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Disorder-assisted transmission due to charge puddles in monolayer graphene:
Transmission enhancement and local currents
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We investigate the contribution of charge puddles to the nonvanishing conductivity minimum in disordered
graphene flakes at the charge neutrality point. For that purpose, we study systems with a geometry that suppresses
the transmission due to evanescent modes allowing us to single out the effect of charge fluctuations in the transport
properties. We use the recursive Green’s function technique to obtain local and total transmissions through systems
that mimic vanishing density of states at the charge neutrality point in the presence of a local disordered local
potential to model the charge puddles. Our microscopic model includes electron-electron interactions via a spin
resolved Hubbard mean field term. We establish the relationship between the charge puddle disorder potential
and the electronic transmission at the charge neutrality point. We find that electronic interactions do not play a
significant role in this setting. We discuss the implications of our findings to high mobility graphene samples
deposited on different substrates and provide a qualitative interpretation of recent experimental results.
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I. INTRODUCTION

The peculiar electronic transport properties of graphene
have triggered numerous experimental and theoretical studies
[1–3]. Of particular interest is the conductivity of graphene
single layers at the charge neutrality point (CNP). Experiments
[4,5] have confirmed the theoretical prediction [6] that the
conductivity minimum is 4e2/πh for short and wide undoped
ballistic samples. For larger high mobility graphene flakes
deposited on oxide substrates [7,8], the conductivity shows a
minimum close to 4e2/h. This enhancement is in line with the-
oretical works that show that disorder increases the graphene
conductivity at the CNP [9–12]. This counterintuitive result
is interpreted as a manifestation of Klein tunneling [13,14]
and weak antilocalization [15]. Inhomogeneous electron-hole
charge puddles [16,17] are believed to be the main source of
disorder in undoped graphene systems [1,18,19].

Charge puddles are ubiquitous in single-layer graphene
samples deposited on a substrate [16,17,20], but their origin
is still under debate [21–25]. Charge inhomogeneities can
be formed, for instance, by charges trapped in the substrate
[16,26]. Some authors argue that ripples can induce charge
puddles [24,25], but typical experimental data show only a
weak spacial correlation between the latter [23,24]. It should
be mentioned that at high doping, transport measurements of
graphene on substrates with very different dielectric constants
[21,22] show surprisingly similar sample mobilities, indicating
that charge distribution fluctuations are unlikely to be the
dominant source for electron momentum relaxation processes
away from the CNP.

Scanning tunneling microscopy (STM) studies [20,27] of
the local chemical potential μloc at charge neutrality provide
further insight. They reveal that the charge fluctuations in
graphene monolayers on hexagonal boron nitride (hBN) [27]
are about an order of magnitude smaller than those on silicon
dioxide (SiO2) samples [20]. In both cases the data show that
μloc follows a Gaussian distribution with a standard deviation
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of 5.4 ± 0.1 meV for hBN and 55.6 ± 0.7 meV for SiO2.
Some authors find a typical charge puddle size a ≈ 20 nm
[28] independent of the substrate, while others [20] show that
the puddles in graphene on SiO2 are smaller than those of
graphene on hBN.

Several theoretical studies investigate the effect of a local
long range or chemical potential disorder at the charge
neutrality point [2,9,11,12,29]. In terms of the ratio between
the electron elastic mean free path � and the system size L, the
following picture emerges: While for �/L > 1 the transport is
ballistic and dominated by evanescent modes [6], deep in the
diffusive regime �/L � 1, the conductivity is governed and
enhanced by potential fluctuations scattering that lead to weak
antilocalization [2].

Recent experimental studies report an insulator behavior in
single-layer graphene on boron nitrite at the neutrality point
[30,31]. Reference [31] shows that the conductivity minimum
depends strongly on the matching between the graphene
and the hBN lattice constants. Reference [30] observes a
resistivity as high as several megaohms per square for low
temperatures, T ≈ 20 mK, with a power law increase with
temperature. A metal-insulator transition driven by decreasing
rather than by increasing the charge puddle disorder has
also been reported in graphene double layers [32]. These
observations do not fit in the general picture and call for further
investigation.

In summary, although it is widely accepted that disordered
charge puddles are responsible for an enhancement of the con-
ductivity minimum at the CNP, there is very little quantitative
support for this picture, particularly at the ballistic-diffusive
crossover regime. On one hand, analytical works rely on
semiclassical arguments that require charge puddles with a
large number of electrons [3,18], a condition hardly met
by experiments. On the other hand, numerical simulations
typically contain contributions of evanescent modes [6] that are
inextricably mixed with those due to charge inhomogeneities,
obscuring the latter. The main goal of this paper is to
disentangle these contributions and to single out the effects
of charge puddles in the conductivity of disordered graphene
sheets close to the neutrality point.
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For that purpose, we analyze the transport properties of
graphene systems with geometries that quench evanescent
modes using a self-consistent recursive Green’s function
(RGF) technique [33,34] with spin resolution that includes
the electronic interaction via a mean field Hubbard term.
We calculate electronic current densities between neighboring
carbon sites. We analyze the electronic propagation near
pn charge puddle interfaces, relating the general transport
properties to the typical puddles characteristics, such as their
charge, size, and shape.

This paper is organized as follows. In Sec. II we present the
model Hamiltonian we employ to describe graphene sheets
with disordered charge puddles. There we also discuss the key
ingredients necessary to calculate transport properties and to
realistically assess the minimum conductivity at the CNP using
a lattice model of a moderate size. In Sec. III we present the
total and local transmissions for different potential profiles,
establishing a qualitative understanding of the role of charge
puddles in the electronic transport. We present our conclusions
in Sec. IV.

II. MODEL AND THEORY

We model the electronic properties of a monolayer graphene
sheet by a Hubbard mean field π -orbital tight-binding model,
namely [1,33,35]

H = − t
∑

〈i,j〉,σ
a
†
i,σ aj,σ +

∑
i,σ

U

(
〈n̂i,−σ 〉 − 1

2

)
n̂i,σ

+
∑
i,σ

Vi n̂i,σ , (1)

where a
†
i,σ (ai,σ ) stands for the operator that creates (anni-

hilates) an electron with spin σ at the site i, n̂i,σ is the
corresponding electron number operator, while 〈n̂i,σ 〉 is its
expectation value, t is the hopping matrix element connecting
states at neighboring sites, and 〈i,j 〉 indicates that the sums
are restricted to first neighbor sites. The electron-electron
interaction is approximated by the Hubbard mean field term,
where U is the Coulomb energy for double occupancy of a
carbon site [33]. The choice of this effective interaction is
justified by the remarkable agreement between the Hubbard
mean field and density functional calculations of the electronic
properties of graphene nanoribbons [36].

We assume that the electron-hole puddles are generated by
a disordered long-range local potential V (r). We model V (r)
in the lattice, Vi = V (ri), by a superposition of NG Gaussian
potentials centered at the positions rp = (xp,yp), namely

Vi =
NG∑
p=1

Vp exp

[
−2

(xi − xp)2

d2
x

− 2
(yi − yp)2

d2
y

]
. (2)

We consider Vp to be either V or −V with equal probability,
and the positions ri are random and uniformly distributed over
the graphene flake. Suitable choices of the Gaussian range
parameters dx and dy allow us to study different physical
regimes, as discussed in the next section. For dx = dy this
model is equivalent to a Gaussian disordered model studied by
several authors [9,11,29].

L

W

x

y

FIG. 1. Sketch of an armchair GNR of length L and width W .
The red sites represent semi-infinite linear chains connected to source
or drain reservoirs.

A. Model geometry

Our main goal is the study of the effect of charge puddles
in transport properties in graphene flakes near the charge
neutrality point. From the perspective of simulations, the
difficulty is that the current numerical methods based on mi-
croscopic models that take into account interactions or address
local transport properties are computationally prohibitive for
systems of realistic sizes. For that reason we study much
smaller systems, with similar properties of bulk graphene,
and resort to a scaling scheme to draw conclusions. In what
follows we show that this is accomplished by using armchair
graphene nanoribbons (GNRs), such as the one depicted
in Fig. 1.

In the absence of electron-electron interaction, GNRs with
zigzag edges are always metallic. Armchair GNRs are metallic
when the number of hexagons across the transverse direction
is M = 3i, where i is an integer number, and semiconductor
otherwise [37]. Both zigzag and armchair metallic GNRs show
a unit transmission per spin channel as the doping goes to zero.
This metallic behavior, related to boundary effects, is unlikely
to be manifest in the bulk and makes it difficult to single out
the effects of charge puddles in the conductance. Electronic
interactions give rise to a gap in zigzag and chiral GNRs with
pristine edges, which is a condition hardly met by graphene
flakes. Thus, we find it more convenient to use semiconductor
armchair GNRs for this study.

It is convenient to express the length L and the width W of
armchair GNRs as L = N (

√
3a0/4) and W = Ma0, where N

gives the number of sites in an armchair chain along the GNR
length and M is the number of hexagons across its width.
a0 = 2.46 Å is the lattice parameter. The total number of sites
in the system is Ntot = (2M + 1)N/2. Figure 1 illustrates an
armchair GNR with M = 3, N = 16, and Ntot = 56.

The energy threshold E1 to open the first propagating
channel depends on the nanoribbon width W (or equivalently
on M) roughly as the inverse width [38]. The W−1 threshold
behavior we infer for interacting pristine graphene ribbons was
theoretically predicted for noninteracting nanoribbons [37]
and observed in experiments [39]. In the latter case, the systems
are more complex and the threshold behavior is understood in
terms of edge disorder [40]. With increasing W , the system
properties become increasingly similar to bulk graphene: The
bands collapse into a conical one and the energy gap goes
to zero, resulting in a vanishing DOS at the charge neutrality
point.
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B. Transport calculations

We obtain the system transport properties using the
nonequilibrium Green’s function technique [41,42]. We cal-
culate the system Green’s functions using the mean field
Hamiltonian given by Eq. (1) for the two-contact lattice
geometries shown in Fig. 1. For that purpose, we use the
recursive Green’s function method [34] combined with a
self-consistent procedure [33] that we describe below.

We compute the conductance using the partition geometry
shown in Fig. 1. The semi-infinite chains placed at the right (R)
and the left (L) side of the central region represent the leads
that connect the graphene flake to source and drain reservoirs.
The system Hamiltonian, Eq. (1), the Green’s functions, and
the transport properties depend self-consistently on the system
electronic density 〈n̂〉.

In the zero bias limit, the self-consistent relationship that
connects the electronic density and the system retarded Green’s
function Gr reads [42]

〈n̂i,σ (μ)〉 = −
∫ ∞

−∞

dE′

π
f (E′) Im

[
G

r,σσ
i,i (E′)

]
, (3)

where f (E) is the Fermi-Dirac distribution at the source
and drain reservoirs with corresponding chemical potentials
μL ≈ μR ≈ μ. For the systems of interest, where Ntot 	 1,
Gr (E) has a large number of complex poles and shows fast
energy variations close to charge neutrality. Thus, a real-axis
numerical evaluation of the integral in Eq. (3) is very costly,
since good accuracy demands a fine integration mesh.

Efficient methods [43–45] developed to evaluate the in-
tegral in Eq. (3) use complex analysis, taking advantage of
the analytical structure of Gr (E). Since the poles εp of the
retarded Green’s function lie in the lower complex half-plane,
Im(εp) < 0, Eq. (3) is readily evaluated by a contour inte-
gration. The integration limits have to be treated carefully:
To guarantee charge conservation all states must be inside
the integration limits [45]. The Fermi function provides an
effective upper energy cutoff but introduces Matsubara poles
in the upper complex half-plane. To efficiently deal with these
issues, we use the integration technique described by Ozaki in
Ref. [43]. The method expands the Fermi-Dirac distribution in
a partial fraction decomposition, so that the integral in Eq. (3)
is given by a sum of NĒ evaluations of Gr (Ēj ) at the complex
energies Ēj , with j = 1, . . . ,NĒ [43].

Two key features of this method are noteworthy: (i) There
is no need to specify the lower energy bound and (ii) the
integration precision is controlled by varying NĒ . To attain a
given accuracy, smaller temperatures require larger NĒ values.
We choose kT = 25 meV. This temperature is very amenable
for the numerical calculation and, since kT /E1 < 1, it still
guarantees that we address a low temperature regime for the
systems we study. We find that NĒ ≈ 40–50 guarantees an
error smaller than 10−5 for the electronic densities we study
in this paper. For the systems we analyze, this method is
three orders of magnitude faster than a real-axis integration.
Nonetheless, the calculation of 〈n̂〉 still remains as the com-
putational bottleneck that limits the conductance evaluation of
large model systems.

The self-consistent procedure we employ is rather standard:
We start with an initial guess for 〈n̂in(μ)〉, obtain the system

retarded Green’s function Gr (E) using the RGF method
[34], and calculate the updated equilibrium electronic density
〈n̂out(μ)〉 using Eq. (3). For the subsequent iterations we use the
modified second Broyden method [45–47] that mixes all the
previous input and output electronic densities to construct an
optimized input 〈n̂in(μ)〉 for the next self-consistent iteration.
The procedure is repeated until convergence is achieved.
Our convergence criteria is |〈n̂in(μ)〉 − 〈n̂out(μ)〉| < 10−5, for
which the required number of iterations is 20 up to ∼40
depending on system size. For the systems we study, self-
consistent loop procedures that naively update 〈n̂in(μ)〉 with
the occupations obtained from the previous iteration, 〈n̂out(μ)〉,
are about 102 times slower than those that use the Broyden
method [48].

Once convergence is achieved, we calculate the transport
quantities, such as the total transmission coefficient between
L and R contacts [41]

T σ
L,R(E) = Tr

[
�σ

L (E)Gr,σσ (E)�σ
R(E)Ga,σσ (E)

]
(4)

and the local transmission coefficient between the neighboring
i and j sites [34,49–52]

T σ
i,j (E) = −2t Im

{[
Gr,σσ (E)�σ

L (E)Ga,σσ (E)
]
i,j

}
. (5)

The advanced Green’s function is obtained from Ga,σ ′σ (E) =
[Gr,σσ ′

(E)]†. The linewidth functions are �σ
α (E) =

−2 Im �r,σ
α (E). Here �r,σ

α is the retarded self-energy asso-
ciated with the decay into α = L and R leads and is calculated
following a standard procedure [34].

Equations (4) and (5) assume the injection of electrons
is spin independent, �σ

α = �σ̄
α , and the absence of spin-flip

processes. Thus, at sufficiently low temperatures, the zero bias
limit conductance of the system for an electronic energy E

is G(E) = 2(e2/h)TL,R(E), where TL,R ≡ T σ
L,R = T σ̄

L,R. In the
diffusive regime, the conductance G can be converted into a
conductivity σ using σ = (L/W )G.

In the absence of electron-electron interactions, the aspect
ratio L/W dictates the conductance of pristine graphene sheets
[6]. For W/L 	 1, evanescent modes lead to a conductivity
minimum of the order e2/h at the charge neutrality point, both
for semiconductor and metallic graphene ribbons [6]. In the
opposite limit of narrow and/or long ribbons, W/L � 1, the
conductivity goes to zero.

We find that, for ballistic graphene systems, electron-
electron interactions do not qualitatively change this picture.
This statement is based on the study of the transmission
through pristine semiconductor graphene flakes with armchair
edges connected to generic metallic leads. We consider
different sizes and aspect ratios using U = t [53]. Our results
are summarized in Fig. 2.

As in the noninteracting case, the transmission dependence
on the geometry can be cast in terms of the aspect ratio. We
compute T (EF ) for L/W = 1, 2, and 5. Since we work in
the low temperature regime, we define EF = μ. For each value
of L/W we consider different system sizes defined by M .
Recall that W = Ma0. Figure 2 shows that by expressing the
electronic energy as ε = EF /E1, all T (EF ) corresponding to
GNRs with the same aspect ratio L/W collapse into a single
curve. For L/W = 1, the transmission minimum at EF = 0 is
roughly T ≈ 0.44. Electron-electron interaction effects in the
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FIG. 2. Total transmission T of armchair GNRs of different
widths W connected to generic metallic leads as a function of the
ratio between the energy EF and the first threshold energy of the
first conducting channel E1(W ). The behavior of T versus EF /E1

depends only on the GNR aspect ratio L/W .

mean field approximation only strongly affect the transmission
for states with a high density of states at the edges of zigzag
GNRs [36,54], which is not the case for armchair GNRs; the
noninteracting value of the transmission minimum is roughly
the same as that for U = 0.

The noninteracting result T (0) = 2/π ≈ 0.64 found ana-
lytically in Ref. [6] and reproduced numerically in Ref. [34]
differs from our calculation due to the different modeling of
the leads. While we use linear chain as contacts, these previous
works used square lattices that provide additional nondiagonal
self-energy elements, changing the leaking probability of the
electrons. For L/W = 2, the transmission minimum decreases
to about 0.05. Finally, zero transmission is obtained if the ratio
is as large as L/W = 5.

These results show that the evanescent modes contribution
indeed depends only on the aspect ratio L/W and that their
contribution to the conductance is almost entirely suppressed
for L/W > 5. As a consequence, even a 5-μm-long semicon-
ductor graphene flake may have a nonvanishing transmission
minimum at EF = 0 due to evanescent modes if W > 1 μm.
In the remainder of this paper we eliminate the effect of
evanescent modes by considering graphene systems with
L/W � 5.

III. RESULTS

In this section we study the effects of charge puddles on the
transmission minimum close to the charge neutrality point by
considering different models for V (r). To develop some insight
into the role of interactions and the variations on the local
potential, we begin discussing the simple case of a pn junction
before we proceed to cases of disordered charge puddles.

A. pn junctions: U = 0 limit case

We model the pn-junction interface potential V (r) by
taking dy 	 W in Eq. (2) that corresponds to a constant
potential along the GNR width. We consider a system with
M = 52 and choose the smallest value of N that gives an
aspect ratio L/W � 5, namely N = 604. We generate a pn

FIG. 3. Top: Potential profile of a smooth pn junction for M = 52.
The energy scale on the right is given in units of t . Middle:
Corresponding profile of the local transmission at EF ≈ 0.15E1.
Bottom: Zoom of the local transmission at selected areas.

junction by placing a positive Gaussian potential centered at
the site (L/4,W/2) and a negative one at (3L/4,W/2). We
choose dx = 0.24L. At the p- and n-doped regions, the local
potential is constant and set to V (r) = V for 0 � x � L/4
and V (r) = −V for 3L/4 � x � L. This choice renders a
V (r) with a smooth Gaussian transition between positively
and negatively doped regions.

We obtain E1 by inspecting the corresponding dispersion
relation. We choose the potential strength V = 10E1. The top
panel of Fig. 3 shows the contour plot of the pn-junction
potential V (r), while Fig. 5 shows V (r) along the system
longitudinal direction.

We compute the local transmissions for selected energies
close to the charge neutrality point using Eq. (5). We recall
that in this subsection we set U = 0. The middle panel of
Fig. 3 shows the local current density profile at the energy
EF = 0.15E1. This energy lies inside the transport gap of the
GNR in the absence of the pn junction, that is for V = 0.
The current near the system edges is mainly transmitted
through “armchair chains” (see insets at the bottom of Fig. 3),
similar to the transmission through pristine armchair GNRs.
At the center of the ribbon, backscattering processes mix the
transmission between different armchair chains generating a
richer transmission structure. The local transmission profile
is almost invariant along the system longitudinal direction,
including the p- and n-doped regions and their interface.

Figure 4 shows the total transmission T (EF ) as a function
of the electronic energy EF for several values of V . The
main features are: (i) T (EF ) shows Fabry-Perot interference
oscillations caused by backscattering at the abrupt potential
interfaces between the graphene central region and the right
and left contacts. (ii) The transport gap, centered at EF = 0 for
V = 0, appears twice at EF + V and at EF − V . (iii) Around
the CNP, between the two gapped regions, where otherwise one
would expect a transport gap, the transmission increases with
V . (iv) For large values of V (see, for instance, V/E1 � 7), the
transmission near the CNP shows EF dependent fluctuations,
but T (EF ) remains between 0.5 and 1.

In Fig. 5 we present a sketch that suggests a simple
explanation of the main features of the transmission through
the smooth pn junction in terms of the local band structure.
For 0 < x < L/4, the potential V (r) = V shifts the local
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FIG. 4. Transmission as a function of the electronic energy for
the pn junction shown in Fig. 3 for different potential values from
V = 0.01t through V = 0.40t . Here M = 19 and U = 0. The dashed
lines correspond to wtun, Eq. (7), for each value of V . For clarity, the
transmissions are shifted by T = 1 for successive values of V .

CNP to +V . Similarly, for 3L/4 < x < L, the CNP is shifted
down to −V . The transition from +V to −V happens in the
region where L/4 < x < 3L/4. Thus, V (r) leads to band gaps
V − E1 < EF < V + E1 and −V − E1 < EF < −V + E1

at the “left” and “right” sides of the junction, respectively. This
is illustrated by the right panel of Fig. 5. For energies around the
global CNP (EF = 0), that is for −V + E1 < EF < V − E1,
the available states at x = 0, the electrons must tunnel through
at least one locally gapped region (at x = L/2).

The following picture emerges: For V < E1 the transmis-
sion is suppressed for |EF | < V + E1 due the band gaps either
at the right or at the left. (In our calculations T is small but
nonzero, because we work with a finite L.) This corresponds
to the cases where V = 0.01t and V = 0.05t , shown in Fig. 4.
For V > E1 and |EF | < V − E1, Klein tunneling at the pn

0 L/4 L/2 3L/4 L x

EF

0

+V

−V

E1 + V

−E1 + V

E1 − V

−E1 − V

Transmission

EF

0 1

V (x)
gap

gap

FIG. 5. Left: Sketch of the local dispersion relation at five
representative points x = 0, L/4, L/2, 3L/4, and L. The black line
along the length L represent the potential profile V (r) due to a smooth
pn junction. The dashed gray lines at +V and −V indicate the local
CNP for x = 0 and x = L, respectively. The blue (red) solid lines at
V + E1 and V − E1 (−V + E1 and −V − E1) stand for the energies
to open the first channel in the presence of the potential V at x = 0
(x = L). Right: Sketch of the transmission (solid line) as a function
of EF for the potential in the left panel. The dashed lines correspond
to the undoped system transmissions, shifted up or down due to V .

interface dominates the transmission, and the gaps appear only
for increasing |EF |. This transmission profile corresponds to
the cases where V > E1 in Fig. 4 and is qualitatively captured
by the sketch presented in the right panel of Fig. 5.

Let us now estimate the magnitude of transmission at the
CNP. For that purpose we adapt the semiclassical analysis of
the Klein tunneling transmission presented in Ref. [14] to our
case. First, we relate the local longitudinal wave number of the
nth band with the electron energy EF in the presence of a pn

junction potential profile u(x), as

EF = v

√
k2
x(EF ,x) + (En/v)2 + u(x), (6)

where v = √
3ta0/2 and En is the threshold energy to open

the nth channel for u(x) = 0. For the sake of simplicity,
we approximate the pn junction potential profile to u(x) ≈
Fx, where F = −(2V/d)x. At the charge neutrality point,
where EF = 0, the longitudinal momentum becomes kn(x) =
v−1

√
F 2x2 − E2

n. In this situation, the classically forbidden
region corresponds to �− < x < �+, where �± = ±En/F . The
probability of an electron in channel n to tunnel through the
classically forbidden region (gapped region) can be approxi-

mated by wn ≈ exp [i
∫ �+
�−

k(x)dx] = exp (− π√
3ta0

dE2
n

V
).

Thus, the total tunneling probability reads

wtun ≈
∞∑

n=1

wn =
∞∑

n=1

exp

(
− π

2
√

3ta0

LE2
n

V

)
. (7)

Here we set d = L/2, since in our model the pn junc-
tion potential u(x) varies from V to −V in the interval
L/4 < x < 3L/4. The contribution of each channel n to the
tunneling probability in Eq. (7) decays exponentially with
E2

n ∝ M−2. For very large M , many channels contribute to
the transmission, and we can transform the sum in Eq. (7) into
an integral, recovering the results of Ref. [14].

For the system studied in Fig. 4 (L = 220
√

3a0/4 =
234.35 Å and L/W = 5), we obtain wtun to good accuracy by
summing over a small number of channels, n � Nch = 3. The
ribbon band structure renders E1 ≈ 0.05t , E2 ≈ 0.10t , and
E3 ≈ 0.20t . Around the CNP the analytical transmission wtun

(dashed lines in Fig. 4) is in nice qualitative agreement with
the numerical calculated one. We attribute the small deviations
to Fabry-Perot interference patterns due to the wave function
mismatch at the graphene-contact interface.

These observations allow us to infer the behavior of the
conductance as one increases W to realistic sample sizes: (i)
the transmission for |EF | < V increases since the transverse
mode energies En decrease with W and more transverse modes
contribute to the transmission, see Eq. (7). (ii) The “satellite”
gaps at EF = ±V shrink and tend to disappear, since E1 scales
with W−1. (iii) The behavior for the homopolar junctions,
|EF | > V , remains qualitatively the same. (iv) Finally, the
magnitude of the Fabry-Perot oscillations depends on the
nature of the graphene-contact interface and will be suppressed
as the ratio between electron-impurity mean free path �imp and
the system size becomes smaller than unit, a situation that calls
for an analysis along the lines of Ref. [55].
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FIG. 6. Transmission as a function of the electronic energy EF in
units of E1 for armchair edge ribbons of different widths calculated
for a pn junction with a Gaussian profile. Inset: Same plot for energies
in units of t . The solid line indicates the global transmission minimum
Tmin.

B. pn junctions: U �= 0 case

We now switch on the interaction U = t . The model
potential is also slightly modified. We place a positive
Gaussian potential centered at (L/4,W/2) and a negative
one at (3L/4,W/2), keeping dy 	 W and dx = 0.24L. This
parametrization introduces a smooth variation of the pn

junction potential close to the contacts.
Figure 6 shows the total transmission T (EF ) as a function

of the Fermi energy EF for several values of M . Here, V =
10E1. Since V (r) is no longer constant either for 0 < x <

L/4 or for 3L/4 < x < L, there is no band gap alignment
in these regions, which facilitates the electronic transport. As
a result, for V − E1 < EF < V + E1 and −V − E1 < EF <

−V + E1, the transmission is nonzero, a distinction of the
case analyzed in the preceding subsection. For |EF | < V , the
transmission T (EF ) displays stronger oscillations than those
of the previous case, Near the CNP, the transmission remains
nearly unit.

We find that by rescaling the energy EF as ε = EF /E1,
the transmission calculated for different values of M collapses
into a single curve. This is illustrated in Fig. 6, inset and main
panel. For |EF | < V , the electron backscattering amplitude
is appreciable, and its interference with the transmission
process gives rise to the oscillating pattern in Fig. 6. For
|EF | > V the back scattering amplitude becomes weaker and
the interference effects are suppressed. Like in the U = 0,
the main features of the transmission can be qualitatively
explained by Fabry-Perot interference and Klein tunneling.

In order to understand the onset of the transmission
minimum we also study (not shown here) the transmission
for several ribbon widths and potential strengths V = 5E1,
V = 10E1, V = 15E1, and V = 20E1. We find that: (i) V

determines the energy window characterized by large inter-
ference oscillations, namely, |EF | < V . (ii) The transmission
has an overall nonvanishing minimum Tmin. (iii) Tmin does
not show a simple dependence on V . Tmin increases with
V until it saturates at a value close to unity, leading to a
conductance of order of e2/h. (iv) Most importantly, we
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FIG. 7. Transmission as a function of EF for U = 0 and U = 1
for an armchair edge ribbons with M = 19 in the vicinity of a
pn junction with a Gaussian potential profile with V = 0.5t . Inset:
Difference between the electronic occupancies in the noninteracting
and interacting cases at EF = 0.0001t .

conclude that deviations from a flat V (r) close to the graphene-
contact interface increase the transmission, Tmin > 0, and
eliminate the energy windows of zero transmission presented
in Sec. III A.

We note that Tmin obtained in this simple model is due to
the local band energy mismatch close to the contact regions.
It should not be confused with the minimum transmission in
disordered graphene systems addressed in Sec. III D.

Figure 7 compares the electronic transmissions through
a narrow GNR with M = 19 for U = 0 and U = t . The
transmission in the interacting case is qualitatively similar to
the noninteracting one, but there are quantitative differences,
particularly close to the CNP. The interaction U corrects
the local electronic density 〈n̂j,σ 〉 which is also a function
of the local potential Vj . Thus, the difference between the
noninteracting and the interacting potentials U 〈n̂j,σ 〉 becomes
stronger on top of the high doped areas (see the inset of Fig. 7)
and creates a new potential profile that changes the interference
pattern in the transmission.

C. Focusing effects in a two Gaussian puddle geometry

Let us now study the effect of a potential variation along the
transverse direction. Specifically, we analyze the transmission
in a graphene ribbon with two Gaussian charge puddles. We set
dy = 0.6Ma0, dx = 0.24L and place the Gaussian potentials
at (L/4,W/2) and (3L/4,W/2). The remaining parameters are
the same as in Sec. III B with U = t . The potential profile V (r)
is illustrated by Fig. 8 (top panel).

The middle panel of Fig. 8 shows the local transmission
profile at EF = 0.15E1. Near the source (left) and the drain
(right) the local transmission is almost evenly distributed
across the system width. At the pn interface region, x ≈ L/2,
the behavior is similar. In contrast, near the center of both
positive and negatively charged puddles, corresponding to the
most doped regions of the system, the transmission is largely
enhanced. This implies a strong suppression of the current
close to the edges, due to current conservation along different
ribbon cross sections.
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FIG. 8. Top: Potential profile V (r) for M = 52. The energy scale
on the right is in units of t . Middle: Corresponding local transmission
at EF ≈ 0.15E1. Bottom: Zoom of the local transmission at selected
areas.

In summary, the Gaussian potentials not only favor the
electronic propagation but also focus the transmission on the
highly doped areas. This effect can be interpreted in terms of
the picture discussed in the previous section. Close to the center
of the puddles, the potential V (r) shifts the local dispersion
relation. “Local” transmission modes are opened if |V (rc)| >

E∗
n . Note that here the threshold energies E∗

n are related to the
puddle width a, rather then to the system width W .

As in the previous case, we find that the transmissions
T (EF ) for different widths W collapse very nicely to a
single curve by scaling ε = EF /E1, particularly for the energy
window where |ε| < 5, see Fig. 9. We expect a similar result
if we scale EF by E∗

1 , since in our model the ratio between the
puddle size a and the system width W does not change with
M . These observations suggest that by proper scaling one can
address systems with realistic sizes.

Upon first inspection, the transmissions T (EF ) shown in
Figs. 6 and 9 look similar. A more detailed analysis indicates
that in the present case: (i) The value of the transmission
minimum is smaller. (ii) The interference pattern covers a
smaller energy window. We speculate that those results are
due to the smaller doping of the areas near the edges. The
ribbon accommodates a smaller number of propagating states,
compared to the pn junction case, so that the total transmission
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FIG. 9. Transmission as a function of the electronic energy EF

in units of E1 for armchair edge graphene ribbons of different
widths M .

FIG. 10. Top: Random potential profile V (r) realization (see text
for details). The energy scale in the right is in units of t . Middle:
Corresponding dimensionless local current density at energy EF ≈
2.31E1 = 0.04t . Bottom: Zoom of selected areas showing the local
transmission in details.

through a ribbon cross section is smaller. Since the total doping
of the ribbon is smaller, the effective scattering potential that
determines the energy window of the interference pattern is
also smaller.

D. Disordered charge puddles

In this subsection we study the case of randomly distributed
charge puddles that are ubiquitous in graphene samples
[1,16,17,19,20]. We analyze two limiting cases, namely,
small and large charge puddles, as compared with W . The
corresponding V (r) are shown in the top panels of Figs. 10
(small puddles) and 11 (large puddles). The random potential
is generated according to Eq. (2) with NG = 8, dx = 62a0,
and dy = 31a0 for a system with dimensions M = 52 (W =
12.5 nm) and N = 604 (L = 62.8 nm). In both cases we set
V = 0.2t = 11.44E1.

The middle and bottom panels of Figs. 10 and 11 show
that, as in the previous subsection, the local transmission is
focused on the maximally n and p doped areas. The “large”
puddles illustrated in Fig. 11 induce higher local currents than
the “small” ones corresponding to Fig. 10 (see scales).

The results indicate that the local transmission depends
strongly on the potential landscape, since the number of
propagating modes increases with both puddle size a and

FIG. 11. Same as in Fig. 10 for a different random potential
realization.

045404-7



LEANDRO R. F. LIMA AND CAIO H. LEWENKOPF PHYSICAL REVIEW B 93, 045404 (2016)

-20 -10 0 10 20
0
1
2
3
4
5
6
7

Tr
an
sm
is
si
on

EF/E1

M=31
M=40
M=52

FIG. 12. Transmission as a function of the electronic energy in
units of E1. We show the results for M = 52 with the potential profile
in Fig. 10 and for M = 31,40 using a similar potential profile scaled
down to smaller sizes keeping the aspect ratio.

local doping δn(r) ≡ n(r,V �= 0) − n(r,V = 0). In the limit
of a(δn)1/2 	 1, the random resistor model put forward in
Ref. [18] estimates the conductivity at the CNP to be σmin ≈
(e2/�)(a2δn)0.41, where a and δn are defined by the correlation
function 〈δn(r)δn(r′)〉 ≡ δn2F (|r − r′|/a) [18]. The model is
semiclassical and does not include interference effects. Despite
these limitations, σmin is in qualitative agreement with our
numerical findings which we discuss next, namely, that the
transmission near the CNP is larger for the “large” charge
puddle case than for the “small” puddle one.

Figures 12 and 13 show the total transmission correspond-
ing to the potential profiles presented by Figs. 10 and 11,
respectively. Here, by expressing the energy as ε = EF /E1,
the transmissions for different system sizes no longer collapse
into a single curve. Nonetheless, in all studied cases T (ε)
shows a similar average behavior and fluctuations reminiscent
of the universal conductance fluctuations (UCF) ubiquitous in
disordered mesoscopic systems.

Around the CNP (|E/E1| � 10) the number of open modes
depends strongly on the typical puddle size: The larger the
puddles the smaller E∗

n . Hence, one expects to observe an
enhanced transmission for the “large” puddle case. Away
from the CNP (|EF /E1| � 10), Figs. 12 and 13 show that
the transmission for the “large” puddles case is smaller
than that for the “small” ones. We interpret this feature as
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FIG. 13. Same as in Fig. 12 using the potential profile in Fig. 11.

follows: Here the number of open modes is dictated by EF .
Stronger disorder potential fluctuations are more effective to
mix different modes and to favor backscattering, giving rise to a
smaller transmission. Thus, disordered puddles are detrimental
to the transport as one approaches the semiclassical regime,
but they enhance the transmission minimum around the CNP.
We note that here the transmission minimum survives even in
the absence of evanescent modes [6].

We also compare the transmission for U = 0 and U = t .
The results are qualitatively similar. Our calculations (not
shown here) indicate that the Hubbard mean field interaction
corrects for an overestimation of the onsite electronic density
but has little impact on the local or total transmissions through
the systems. The simple interference patterns we observe in
the single pn junction are quenched by the random potential.
The latter leads to UCF that makes it difficult to sort out the
small differences between the interacting and noninteracting
transmissions.

We make connections with experiments by estimating
the typical values of E∗

1 for realistic size samples. We find
that graphene charge puddles with sizes a ≈ 20 . . . 50 nm
correspond to E∗

1 ≈ 10 . . . 30 meV. Typical graphene on
silicon oxide samples [20] show δV/E∗

1 > 1. Hence, charge
puddle disorder enhances the conductivity and guarantees a
nonvanishing conductivity minimum at the CNP, independent
of the contribution due to evanescent modes. For graphene
on hBN, where δV ≈ 5 meV [20], only a small fraction of
puddles meet the criterion Vloc(r)/E∗

1 � 1. In this situation,
charge puddle fluctuation assisted transport is very unfavor-
able. Hence, for graphene flakes on hBN with aspect ratios
L/W > 3, where evanescent modes contribute very little to
the transmission, one expects the conductivity at the CNP to be
strongly suppressed. We believe that this scenario is consistent
with the experimental report [30] of an insulator behavior of
single-layer graphene on hBN at the neutrality point.

IV. CONCLUSIONS

We studied the effect of charge puddles in the transmission
minimum of single layer graphene stripes by means of a
microscopic model based on a spin resolved tight-binding
Hamiltonian including electron-electron interactions via a
Hubbard mean field term. To understand the conductivity at
the CNP and scale up our results to experimental size samples,
we used the recursive Green’s function technique to obtain
the transmission through semiconductor graphene strips with
an armchair edge. The charge puddles are modeled by a local
Gaussian disordered potential.

First we studied pristine graphene systems with a smooth
pn junction. This simple model shows that the onset of
the transmission minimum at the CNP occurs for potential
strengths V larger than the threshold energy E1 to open the first
conducting transverse mode of the system. The transmission
near the CNP is robust against smooth changes in the potential
along the propagation direction, and it does not depend much
on whether the doping is n- or p-type. We showed that all
transmission features around the CNP can be explained by
Klein tunneling and by Fabry-Perot interference due to the
mismatch of the wave functions at the graphene-contacts
interface.
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Next, we studied the transmission through a system with
two charge puddles separated by a smooth pn interface. In this
setting, we find that the overall total transmission decreases
and the local transmission is focused around the maximally
p- or n-doped regions, corresponding to the centers of the
puddles. We showed that the electron-electron interaction U

corrects the electronic density giving rise to an interference
pattern in the electronic transmission that differs quantitatively
from the noninteracting case around the CNP but that does not
qualitatively change the transmission. We demonstrated that
by using E1 (or E∗

1 , see text) as the energy unit, the transport
properties around the CNP become independent of the system
size. This powerful result allows us to address realistic sized
systems by scaling up our model calculations obtained for
small systems, whose sizes are imposed by computational
limitations.

Finally, we also modeled disordered charge puddle distri-
butions showing that, depending on the puddles sizes, there
is a nonvanishing average transmission minimum around the
CNP with fluctuations similar to UCF. The numerical results
can be qualitatively explained by Klein tunneling at the pn

interfaces formed at the puddles interface and the enhanced
(focused) local transmission at the maximally doped areas. In
this case, we find that the interaction U does not appreciably
affect the electronic transmission.

Our results show that, for graphene on silicon oxide, the
local chemical fluctuations [20,28] are sufficiently large to
explain a nonvanishing conductivity minimum at the charge
neutrality point σCNP in terms of charge puddle disorder-
assisted transport. On the other hand, in typical graphene
samples on hBN [20], only a small fraction of puddles
show Vloc(r)/E∗

1 � 1. In this case, unless compensated by
contributions from evanescent modes, one expects a strong
suppression of σCNP. This scenario is consistent with the recent
experimental report [30] of an insulator behavior of σCNP in
graphene on hBN samples with an aspect ratio L/W � 3.

In summary, this study separates the contribution of
evanescent modes from that of charge puddles in the transport
properties of graphene strips close to the CNP. We found that
the presence of electron and hole puddles in graphene enhances
the electronic transmission at the CNP depending on their
size and charge, represented in our model by a and V . We
argue that our findings provide a scenario to explain transport
experiments in graphene deposited on both SiO2 [7,8] and
hBN substrates [30].
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[53] M. Schüler, M. Rösner, T. O. Wehling, A. I. Lichtenstein, and

M. I. Katsnelson, Phys. Rev. Lett. 111, 036601 (2013).
[54] A. R. Carvalho, J. H. Warnes, and C. H. Lewenkopf, Phys. Rev.

B 89, 245444 (2014).
[55] M. M. Fogler, L. I. Glazman, D. S. Novikov, and B. I. Shklovskii,

Phys. Rev. B 77, 075420 (2008).

045404-10

http://dx.doi.org/10.1103/PhysRevLett.110.216601
http://dx.doi.org/10.1103/PhysRevLett.110.216601
http://dx.doi.org/10.1103/PhysRevLett.110.216601
http://dx.doi.org/10.1103/PhysRevLett.110.216601
http://dx.doi.org/10.1038/nphys2954
http://dx.doi.org/10.1038/nphys2954
http://dx.doi.org/10.1038/nphys2954
http://dx.doi.org/10.1038/nphys2954
http://dx.doi.org/10.1038/nphys2114
http://dx.doi.org/10.1038/nphys2114
http://dx.doi.org/10.1038/nphys2114
http://dx.doi.org/10.1038/nphys2114
http://dx.doi.org/10.1103/PhysRevB.79.205430
http://dx.doi.org/10.1103/PhysRevB.79.205430
http://dx.doi.org/10.1103/PhysRevB.79.205430
http://dx.doi.org/10.1103/PhysRevB.79.205430
http://dx.doi.org/10.1007/s10825-013-0458-7
http://dx.doi.org/10.1007/s10825-013-0458-7
http://dx.doi.org/10.1007/s10825-013-0458-7
http://dx.doi.org/10.1007/s10825-013-0458-7
http://dx.doi.org/10.1103/PhysRevB.75.205441
http://dx.doi.org/10.1103/PhysRevB.75.205441
http://dx.doi.org/10.1103/PhysRevB.75.205441
http://dx.doi.org/10.1103/PhysRevB.75.205441
http://dx.doi.org/10.1103/PhysRevLett.97.216803
http://dx.doi.org/10.1103/PhysRevLett.97.216803
http://dx.doi.org/10.1103/PhysRevLett.97.216803
http://dx.doi.org/10.1103/PhysRevLett.97.216803
http://dx.doi.org/10.1103/PhysRevB.73.235411
http://dx.doi.org/10.1103/PhysRevB.73.235411
http://dx.doi.org/10.1103/PhysRevB.73.235411
http://dx.doi.org/10.1103/PhysRevB.73.235411
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevB.79.075407
http://dx.doi.org/10.1103/PhysRevB.79.075407
http://dx.doi.org/10.1103/PhysRevB.79.075407
http://dx.doi.org/10.1103/PhysRevB.79.075407
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevB.75.035123
http://dx.doi.org/10.1103/PhysRevB.75.035123
http://dx.doi.org/10.1103/PhysRevB.75.035123
http://dx.doi.org/10.1103/PhysRevB.75.035123
http://dx.doi.org/10.1103/PhysRevB.80.073102
http://dx.doi.org/10.1103/PhysRevB.80.073102
http://dx.doi.org/10.1103/PhysRevB.80.073102
http://dx.doi.org/10.1103/PhysRevB.80.073102
http://dx.doi.org/10.1103/PhysRevB.81.155450
http://dx.doi.org/10.1103/PhysRevB.81.155450
http://dx.doi.org/10.1103/PhysRevB.81.155450
http://dx.doi.org/10.1103/PhysRevB.81.155450
http://dx.doi.org/10.1103/PhysRevB.34.8391
http://dx.doi.org/10.1103/PhysRevB.34.8391
http://dx.doi.org/10.1103/PhysRevB.34.8391
http://dx.doi.org/10.1103/PhysRevB.34.8391
http://dx.doi.org/10.1103/PhysRevB.75.235307
http://dx.doi.org/10.1103/PhysRevB.75.235307
http://dx.doi.org/10.1103/PhysRevB.75.235307
http://dx.doi.org/10.1103/PhysRevB.75.235307
http://dx.doi.org/10.1103/PhysRevB.57.8797
http://dx.doi.org/10.1103/PhysRevB.57.8797
http://dx.doi.org/10.1103/PhysRevB.57.8797
http://dx.doi.org/10.1103/PhysRevB.57.8797
http://dx.doi.org/10.1103/PhysRevB.68.075306
http://dx.doi.org/10.1103/PhysRevB.68.075306
http://dx.doi.org/10.1103/PhysRevB.68.075306
http://dx.doi.org/10.1103/PhysRevB.68.075306
http://dx.doi.org/10.1103/PhysRevB.73.075303
http://dx.doi.org/10.1103/PhysRevB.73.075303
http://dx.doi.org/10.1103/PhysRevB.73.075303
http://dx.doi.org/10.1103/PhysRevB.73.075303
http://dx.doi.org/10.1209/0295-5075/80/47001
http://dx.doi.org/10.1209/0295-5075/80/47001
http://dx.doi.org/10.1209/0295-5075/80/47001
http://dx.doi.org/10.1209/0295-5075/80/47001
http://dx.doi.org/10.1103/PhysRevLett.111.036601
http://dx.doi.org/10.1103/PhysRevLett.111.036601
http://dx.doi.org/10.1103/PhysRevLett.111.036601
http://dx.doi.org/10.1103/PhysRevLett.111.036601
http://dx.doi.org/10.1103/PhysRevB.89.245444
http://dx.doi.org/10.1103/PhysRevB.89.245444
http://dx.doi.org/10.1103/PhysRevB.89.245444
http://dx.doi.org/10.1103/PhysRevB.89.245444
http://dx.doi.org/10.1103/PhysRevB.77.075420
http://dx.doi.org/10.1103/PhysRevB.77.075420
http://dx.doi.org/10.1103/PhysRevB.77.075420
http://dx.doi.org/10.1103/PhysRevB.77.075420



