Appendix A 1, we use a Green’s
function approach and show that the dispersion relation of
excitons is not modified within the light cone as a result of
these interactions and, therefore, exchange interactions can be
ignored when calculating the exciton radiative lifetimes.
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IV. PHOTON EMISSION BY EXCITONS

A. Hamiltonian for interaction with photons

The quantized radiation field is [11]

A = Z

.5;»

VvV

[n,(q)a]<q>+ﬁ*( Hal(-1°

iqr

_Zquf. (16)

Here, /i ; for j = 1,2 are the field polarization vectors and a;(q)
is the field destruction operator for a mode with wave vector g
and frequency w,. The interaction between the electrons and
photons is given by the Hamiltonian

Hy =Y H'(@G)+ H; @),

G.J
where
> e re
H] (q) mO«/VAq’j Z ve, "(k + q” k)bk+ q|» tcks
k,s
(17)
and H +(q) [H (q)] We have expressed the field wave

vector ¢ in terms of the in-plane component, g, and the out-
of-plane component, ¢g,Z. The interaction Hamiltonian used
above ignores the quadratic vector potential term [31] (see
also Appendix A 1). This omission is justified as long as one
is interested in resonant linear optical processes.

B. Radiative lifetime of excitons

We assume a suspended MoS, monolayer located in the
plane z = 0. Without losing generality, we restrict ourselves to
the valley T = 1, where the topmost valence band is occupied
by spin-up (o = 1) electrons, and we will drop the spin-valley
index in the discussion that follows. TMDs can have both
bright and dark excitons. Dark exciton states do not couple
directly to radiation and will not be considered here. We
assume an initial state | 5)ex consisting of a bright exciton

with in-plane momentum Q,

vk
Vole = ﬁZNQ(lo E43,0.4PE-m 041V (18)
k

The final state consists of no exciton and one photon sponta-
neously emitted with wave vector —g (where ¢ = g + 2q.).
Using Fermi’s golden rule, summing over all possible final
states, and assuming a finite phenomenological broadening
(due to exciton scattering and/or polarization dephasing), we
get for the spontaneous emission lifetime of the exciton,

1 271
W@ B
X ol (=3, J 1 H @10} g e P
“[Ea(0) iexh/chlz Frz (19)
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The matrix element involving H j_(Z]) will be zero unless
—q) = 0, due to in-plane momentum conservation. The final
result, after summing over the two possible polarizations of
the emitted photon, can be written as

! @ 0Q>|2/°od !
p=d zn()_xxrz 9 q—
Tsp(Q) m% ‘ 0 Zsz+qg
2
q’
( q§+Q2>
Fex/m

X = 5 . (20)
[Ex(Q) — hy/ Q7+ q2c] + T

Here, 7, is the free-space impedance, c is the speed of light,

and the function y. (7, Q) is given as [8]

Xex(r, Q) = / mpvc(k — A Q.k+2.0)- % Y5k)

/1= fulk + 2, 0)e*7. @1

Any in-plane unit vector, other than £, can be used in the
expression above and the angle-averaged momentum matrix
element will not depend on the specific choice. yex(7, Q)
incorporates the reduction in the exciton oscillator strength
due to Pauli-blocking and band-filling effects [8]. Note that the
phase factors in the definition of wé(%) [see (13)] cancel out
exactly near the band edge in the expression for xex(7, Q) [8].

Equation (19) shows that only excitons with momenta Q that
satisfy

h2 2
Eexb+ ) Q

hQc < Ee(Q) = E, — (22)

€x

radiate efficiently, as expected for excitons in 2D [32]. This
implies that excitons in MoS, with kinetic energy greater
than approximately (E, — Eexb)z/(Zmexcz) ~ 3.5 peV will
not radiate efficiently unless assisted by phonons or impurities
to provide in-plane momentum conservation. Since the exciton
radius in MoS, is small, in the 7-10 A range [8], accurate
energy band dispersions and momentum matrix elements are
needed for large wave vectors (at least a few nm~') in order to
accurately describe exciton oscillator strengths [8]. Following
Zhang et al. [8], we use the Lowdin approximation to a
four-band model proposed by Kormanyos et al. [23]. This
procedure adds the following matrix to the Hamiltonian given

earlier in (1):

ak? Kk? — gkzk,

2 _nz2 2 : 23)
kk? — 3k7ky Bk

The values of the parameters «, 8, «, and n that best
fit density functional theory (DFT) results are 1.72 eV Az,

—0.13eVA’, —1.02eVA’, and8.52eV A’, respectively [23].
The resulting angle-averaged wave-vector-dependent inter-
band momentum matrix elements were given by Zhang
et al. [8]. In numerical calculations, we first compute exciton
wave functions and radii as a function of the doping for
different Q using a variational technique [8]. The procedure is
iterated a few times to ensure that the optimal values of A« are
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FIG. 1. Radiative lifetime of excitons in suspended MoS, mono-
layer is plotted as a function of the in-plane exciton kinetic energy
hQ?/2mey for different doping densities n, (n-doped sample). Zero
in-plane momentum excitons have extremely short radiative lifetimes
in the 0.18-0.30 ps range as a result of the large optical oscillator
strength of excitons in MoS, monolayer.

used. The wave-vector-dependent momentum matrix elements
are then used to obtain the exciton radiative lifetimes. Figure 1
shows the radiative lifetime of excitons as a function of the
in-plane exciton kinetic energy hQ?/2m. for different doping
densities, 0 and 103 1 /cmz, and assuming ['¢x =~ 20 meV.
Excitons with small kinetic energy have extremely short
radiative lifetimes in the 0.18-0.30 ps range. Such short
radiative lifetimes are due to the small exciton radii and,
therefore, large exciton optical oscillator strengths in MoS; [8].
Pauli blocking, coming directly from the factor /1 — f, in
Eq. (21), reduces the exciton oscillator strength when the
doping increases. However, the exciton radius also decreases
when the doping increases, as shown by Zhang et al. [8]. The
combined effect is that the exciton oscillator strength and the
radiative lifetime do not change drastically with doping.

In most experimental situations, the radiative lifetime of
an ensemble of excitons is measured. An ensemble can be
created in different ways and could include both bright and
dark excitons. We assume a thermal ensemble of only bright
excitons. The procedure used to obtain the average lifetime of
the ensemble is described in Appendix A 2). Figure 2 shows the
average radiative lifetime of thermally distributed excitons for
different doping densities n, (n-doped sample) as a function of
the carrier temperature (assumed to be the same for excitons
and unbound electrons). The exciton density is assumed to
be 10'" 1/cm?. The average lifetime increases linearly with
the temperature and is largely independent of the exciton
density (as long as the temperature is large enough, and the
exciton density is small enough, such that the exciton chemical
potential is several KT smaller than the lowest exciton energy
level). The average exciton radiative lifetime (zy,) can be

related to the zero-momentum lifetime rsp(Q =0) by
KT -
(Tsp) A~ E—ISP(Q =0) forKT > E,, 24)

where E,, given approximately by (E; — Eexp)?/2mexc?, is the
kinetic energy of the largest in-plane momentum exciton that
can radiate. Note that the value of I'.yx does not affect the result
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FIG. 2. Average radiative lifetime of thermally distributed exci-
tons is shown for different doping densities n, (n-doped sample) as
a function of the carrier temperature (assumed to be the same for
excitons and unbound electrons). The exciton density is assumed
to be 109 1/cm?. The average lifetime increases linearly with the
temperature.

for rsp(é = 0) in any significant way and nor does it affect the
average exciton radiative lifetime of a thermal ensemble.

C. Transverse and longitudinal excitons

Superpositions of exciton states from the two valleys can
be created such that these exciton states couple to only the
transverse (TE) or the longitudinal (TM) polarized radiation
fields. These longitudinal and transverse exciton states, and
their radiative lifetimes, are discussed in Appendix Al
where we also discuss the dipole-dipole exchange interactions
between excitons.

V. PHOTON EMISSION BY TRIONS

A. Singlet trion states with nonzero momentum

A trion is formed when a photoexcited electron-hole pair
binds with an electron (or a hole) to form a negatively (or
a positively) charged complex. A trion state can be bright
or dark and can be a spin singlet or a triplet. In this paper
we consider only bright singlet trions [8]. Without losing
generality, we restrict ourselves to negatively charged trions
(relevant to n-doped samples). We also restrict ourselves to
the case T = 1 where the top most valence band is occupied
by spin-up (¢ = 1) electrons, and drop the spin-valley index.
We define the trion mass as my = 2m, + mj,. As before, we
assume that the ground state |1, of the semiconductor consists
of a completely filled valence band and a conduction band with
an electron density 7, distributed according to the Fermi-Dirac
distribution. A bright singlet trion state with momentum é can
be constructed from the ground state as follows,

1 5k, k2)
Wole= 4 D
1;|,/:z NQ(klv 2)

A
xcp (b 1Bl 6.41V0). 25)
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Here, the line under a vector, E, stands for k + neé. n. and
n, equal m,/my and my/my, respectively. As in the case
of the exciton, the average values of the inverse electron
and hole effective masses with respect to the trion relative
wave function are used in these expressions. The trion wave
function 1//Q(k1,k2) is symmetric in its first two arguments.

The normalization factor N Q(lgl ,k}) equals

J = £Et — fuEo). (26)

The trion wave function is normalized such that
{[r<l/lé |1/fQ)[r}lh = 1, where the curly brackets represent aver-
aging with respect to the thermal ensemble. This normalization
gives

%k, d*e
(2m)? 2m)?

If one writes the trion wave function as (including the valley
index 1),

vekikyskk) =1. @D

V5. (k1K) = gk kp)e TR 02 (0g)

then, assuming (9), and using the trion state given in (25) as
a variational state, the trion wave function ¢ Q(kl ,k») satisfies
the Hermitian eigenvalue equation [8],

[Ec(ky) + Eo(ky) — Eo(ki +ka — 1, ) (k1. k2)

JU= £Ey1 = Sl
+ A

Y WV@stk — G.ka+§)
q

x 1= flls — 1 = fule + )]

1— fc(]_él) N . -
- ; 2_V@ gk - Z],kz)m]
q
1= felko) o _
- ; Z[Wé)«ﬁg(kl,kz - @/TM]
q

= Eo(Q)ppki.k2). (29)

The trion energy Eq( é) is measured with respect to the energy
of the ground state |1, ). Note that all the phase factors cancel
out and do not appear in the trion eigenvalue equation. For
small trion momentum é, the band energy dispersions can be
Taylor expanded and E[r(é) can be expressed as [8]

h2 QZ

Etr(Q) = Eg - Eexb - Etrb + s
2my

(30)

where Eyy is the trion binding energy.

B. Radiative lifetime of trions

The interaction Hamiltonian given in Sec. IVA can be
used for trions as well. We assume that the initial state is as
given in (25). The final state consists of no trion, one photon
spontaneously emitted with momentum —g (¢ = g + 2q.),
and an electron left in the conduction band that carries the
momentum Q + gy. Using Fermi’s golden rule, summing over
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all possible final states, and assuming a finite broadening, we
get for the spontaneous emission lifetime of a trion,

1 we? [ d*q 1 2
N 2 q% o (1 + qa)
Tsp(Q) €, (27[) Wy q

/d271 Xu(F1,72 = 0,g), Q)e ™ [Hmea/maQln

2

X
>, Cy/m
x[1—= f:(Q+q))] — — ,
(Eu(Q)—"129E ey ) 412
31
where
PRGRX TR
k[ &Pk - - L -
= [ S5 [ S B+ k) -t
@ny ) aop et el s

x e T2y 1 — fully) eRTHRT . (32)

Again note that any in-plane unit vector, other than X, can
be used in the expression above and the angle-averaged
momentum matrix element will not depend on the specific
choice. x(r1,72,4). Q) incorporates the reduction in the trion
oscillator strength due to Pauli-blocking and band-filling
effects [8]. Note that the phase factors in the definition of
1gﬁé(kl,kz) [see (28)] cancel out exactly near the band edge in
the expression above for the trion lifetime [8]. In calculations,
we first compute the trion wave functions and radii as a
function of the doping for different Q using a variational
technique [8], and then use the wave vector dependent
momentum matrix elements to obtain the trion radiative
lifetimes. Figure 3 shows the radiative lifetime of trions as
a function of the in-plane trion kinetic energy hQ?/2m for
different doping densities (10'!, 102, and 5 x 10'? 1/cm?),
and two different electron temperatures, 5 K and 300 K. The
trion lifetime increases with the trion kinetic energy because
the squared matrix element involving y in (31) decreases with
the increase in the magnitude of Q The longer trion lifetime
seen for small trion kinetic energies at low temperatures and

1500~ —
: Increasing doping:
. i 10", 10'% 5x10'2 cm™
2 : :
o 1000} : :
I
2 : :
| " .
& 500 :
= ] —T,=300K
--.T =5K
e
GO 5 10 15

Trion Kinetic Energy (meV)

FIG. 3. Radiative lifetime of trions in suspended MoS, mono-
layer is plotted as a function of the in-plane trion kinetic energy
hQ?*/2m, for different doping densities (10'!, 10'2, and 5 x 10'2
1/cm?), and two different electron temperatures, 5 K and 300 K.
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FIG. 4. Average radiative lifetime of thermally distributed trions
is shown for different doping densities n, (n-doped sample) as a
function of the carrier temperature (assumed to be the same for
trions and unbound electrons). The trion density n,, is assumed to
be 10'° 1/cm?. As the temperature increases from zero, the average
trion lifetime first decreases, reaches a minimum value, and then
increases.

large doping densities is due to the fact that the phase space for
the electron, which got left behind in the conduction band when
the trion recombined, is either not available or is much reduced
near the conduction band edge because of Pauli blocking.
Figure 4 shows the average radiative lifetime of thermally
distributed trions for different doping densities n, (n-doped
sample) as a function of the carrier temperature (assumed
to be the same for trions and unbound electrons). The trion
density n is assumed to be 10'° 1/cm? and consists of only
bright singlet trions. As the temperature increases from zero,
the average trion lifetime first decreases, reaches a minimum
value, and then increases. The initial decrease in the lifetime
with the temperature occurs because the phase space for the
left-behind electron near the conduction band bottom opens up
as the temperature increases and the electron density (from the
doping) shifts to higher energies. In lightly doped samples this
initial decrease occurs at very small temperatures and might
not be observable in experiments. As the temperature increases
further, the trions acquire more thermal energy and their
distribution spreads to higher energies. Since trions with large
kinetic energies have longer lifetimes (as shown in Fig. 3),
the average trion lifetime increases with the temperature. The
increase in the average trion lifetime with the temperature
is consistent with the experimental results for trions in III-V
semiconductor quantum wells [33].

VI. EFFECTS OF LOCALIZATION

A. Radiative lifetime of localized excitons

Since radiative rates of excitons are limited by momentum
conservation requirements, localization can enhance or reduce
radiative rates of excitons by broadening the distribution of the
center of mass momenta of the exciton states [32]. Following
Citrin et al. [32], we consider excitons localized in space in
regions of size L.. We assume that the exciton wave function
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for the center of mass coordinate in real and Fourier spaces is

B, 1
Yeom(R) = —67R2/2L3 s

VL2
1pcom(é) = \/4Tl,zg7Q2L<2/2_

We again restrict ourselves to the case t = 1 where the topmost
valence band is occupied by spin-up (o = 1) electrons, and
drop the spin-valley index. A localized exciton state can be
constructed from the ground state |1/,) using a superposition
of exciton states of different momenta,

(33)

1 N 210
[Yex) = A%wm(@%j N

t
x CEHPQ,Tb’;—M 0.4 10)- (34)

Assuming that the kinetic energy associated with the center of
mass coordinate is E.n, the energy of the exciton relative to
the ground state |v,) is

Eex = Eg - Eexb + Ecom = thc- (35)

Here, we have defined Q, as the momentum of a photon
of energy equal to the exciton energy. As discussed below,
the product Q,L. will governqthe exciton radiative lifetime.
Ignoring, for simplicity, the O dependence of the function
Xex(F, Q) [Yex(F, Q) & xex(F,Q = 0) since the Q dependence
of xex(F,Q) is weak and only excitons with very small Q
radiate] the spontaneous emission lifetime of the localized
exciton is

1 et

Tsp(Lc) eomg

/ dgc_]) |wcom(all)|2
X —_—

2m)3 wy

IXex( = 0,0 = 0)?

X <1 + q_zz) Fox/m
4* ) [Ex(Q = §)) — hwg)* + T2,

Figure 5 shows the radiative lifetime of a localized exciton in
a suspended MoS, monolayer as a function of the localization
length L.. When L, < Q;l , the exciton wave function spread
in momentum space is larger than Q, and the exciton does not
radiate efficiently. In this regime, the exciton lifetime increases
with the decrease in the localization length as

(0 = 0)

) ¥ S0 e

When L. > Qo_l, the exciton wave function in momentum
space is localized in a region smaller than Q, and the exciton
lifetime is essentially the same as that of a free (unlocalized)
exciton with near-zero momentum. The results in Fig. 5 are
quantitatively valid only if L. is larger than the exciton radius
(~1 nm); otherwise the relative wave function of the exciton
state would also change as a result of localization—an effect
we have ignored.

In a MoS; monolayer, Q, ~ 107 1/m. This means that the
relevant length scale against which to compare L. is ~100
nm. The temperature dependence of the exciton radiative

(36)

for QuL. < 1. (37)
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Exciton Lifetime (ps)

FIG. 5. Radiative lifetime of a localized exciton in suspended
MoS, monolayer is plotted as a function of the localization length L.
Q, is the momentum of a photon of energy equal to the exciton energy.
In a MoS, monolayer, Q, ~ 107 1/m. The dashed line represents, for
reference, the radiative lifetime of a free (unlocalized) exciton with
zero in-plane momentum Q The doping density 7, is assumed to be
Zero.

lifetime measured in experiments will depend on the nature
of localization. For example, if all the excitons are strongly
localized, and remain localized as the temperature is increased,
then no particular temperature dependence of the average
radiative lifetime is expected [34,35]. The short lifetimes of
weakly localized excitons in Fig. 5 for Q,L. > 0.1 (or L, >
10 nm in MoS;) may not be observed in experiments as the
energy level spacings in such large localizing regions are likely
to be small and the excitons could occupy higher energy levels
after gaining thermal energy and their ensemble averaged
lifetime would then exhibit the characteristics of free excitons.

VII. DISCUSSION

In this paper, we presented radiative lifetimes of excitons
and trions in MoS; monolayers. The analysis presented here is
also applicable to excitons and trions in other metal dichalco-
genides since the optical material properties of sulfides and
selenides of molybdenum and tungsten relevant to the radiative
lifetimes of excitons and trions are not too different. Recent
experimental results on the lifetimes of near-zero momentum
excitons in WSe, monolayer have yielded numbers in the
150-250 fs range [18-20] in good agreement with the numbers
calculated in this paper for MoS, (Fig. 1). In addition, very
long (>1 ns) average exciton lifetimes have also been observed
in clean MoS; monolayers at very small photoexcited exciton
densities [36]. These long lifetime values are consistent with
strongly localized excitons (Fig. 5).

Some caution must be exercised in interpreting the results
presented in this paper. First, given the extremely short
radiative lifetimes of near-zero momentum free excitons
(Fig. 1), the assumption of a thermal ensemble for free
excitons might not be relevant to experiments. It is likely that
the average radiative lifetimes of free excitons observed in
experiments are determined by the energy relaxation rates of
excitons or by assisted processes, such as phonon and impurity
scattering, which would provide the momentum necessary for
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excitons with large in-plane momentum to radiate. Second,
in real samples the excitons might become localized at low
temperatures. In this case, as the temperature is lowered,
the observed average radiative lifetime of the excitons would
decrease linearly with the temperature at high temperatures
and become weakly dependent on the temperature at low
temperatures. Third, our analysis of the trion radiative lifetimes
did not take into account the fact that trions are more likely to
form in the first place when the doping density is large and,
therefore, experimentally observed trion photoluminescence
quantum efficiencies at different doping densities might not
reflect the trends in trion lifetimes with doping depicted in
Figs. 3 and 4. In fact, a better understanding of the formation
dynamics of both excitons and trions would be needed in
addition to the results presented here in order to correctly
interpret photoluminescence data [37].
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APPENDIX

1. Exciton self-energy, exchange interactions, and radiative
lifetimes: A Green’s function approach

In this section, we calculate the exciton self-energy in
TMD monolayers. The exciton eigenstates in the presence
of long-range exciton dipole-dipole exchange interactions are
longitudinal and transverse excitons. We show that the exciton
dispersion for small momenta (inside the light cone) is not
modified as a result of these interactions.

We assume an undoped TMD monolayer for simplicity.
We consider a reduced Hilbert space in which only the lowest
exciton state is relevant. The exciton creation operator is [27]

. 1 .
T . T . .
o5 =72 D Vo b, 5 bios  (AD
k

Products of electron and hole creation and destruction opera-
tors can thus be expressed in terms of the exciton operators.
We define an exciton polarization vector as

. | Xex(0,0)] ! = = - > =
g, f— Z Poes(k = 14 Qk + 2. 05, (K),
(A2)
with rh*é s~nA1 b = 1. It is convenient to define the exciton

vector field operator as

-~ - ok f
Co) = g By () +m*5 B 5 (). (A3)

C(¢) is proportional to the Fourier component of the exciton
interband polarization at wave vector é The noninteracting
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retarded Green’s function for the exciton field is [38]

—oR | N N
Gg(t—1t)= —%90 —')0([C5(1),C_5N) (A4)
and in the Fourier domain it equals

—oR 2E(0) R
G; ~ =

0O G~ Ear e o O

_ 2Eex(g) [1 0]. (AS5)
(hw)? — Ecx(Q)* +inl0 1

Note that summation over the spin-valley index makes the
Green’s function matrix conveniently diagonal.

The quantized radiation can be expressed in terms of
the following field (which is proportional to the Fourier
component of the vector potential):

Ri() =Y hj(@a;G.n) + A5 (—gal(—g.0).

J

(A6)

The interaction Hamiltonian given earlier in (17) can be written
as

mt - E

Unlike in the main text of this paper where the goal was
to compute the radiative lifetimes (a resonant linear optical
process), here we are interested in the exciton self-energies,
both on-shell and off-shell. The term quadratic in the vector
potential must be added to the interaction Hamiltonian.
Following Girlanda et al. [31], the form of this extra term
is found to be

) = |e | AR IxeO,qD0 5 .,
int :ZEex(Q) m_OZ 5@,@ VGOCL)q Eex(‘_iH) R‘} ’ méH,s
Q.s q
Z AL DOk g
k.0 Ve, o ex(k”) *k ky.s

The noninteracting retarded Green’s function for the radiation
field is gauge dependent. It is convenient to choose the
temporal gauge in which the scalar potential is set equal to

zero. In the temporal gauge the radiation Green’s function is
[39,40]

|X6X (0 ‘IH ) | R C—(]H (A7)

(A8)

—oR [ N N

D; (t—1)= —%9(1‘ — t'){[R3(1),R_5(t"])
2haw, B i®q

(hw)? — (hwy)> + in w?/c?

The projection of the Green’s function in the plane of the
monolayer is represented by

—oR

D; (w) =

}. (A9)

EOR( ) 2hw,
- w) =
7 (hw)? — (hwg)? +in
1— ‘13 _ 4x49
< w?/c? w?/c? (A10)
2
_ 9x4y 1— qy
wZ/CZ w2/6.2

045407-8



RADIATIVE LIFETIMES OF EXCITONS AND TRIONSIN ...

The Dyson equation for the exciton Green’s function becomes

—R —oR —oR —R —R
Go@) =G5 (@ +Gg (- T5)- Gy, (All)

where the retarded self-energy matrix is found to be
2 2
=R e = 5 how
T@) ~ (m—> Xex(0.O 87,6 (W)
q

X ( Ah >§;R(a)).

Ve, o,

(A12)

The self-energy matrix is not diagonal in the chosen coordinate
basis. This can be fixed by rotating the coordinate basis such
that the directions longitudinal (L) and transverse (7) to the in-
plane vector Q are chosen as the basis. The exciton self-energy
then becomes

— >R 0
To() = [ 01 ]

(A13)
EST(a))

where

R e 2 > 5 how 2

28 @) = (m—) |Xex(0,0)) §SQQ<E—(Q)>
( Ah ) 2hw,

X b

VE,,Cl)q (hw)Z - (ha)q)2 + ”7

e \? - ho \?
28 (@)= (m—> | xex O, Q>|2;am<m>

< Ah > q 2w,
X 1— -
Ve,o, w?/c? | (hw)? — (hwy)? +in

(A15)

(A14)

The corresponding longitudinal and transverse Green’s func-
tions for the exciton are

2Ee(Q)

R ()= = 0
O.L/T (hw)* — Ex(Q)? — ZECX(Q)ES,L/T

G

(@)
(A16)

The longitudinal and transverse excitons are the eigenstates in
the presence of the exciton dipole-dipole exchange interaction.
One can define creation operators for the longitudinal and the
transverse excitons as follows:

1 ) . 3
o i 2igg gt
B [BQ’T=1 +Te QBQ,r

o.L/T ™ 3

The dispersion of the longitudinal and the transverse excitons
can be found from the poles of the corresponding Green’s
functions. When @ > Qc (inside the light cone), both the self-

energies ES . /T(a)) have a vanishingly small real part and a

.l (A17)
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large magnitude of the imaginary part. The latter corresponds
to the radiative lifetime of the exciton. The situation is reversed
when @ < Qc and then the magnitude of the real part of the
self-energy becomes large and the imaginary part vanishes.
Therefore, when Eex(é) > hQc (inside the light cone) one can
ignore corrections to the exciton dispersion from dipole-dipole
interactions, and the lifetime of the exciton can be related to
the imaginary part of the self-energy evaluated on the shell,

1

L ZigfsE @), s (AIB)
e R A A L
and we get
1 2n,¢2 - 1
= = 2 4a(0.0) = ,
Tsp,T(Q) 0 /EeZX(Q) _ (th)2
(A19)
L _me o QMZ,/E&(Q)—(th)Z
ror(0)  m2 2.0

The expression for the radiative rate given in the main text
in (20), in the limit I'ex — 0, is exactly equal to the average
of the longitudinal and transverse radiative rates given above.
This is because an exciton state belonging to only one valley
is an equal superposition state of longitudinal and transverse
excitons. When w < Qc and the self-energies are real, we get

_7705262 [ xex (O, Q)|2 o’

m2  E2(0) J(Qo) —a?

E () = 77071262|Xex(0,é)|2\/()272 o
0= T g VO T

R —
EQ,T(C‘)) =

The above expressions show that the longitudinal exciton
will have a dispersion varying linearly with Q only when
hQc > E(Q), and neither the longitudinal nor thf, transverse
exciton will have a Dirac-cone-like dispersion for Q & 0. After
the completion of this work, we became aware that Gartstein
et al. [41] have also reached a similar conclusion.

2. Average lifetime of a thermal exciton ensemble: A Green’s
function approach

The Green’s function approach can also be used to find
the average lifetime of a thermally distributed ensemble of
excitons. The technique used below also incorporates, via
the exciton spectral density function, exciton energy level
broadening due to scattering processes. We define the exciton
Green’s function GSJ(! — 1) as follows [38]:

G5t —1)= (B ("B, (1). (A21)

The angular brackets indicate averaging with respect to a
thermal ensemble of excitons. In the frequency domain,

5.,(@) = Ag (@npho — ). (A22)
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Here, A; ((®) is the spectral density function and ng(ho —
W) is the boson occupation factor with chemical potential .
Most other exciton Green’s functions can be obtained from the
spectral density function [38]. The exciton density operator
flex () 18

ex(t) = (A23)

1
" > BTQ’S(I)BQ’S(I).
0.

The average density of excitons in thermal equilibrium can be

written as
Z [ 5265 @,

To find the exciton radiative rate we use the density
matrix perturbation theory assuming the exciton-radiation
interaction Hamiltonian Hi, as the perturbation. Since we
are considering a resonant linear optical process, the in-
teraction Hamiltonian given in (17) or (A7) is adequate.
We assume that the initial state of the excitons is de-
scribed by a thermal density operator and that of the ra-
diation by the vacuum state, and the initial joint density
operator of the system is p;. In the standard interaction
representation,

dﬁgx(t)
dt

Nex = (Aex(t)) = (A24)

;[nex(t) L] (A25)

The result is

diiex(1) Al dnex(t)
<dr > h/ dtTr{p,[ 1), ”

The terms appearing inside the integral can be partitioned into
appropriate radiation and exciton Green’s functions. If one uses
the following phenomenological form for the exciton spectral
density function:

Az (0) 2 ex (A26)
- () = ° ’
s [hw — Eex(Q)? + T2,
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then the final result can be written as
diiex(t)
dt

e\’ 1
- E ( ) |Xex(’7 = OyéH)|2
m, €,0

0™q

<I-

2
< Pex
( _2> [Eex(q)) — hog]? + T2, np(hog — W)

(A27)
The ensemble average lifetime (t,) is then [see (24)]
1 1 diex (1)
= —— . (A28)
(Tsp) (fiex(1)) dt

Note that in (A27) the boson occupation factor is evaluated
at the photon energy and not at the exciton energy. This
subtlety could have been missed if the exciton radiative rate
given earlier in (20) is averaged over the exciton density
of states with a boson occupation factor evaluated at the
exciton energy. Also note that the exciton density needs to
be evaluated self-consistently using the same spectral density
function. Since for bosons the chemical potential must always
be less than or equal to the lowest energy level, use of
phenomenological Lorentzian spectral density functions can
lead to problems during numerical calculations. A way around
this problem is to use a spectral density function with tails
that decay much faster than the tails of a Lorentzian and
then the results for the radiative lifetimes do not depend
sensitively on the exact form of the spectral density function.
The result obtained using (A28) is given in (24). We find the
same approximate result as that given in (24) in both regimes,
Ilex € KT and I'x > KT, contrary to the findings of Citrin
et al. [32] in the case of III-V quantum well excitons. The
difference in the results seems to originate from an incorrect
evaluation of the exciton density in terms of the exciton spectral
density function by Citrin et al. [32].
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