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Spin-valley qubit in nanostructures of monolayer semiconductors:
Optical control and hyperfine interaction
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We investigate the optical control possibilities of spin-valley qubit carried by single electrons localized in
nanostructures of monolayer TMDs, including small quantum dots formed by lateral heterojunction and charged
impurities. The quantum controls are discussed when the confinement induces valley hybridization and when the
valley hybridization is absent. We show that the bulk valley and spin optical selection rules can be inherited in
different forms in the two scenarios, both of which allow the definition of spin-valley qubit with desired optical
controllability. We also investigate nuclear spin-induced decoherence and quantum control of electron-nuclear
spin entanglement via intervalley terms of the hyperfine interaction. Optically controlled two-qubit operations in
a single quantum dot are discussed.
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I. INTRODUCTION

Single spins at semiconductor nanostructures have been
widely explored as information carriers in quantum comput-
ing, quantum spintronics, and quantum metrology [1–3]. These
solid-state qubit systems of interest include the spin of single
electrons or holes localized at quantum dots or by impurities
formed in various bulk semiconductors such as the III-V
compounds, silicon and diamond, and their heterostructures
and nanoscrytals. These electron and hole spin qubits have
demonstrated remarkable optical and electrical controllability,
relatively long coherence time at low temperature compared
to the unit operation time, and potential integrability with
existing semiconductor technologies. Through the hyperfine
interactions with the electron or hole spin qubits, the lattice
nuclear spins also play crucial roles in these solid-state qubit
systems, either as additional information carriers with the
advantage of extremely long storage time or as a deleterious
noise source that need to be suppressed.

Atomically thin two-dimensional (2D) semiconductors of-
fer new opportunities for quantum spintronics and spin-based
quantum information processing. An electrically controllable
spin qubit system based on 2D materials was first proposed
in graphene, a gapless semiconductor [4]. Monolayer group–
VIB transition metal dichalcogenides (TMDs) have recently
emerged as a new class of direct gap 2D semiconductors
with appealing optical properties and rich spin physics,
implying their great potentials for hosting optically controlled
spin qubits [5,6]. These compounds are of the chemical
composition of MX2 (M = Mo,W; X = S, Se). The monolayer
is a X-M-X covalently bonded hexagonal 2D lattice, with
a direct band gap in the visible frequency range which is
ideal for optoelectronic applications and for the exploration of
optical control of spin [7,8]. Single electrons can be confined
in quantum dots defined by lateral confinement potentials
on an extended monolayer, e.g., by patterned electrodes,
similarly to the quantum dots in III-V heterostructures, and
electrically controlled spin qubit has been proposed [9,10].
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Alternatively, quantum dot confinement can also be realized
by the lateral heterojunctions on a single crystalline monolayer
but with different metal elements in- and outside the quantum
dot region (cf. Fig. 1), where the band offset between the
different TMD compounds forms the potential to confine
single electron or hole. Lateral heterostructures with MoSe2

islands surrounded by WSe2 on a crystalline monolayer
have been demonstrated very recently using chemical vapor
deposition growth, although the length scale of the island is
∼μm, which is still too large for confining single electron [11].
The TMDs monolayers also host various atomic defects
which can localize single electron or hole as well [12–16].
Remarkably, recent experiments have shown that certain types
of defects in monolayer WSe2 are excellent single-photon
sources, emitting at an energy which is a few tens meV below
the exciton in the 2D bulk [17–21]. Such behaviors of the
TMDs defects resemble the shallow impurities in conventional
semiconductors (e.g., Si donor in III-V compounds) that
localize single electron (or hole) as well as single exciton,
implying the possibility towards optical control of single-
electron spin [22].

Optically controlled spin qubit is highly appealing in
monolayer TMDs because of the interesting optical properties
of the 2D bulk. The monolayer TMDs have a unique band
structure with the conduction and valence band edges both
at the degenerate K and −K valleys at the corners of the
hexagonal Brillouin zone. The direct-gap optical transitions
have a selection rule: left- (right-) handed circular polarized
photons couple to the interband transitions in the K (−K)
valley only [23,24]. This valley-dependent optical selection
rule has made possible in the 2D bulk the optical pumping of
valley polarization, [25–27] and optical generation of valley
coherence [28]. Moreover, the spin-orbit coupling from the
metal atoms gives rise to a pronounced coupling between
the valley pseudospin and spin [6,29,30], through which the
optical selection rule becomes a spin-dependent one, allowing
the optical control of spin as well. This suggests that the valley
pseudospin and spin of a single electron can be a promising
qubit carrier with optical controllabilities, as long as these bulk
properties can be inherited when the electron is localized in
the monolayers.

2469-9950/2016/93(4)/045313(15) 045313-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.045313


WU, TONG, LIU, YU, AND YAO PHYSICAL REVIEW B 93, 045313 (2016)

FIG. 1. Schematics of nanostructures of monolayer TMDs for optically controlled spin-valley qubit: (a) small quantum dots in lateral
heterojunction and (b) charged impurity system. In (a), the heterojuction is formed of a MoSe2 island in monolayer WSe2. An electron is
confined in the MoSe2 quantum dot (bottom panel) and is excited to the trion state (top panel). The schematics of the confinement potential is
shown on the left. In (b), the impurity system is formed in monolayer WSe2 when a W atom is replaced by a Re one. The D0 system is shown
at the bottom and D0X is shown at the top.

A major difference in the spin and valley pseudospin
physics expected between the bulk electron and the localized
electron is the intervalley coupling and valley hybridization by
the confinement. This issue has been studied for quantum dot
confinement potentials on extended monolayers [31], where
the intervalley coupling is found to be weak for quantum dot
with lateral size larger than 20 nm (∼meV or orders smaller,
depending on the shape and size of the dot). In such a case, the
valley hybridization is well quenched by the much-stronger
spin-valley coupling, and the quantum dot can well inherit
the valley and spin physics of the 2D bulk. Interestingly, a
sensitive dependence of intervalley coupling strength on the
central position of the confinement potentials is discovered. It
is found that when the potential has C3 or higher rotational
symmetry, the intervalley coupling completely vanishes if the
potential center is at a chalcogen atom site or the hollow center
of the hexagon formed by metal and chalcogen atoms, which is
due to the dependence of the eigenvalue of C3 rotation operator
on the location of the rotation center [31,32].

In this work, we investigate the optical control possibilities
of spin-valley qubit carried by single electrons localized
in nanostructures of monolayer TMDs, including charged
impurities and small quantum dots (with length scale of
10 nm or smaller). We discuss the quantum controls under two
different scenarios: (i) in the presence of valley hybridization
due to the strong confinement and (ii) in the absence of
valley hybridization. The latter scenario is considered for the
confinements that has C3 or higher rotational symmetry about
a chalcogen atom site or the hollow center of the hexagon
formed by metal and chalcogen atoms or when this symmetry

is only weakly broken so the residue intervalley coupling can
be well quenched by the spin-valley coupling. We show that
the bulk valley and spin optical selection rules can be inherited
in different forms in the two scenarios, both of which allow the
coherent rotation between electron states controlled by optical
pulses. The hyperfine interaction between lattice nuclear spins
and the electron or hole spin is also formulated within the
envelop function approximation, and the nuclear spin-induced
decoherence of the spin-valley qubit is analyzed. We find that
the short-range nature of the hyperfine interaction gives rise to
intervalley terms, which can be utilized for optical control of
the electron-nuclear spin entanglement.

The rest of the paper is organized as follows. In Sec. II,
we give a brief account of the nanostructures being considered
here for optically controlled spin-valley qubit. In Sec. III, we
discuss the electron states in presence of valley hybridization
expected in strong confinement and present the optical selec-
tion rules for the quantum confined states. Coherent rotations
between valley hybridized states by optical control will be
discussed. In Sec. IV, we discuss the electron states in the
absence of valley hybridization when the confinement has
the aforementioned rotational symmetry. The optical control
is achieved with the help of external magnetic fields. In
Sec. V, we discuss the hyperfine interactions of the confined
electrons and holes with lattice nuclear spins in the envelope
function approximation. We propose to optically control the
electron-nuclear spin entanglement via intervalley terms of the
hyperfine interaction. The decoherence time of the localized
electron spin caused by interacting with lattice nuclear spins
is discussed. In Sec. VI, we discuss the possibility of realizing
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two-qubit logic operations between the spin qubit and the
valley qubit carried by a single electron in a quantum dot.
Finally, conclusions are given in Sec. VII. Appendix A uses
a three-band tight-binding model to estimate the intervalley
coupling strength in the confinement by charged impurity and
small quantum dot. In Appendix B, we analyze the terms in the
electron-nuclear and hole-nuclear hyperfine interactions based
on symmetries of the relevant atomic orbitals and estimate the
bulk hyperfine constants.

II. CONFINEMENT OF SINGLE ELECTRON
IN THE NANOSTRUCTURES

If the length scale of the confinement potential is still much
larger than the lattice constants, the bound states are formed
predominantly from the band-edge Bloch states in the K and
−K valleys of the 2D bulk. In general, each eigenstate in
the confinement is a hybridization of Bloch states from the
K and −K valleys due to the intervalley coupling introduced
by the confinement potential, except when the potential has a
C3 rotational symmetry about either a chalcogen atom site
or a hollow center of the hexagon formed by metal and
chalcogen atoms [31]. In the absence of valley hybridization,
the bound-state eigenfunctions can be constructed from Bloch
states from the K or −K valley only, denoted as �τ,s where
τ = ± is the valley index for the ±K valley and s = ↑ (↓)
denotes the spin-up (-down) state. This is a convenient basis
for our discussion, even when intervalley coupling and valley
hybridization are present. Intervalley coupling is then the
off-diagonal matrix elements between these basis states due
to the confinement potential. If confinement potential is spin
independent, intervalley coupling vanishes between states with
opposite spin index. With the large quantization energy in the
confinement potential (see Appendix A), we can focus only
on the ground states for each spin and valley index, while the
excited states are far off resonance concerning either the valley
hybridization effect or the optical control of the spin-valley
qubit. Below we consider two types of confinements.

The first is the lateral heterostructures between different
TMDs, for example, a MoSe2 island surrounded by WSe2 on a
crystalline monolayer. With a type-II band alignment between
the two TMDs, such a heterostructure forms a confinement
potential of a vertical wall, which localizes a single electron in
the MoSe2 region with a potential depth of few hundred meV.
The valley and spin degrees of this electron can then define
a qubit. In the optical control, an optical field can couple the
states of the single electron to the optical excited states of
trion (i.e., two electrons plus a hole) through the interband
transition. These trion states are utilized as intermediate states
for the optical control of the single-electron states. Although
the heterostructure itself does not form a confinement for
a single hole (cf. Fig. 1), the quantum confinement of the
electron constituents will nevertheless localize the trion at the
heterostructure.

The intervalley coupling strength grows with the decrease in
size of the quantum dot. At a lateral size of 5 nm, the coupling
matrix element reaches 0.1–1 meV depending on the quantum
dot shape. The valley hybridization will then be determined
by the competition of this off-diagonal matrix elements in
the basis �τ,s , and the diagonal energy differences between

�+,s and �−,s due to the spin-valley coupling in the band of
the 2D bulk. For monolayer MoS2, the spin-valley coupling
strength in the conduction band is 3 meV [33], comparable
to the achievable intervalley coupling in small quantum dots.
For other three TMDs (MoSe2, MoS2, and WSe2), the spin-
valley coupling strength is in the range of 20–40 meV. Valley
hybridization for the hole component is always negligible due
to the giant spin-valley coupling of hundred of meV in all
TMDs.

The second type of nanostructure is a neutral donor
system D0, for example, a Re replacing a W in the WSe2

monolayer, where the positively charged impurity binds the
extra electron and forms a hydrogenic state. Similarly to the
quantum dot case, the single-electron states can be optically
coupled to the donor bound exciton D0X states. In GaAs, the
D0-D0X system has been extensively explored for optically
controlled single spin [22]. Compared with the quantum dot,
the D0-D0X system in monolayer TMDs is expected to be
a much tighter confinement due to the enhanced Coulomb
interaction. Consequently, the intervalley coupling strength is
much stronger (unless the impurity is centered at a chalcogen
atom site or a hollow center of the hexagon formed by metal
and chalcogen atoms). For several examplary electrostatic
Coulomb potentials, as shown in Appendix A, we find the
intervalley coupling strength can be comparable to the electron
spin-valley coupling strength in MoSe2, MoS2, and WSe2.
Therefore, the valley hybridization of electron is expected to
be significant in the D0-D0X system.

III. OPTICAL CONTROL OF ELECTRON STATES
IN PRESENCE OF VALLEY HYBRIDIZATION

In this section, we consider the scenario where the con-
finement potential introduces pronounced valley hybridization
of the localized electron. This applies to the confinement
potentials of small length scale which do not have the C3

rotational symmetry about either a chalcogen atom site or a
hollow center of the hexagon formed by metal and chalcogen
atoms (see Sec. II and Appendix A).

We note that valley hybridization is present for electrons
only. For holes, the band edges of the 2D bulk are spin-valley
locked because of the giant spin-orbit coupling, i.e., valley
K (−K) has spin-down (-up) holes only. As the confinement
potential does not flip spin, valley hybridization by the
confinement is completely quenched for the spin-valley locked
holes. For electrons with a much smaller spin-valley coupling
in the 2D bulk band edges, we take into account both spin
species in each valley, and the quantum dot Hamiltonian in the
aforementioned basis is

H0 = hτx + λ

2
τzsz, (1)

where h is the intervalley coupling strength, τ and s denote
the pauli matrices operating at valley and real spin degrees of
freedom, and λ is spin-valley coupling of conduction band.

Since intervalley coupling conserves spin, we rewrite the
Hamiltonian in a compact form,

H0 = �d · �τ = d

(
cos θ sin θ

sin θ − cos θ

)
, (2)
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with �d = (h,0, λ
2 s) = d(sin θ,0, cos θ ). The eigenenergies are

ε1(2),s = ±sd, with eigenvectors,

|u1,s〉 =
(

cos θ
2

sin θ
2

)
, (3)

|u2,s〉 =
(

sin θ
2

− cos θ
2

)
. (4)

These four spin-valley configurations of the single electron
can be used to construct the qubit.

Our proposed optically controlled qubit operations rely on
the optical selection rules in monolayer TMDs [24]. In 2D
bulk of monolayer TMDs, the conduction (valence) band edge
states mainly consist of transition-metal dz2 (dx2−y2 ± idxy)
orbitals with the magnetic quantum mc = 0 (mv = ±2). At
the ±K points, the Bloch states have C3 rotation symmetry
C3|τ,s〉 = e−i 2mπ

3 |τ,s〉, which implies an azimuthal selection
rule for the allowed interband optical transition (mc − mv ∓ 1
modulo 3) = 0. Because of inversion symmetry breaking, this
optical selection rules is valley contrasted. The spin-valley
locking of the holes further makes these selection rules spin
dependent: the σ+ circular polarization optical field can
generate spin-up electrons and spin-down holes in valley
K , while the excitation in the −K valley is simply the time
reversal of the above, as shown in Fig. 2(a) for WX2 systems
and Fig. 2(b) for MoX2 systems. Since these two kinds of
systems only differed by the sign of spin splitting in the
conduction band [33], we illustrate our results with the WX2

system in all of the following figures.

FIG. 2. Valley- and spin-dependent optical transition selection
rules at the band edge of the monolayers WX2 (a) and MoX2

(b). (c) Optical transition selection rules in quantum dots with
valley hybridization of the localized single electron. Solid (dashed)
horizontal lines denote spin-up (-down) states. Dark green (black)
color denotes +K (−K) valley. Red doubled-arrowed lines denote
σ−-polarized lights and blue ones denote σ+-polarized lights, with
the transition strength in dashed one ∝ sin θ

2 (i.e. enabled by a finite
intervalley coupling, see text) and solid one ∝ cos θ

2 .

FIG. 3. Optically controlled rotation between the valley hy-
bridized states via the Raman type processes mediated by the trion
state. There are two 	-type three-level systems that can be controlled
respectively via the Raman type process by optical pulses with σ+

polarization (a) or σ− polarization (b). The quantum dot can have
four states for encoding information that are distinguished by the
spin index and can be selectively accessed using circularly polarized
light.

In the context of a quantum dot charged with a single
electron, an optical field can couple the different spin-valley
states of the single electron to a charged exciton state (trion)
of the various spin-valley configurations. These transitions
have optical polarization selection rules inherited from the 2D
bulk. With the valley hybridization of electrons, the optical
transitions in fact become more intricate in the quantum dot.
As shown in Fig. 2(c), there are six bright trion states that can
be coupled to the four spin-valley states of the single electron.
The dashed arrows denote the transitions with strength ∝ sin θ

2
(i.e., enabled by a finite intervalley coupling h), while the solid
arrows denote the transitions with strength ∝ cos θ

2 .
Among all the possible optical transitions, we note that

|u1,↑〉 and |u2,↑〉 can both be coupled to the same trion state
|X−,↑〉 = e

†
+,↑e

†
−,↑h

†
+,⇓|G〉 with a σ+ circular polarized light.

Here e
†
τ,s creates an electron state with spin s and valley τ

and similarly h
†
τ,s ′ creates a hole state with spin s ′ = ⇑,⇓

with |G〉 denoting an empty conduction band and full valence
band. Therefore |u1,↑〉, |u2,↑〉, and |X−,↑〉 form a 	-type
three-level system [cf. Fig. 3(a)]. Similarly, a σ− circular
polarized light couples |u1, ↓〉 and |u2, ↓〉 with |X−, ↓〉 =
e
†
+,↓e

†
−,↓h

†
−,⇑|G〉, forming another 	-type three-level system

[cf. Fig. 3(b)]. We note that a single quantum dot can now have
four states for encoding information: {|u1,↑〉, |u2,↑〉, |u1, ↓〉,
|u2, ↓〉}. σ+ or σ− polarized light makes possible selective
access of this Hilbert space for either initialization, readout, or
quantum control, where optical control scenarios utilizing the
	 level scheme can be borrowed from optically controllable
III-V quantum dots [34,35].

For example, coherent rotation between the pair of states
{|u1,↑〉, |u2,↑〉} (or {|u1, ↓〉, |u2, ↓〉}) can be realized through
an optical Raman process via the intermediate trion states
|X−,↑〉 (or |X−, ↓〉) by σ+ (or σ−) polarized light in the
	-type three-level system [36]. Applying two phase-locked
optical pulses with σ+ polarization, the light-matter interaction
Hamiltonian in the rotating wave approximation is

HI =
∑
j=1,2


j (t)|X−,↑〉〈uj ,↑| + H.c., (5)

where the Rabi frequencies are of the forms 
1(t) =
E1D0 sin θ

2 eiω1t−iα1 and 
2(t) = E2D0 cos θ
2 eiω2t−iα2 with Ej
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being the amplitude of the polarized light and α1 − α2 ≡ α

being the relative phase between them. D0 = 〈uj ,↑|D|X−,↑〉
is the optical transition matrix element between the localized
electron state and the trion state, which is approximately
proportional to 〈τ,s|D|τ,s ′〉

aH
, where 〈τ,s|D|τ,s ′〉 is the optical

transition matrix element between the bulk conduction and
valence states at τK points and aH is the Bohr radius of the
trion state. Because of the strong Coulomb interaction, D0

is several times larger than the one in III-V semiconductor
quantum dots. The frequencies ωj = Et − 
 − εj are chosen
to satisfy the Raman conditions with Et and 
 being the trion
energy and Raman detuning respectively. In the rotating frame
defined by e−iε1t |u1,↑〉, e−iε2t |u2,↑〉, and e−i(ET −
)t |X−,↑〉,
the total Hamiltonian H = H0 + HI is transformed to

H =

⎛
⎜⎝

0 0 E1D0 sin θ
2 e−iα

0 0 E2D0 cos θ
2

E1D0 sin θ
2 eiα E2D0 cos θ

2 


⎞
⎟⎠,

(6)

where the fast oscillating terms ∝e−2idt have been neglected.
For large detuning, the trion state is eliminated via using the
adiabatic approximation. The dynamics of the qubit is then
described by

Heff = −D2
0




(
E2

1 sin2 θ
2

E1E2
2 sin θeiα

E1E2
2 sin θe−iα E2

2 cos2 θ
2

)
, (7)

which can be rewritten as

Heff = n0I + �n · �ζ , (8)

with

n0 = −D2
0

(
E2

1 sin2 θ
2 + E2

2 cos2 θ
2

)
2


,

nx = −E1E2D
2
0 sin θ cos α

2

,

ny = E1E2D
2
0 sin θ sin α

2

,

nz = −D2
0

(
E2

1 sin2 θ
2 − E2

2 cos2 θ
2

)
2


, (9)

where �ζ operates on our defined qubit, which precedes under
this pseudomagnetic field �n.

The effect of intervalley coupling is involved in the angle θ .
Without intervalley coupling, θ = 0, �n only lies in z direction.
Therefore, intervalley coupling plays a crucial role in the
optically controlled single-qubit operation. In general cases
with finite intervalley coupling, arbitrary pseudomagnetic field
orientation can be obtained by changing the control parameters
E1,2, α, and 
. For example, when one of the two pulses
is turned off, i.e., E1 or E2 being set to zero, �n is in
the z direction. This realizes a single-qubit phase-shift gate

USφ
= (1 0

0 eiφ) if we set E1 = 0, where φ = D2
0E2

2 cos2 θ
2 t



. On the

other hand, when E2
E1

= tan θ
2 and α = 0, �n is in the x direction

with nx = −E2
1D2

0 sin2 θ
2



. The qubit state would be flipped by

an optical pulse with duration tf = π
2|nx | . For square-shaped

MoS2 quantum dot with lateral size of 3 nm, the intervalley

coupling is calculated as 1 meV if the lateral confinement
potential is set as 0.2 eV (see Appendix A). When a light with
E1D0 = 0.5 meV is applied, |nx | ∼ 1 μeV and tf is about 0.8
ns if we set the detuning 
 = 5 meV.

IV. ELECTRON STATES IN ABSENCE
OF VALLEY HYBRIDIZATION

If the confinement has C3 symmetry, intervalley coupling
vanishes when the confinement center is chosen at the
chalcogen atom site or the hollow center of the hexagon
lattice [31,32]. In this case, valley is a good quantum number,
and the quantum dot states are formed from the Bloch states
in a single valley of the 2D bulk. The optical transitions of the
spin-valley states of the single electrons to trions in Fig. 2(c)
then reduces to those in Fig. 4(a).

Optical control of the spin states is still possible in the
presence of a magnetic field with an in-plane component,
which can couple the spin-up and -down states from the same
valley. With external magnetic fields, the Hamiltonian for the
single electron at each valley becomes

H ′
0 = λ

2
τzsz + Bxsx + Bzsz = �d ′ · �s, (10)

where �d ′ = (Bx,0, λ
2 τ + Bz) = d ′(sin θ ′,0, cos θ ′) is the ef-

fective field on the spin doublet at each valley, as plotted
schematically in Fig. 4(b), which is valley dependent in
general. The eigenstates of this Hamiltonian are

|u′
1,τ 〉 =

(
cos θ ′

2

sin θ ′
2

)
, (11)

|u′
2,τ 〉 =

(
sin θ ′

2

− cos θ ′
2

)
. (12)

FIG. 4. (a) Optical transition selection rules in quantum dots
without valley hybridization, and in absence of magnetic field. (b)
Configurations of effective magnetic fields in the two valleys. The
dark blue, light blue, green, and yellow arrows indicate Bz, Bx , λ,
and total field �d ′ respectively. In each valley, the eigenstates of the
effective magnetic field are indicated (black spots).
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FIG. 5. (a) Optical transition selection rules in quantum dots
without intervalley coupling while with applied magnetic fields. The
coupling strength in dashed line ∝ sin θ ′

2 and solid one ∝ cos θ ′
2 . There

are two 	-type three-level systems that can be controlled respectively
via the Raman type process by optical pulses with σ+ polarization (b)
or σ− polarization (c). The quantum dot can therefore provide four
states that are distinguished by the valley index and can be accessed
using circularly polarized light.

These spin-coupled states can be used to construct the qubits.
In contrast to the scenario in Sec. III in presence of the valley
hybridization, the valley index is now a good quantum number
while the spin is now quantized along a direction tilted from z.
Coherent rotation between the pair of states {|u′

1,+〉, |u′
2,+〉}

(or {|u′
1,−〉, |u′

2,−〉}) can be realized through an optical Raman
process via the intermediate trion states (cf. Fig. 5).

In an applied magnetic field with a finite in-plane compo-
nent, there are six bright trion states, as shown in Fig. 5(a). One
can see that the two states |u′

1,+〉 and |u′
2,+〉 are coupled to

the trion state |X−,+〉 = e
†
+,↓e

†
+,↑h

†
+,⇓|G〉 by a σ+ polarized

light. Similarly, |u′
1,−〉 and |u′

2,−〉 are coupled to the trion
state |X−,−〉 = e

†
−,↑e

†
−,↓h

†
−,⇑|G〉 by a σ− polarized light [cf.

Figs. 5(b) and 5(c)]. By virtual excitation of these trion
states, single-qubit operations including the spin initialization
and spin rotations can be controlled via the optical Raman
process [35,37]. The effective Rabi frequencies for the qubits
are the same as the ones in Eq. (9) while with θ being replaced
by θ ′ here.

Bx plays the same role as intervalley coupling h in the
former case discussed in Sec. III and its competition with
spin-valley coupling λ determines the operation speed. For
MoS2 with λ being a few meV, Bx can be the same order of
magnitude in a magnetic field of a few tesla. For the other three
group-VIB TMDs, λ ∼ 20–40 meV, which is much larger than
Bx in most conditions. The coupling strength of the optical
transition from |u′

1,τ 〉 to |X−,τ 〉 in the 	-level scheme is a
weak one, proportional to Bx

λ
. This will limit the operation

speed for the optical control of the states. Note that because
of the difference in the effective field �d ′, the effective Rabi
frequency and hence the operation speed differ by a factor√

B2
x+(λ/2+Bz)2

B2
x+(λ/2−Bz)2 for the two valleys.

V. INTERPLAY OF LATTICE NUCLEAR SPINS
WITH CONFINED ELECTRON AND HOLE

Electrons and holes localized in semiconductors can be
coupled to the environment consists of phonons and lattice
nuclear spins. At a temperature low for the electrons but high
for the nuclear spins (i.e., 10 mK–K), the effects of phonon
can be well suppressed, leaving the lattice nuclear spins as
the ultimate environmental degrees of freedom [35]. In MX2

nanostructures, the stable isotopes of the relevant elements
with nonzero nuclear spin include: ( 95Mo, 5/2, 15.92%),
(97Mo, 5/2, 9.55%), ( 183W, 1/2, 14.31%), ( 33S, 3/2, 0.76%),
and (77Se, 1/2, 7.63%), where the second number in the
bracket gives the nuclear spin quantum number and the third
gives the natural abundance [38].

We derive here the forms of hyperfine interaction between
the localized electron and hole with these lattice nuclear spins
in the envelope function approximation. This is applicable for
the localized electron wave function formed largely from the
band-edge Bloch functions at the ±K points. These band-
edge Bloch functions are mainly contributed from the metal
d orbitals and a small but finite component of the chalcogen
p orbitals. The hyperfine coupling strength with the metal
nuclear spins are therefore stronger. The chalcogen nuclear
spins are expected to play less important roles for both the
weakness of the hyperfine interaction strength and the smaller
natural abundance of the stable isotopes with finite nuclear
spins [32,38].

We find that, similarly to both the electron and hole
hyperfine interactions in III-V semiconductors [39,40], the
hyperfine interaction here is of the short-range nature: It needs
to be counted only for nuclear spins in direct contact with the
electron or hole, with a coupling strength proportional to the
electron/hole density at the nuclear site. As the electron now
has the valley pseudospin in addition to the spin, the hyperfine
interaction has intravalley terms as well as intervalley terms.
The latter arises from the short-range nature of the hyperfine
interaction, which makes possible the coupling between the
single-electron states from different valleys.

A. Intravalley and intervalley hyperfine interaction

The hyperfine interaction in the quantum dot is formulated
by projecting the complete electron nuclear hyperfine inter-
action into the basis of the localized electron and hole wave
functions in the envelope function approximation, which are
given by

�c(v)
τ,s (�r) = Fc(v)(�r)�c(v)

τ (�r)χs, (13)

where �c(v)
τ (�r) = eiτ �K·�ruc(v)

τ (�r) is the Bloch wave function
at the τK point in the conduction (c) and valence (v)
bands with uc(v)

τ (�r) being its periodic part, Fc(v)(�r) is the
localized envelop function, and χs is the spin part of the
wave function. For electrons, we consider the projected
form of the hyperfine interaction between the basis states
{�c

+,↑(�r),�c
+,↓(�r),�c

−,↑(�r),�c
−,↓(�r)}. For holes, with the giant

spin splitting at the valence band top, we only need to consider
the twofold spin-valley locked basis: {�v

+,↑(�r),�v
−,↓(�r)}.

We have used two approaches to obtain the band-edge
Bloch functions. In the first approach, we extract the orbital
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compositions of the band-edge Bloch states from first-
principles calculations and then write the Bloch functions
by using the Roothaan-Hartree-Fock atomic orbitals [41,42].
In the second approach, we use the numerically calculated
Bloch functions from ABINIT [43–45]. The two approaches
give consistent results on the form and magnitude of hyperfine
interactions. Details are given in Appendix B, and the forms
are summarized below.

(i) Electron hyperfine interaction with M atom:

Hc
M = Ac

M

∑
k


|Fc( �Rk)|2[I k
z Sz + �

(
I k
x Sx + I k

y Sy

)]

× (1 + e−2i �K· �Rk τ+ + e2i �K· �Rk τ−), (14)

where I k and �Rk are the spin operator and position vector
of the k-th nuclei of M atom, τ± are the rasing and lowing
operators for valley index, and 
 is the volume of the unit cell;
� denotes the ratio between the transverse and the longitudinal
interactions.

(ii) Hole hyperfine interaction with M atom:

Hv
M = Av

M

∑
k


|Fv( �Rk)|2I k
z Sz. (15)

(iii) Electron hyperfine interaction with X atom:

Hc
X = Ac

X

∑
k


|Fc( �R′
k)|2

[
I ′k
z Sz + 1

8

(
I ′k
x Sx + I ′k

y Sy

)

+ 3

8
(e−2i �K· �R′

k τ+I ′k
− S− + H.c.)

]
, (16)

where I ′k and �R′
k are the spin operator and position vector of

the k-th nuclei of X atom and we have used the associated
rasing and lowing operators for nuclei and electron spins.

(iv) Hole hyperfine interaction with X atom:

Hv
X = Av

X

∑
k


|Fv( �R′
k)|2

×
[
I ′k
z Sz − 1

4
(e−2i �K· �R′

k τ+I ′k
+ S+ + H.c.)

]
. (17)

All of the hyperfine constants A
c(v)
M(X) in different MX2 are

listed in Table I.
From the above results, one can find that the hyperfine

interaction related to the M nuclei is much stronger then the
one to the X nuclei. More importantly, the hyperfine interaction
may contain both intravalley and intervalley terms.

TABLE I. Hyperfine constants evaluated based on Bloch func-
tions constructed using Roothaan-Hartree-Fock atomic orbitals (see
text). A

c(v)
M(X) is in the unit of μeV and � is dimensionless.

MoS2 MoSe2 WS2 WSe2

� 0.23 0.23 0.37 0.40
Ac

M −0.50 −0.51 0.76 0.79
Av

M −1.52 −1.53 1.78 1.82
Ac

X 0.05 0.46 0.08 0.33
Av

X −0.16 −1.33 −0.37 −1.63

B. Optical control of electron-nuclear spin entanglement

The intervalley part in the hyperfine interaction suggests
a possibility for optical control of the electron-nuclear spin
entanglement. The hyperfine interaction between the confined
electron and M nucleus is

HHF = Ac
M
|Fc(0)|2

[
IzSz + �

2
(I+S− + I−S+)

]
×(1 + τ+ + τ−), (18)

where we have assumed that the M nuclei are located at
position �R0 = 0, where the hyperfine interaction is strong. The
term ∝IzSz shift upwards (downwards) the energy levels with
hl = 1

4Ac
M
|Fc(0)|2 when electron and nuclear spins point in

the same (opposite) direction. The term ∝[I+S−(τ+ + τ−) +
H.c.] couples the different valley states where electron and
nuclear spins point in the opposite direction, which can be
rewritten as

H1 = htσx, (19)

where ht = Ac
M
|F (0)|2 �

2 and σ denotes the Pauli matrices
defined in the two-dimensional space spanned by {|+,↑〉e|↓〉n,
|−, ↓〉e|↑〉n} or {|+, ↓〉e|↑〉n, |−,↑〉e|↓〉n} with the subscripts
e and n denoting electron and nuclear states respectively. The
other terms can be neglected, because they couple those states
separated by the spin-valley coupling, which is much larger
compared to the hyperfine interaction. The magnitude of ht ∝
1
N

, where N = S



is the number of unit cells in the quantum
dots of area S. For a 183W nuclei in triangular-shapes WS2

quantum dots with N = 100, we estimate ht ∼ 0.0036 μeV.
The eigenstates of Eq. (19), |v1,2〉 = 1√

2
(|+,↑〉e|↓〉n ±

|−, ↓〉e|↑〉n) or |v3,4〉 = 1√
2
(|+, ↓〉e|↑〉n ± |−,↑〉e|↓〉n),

which are electron-nuclear entangled states. These entangled
states contain electron spin state from both valleys and can
be connected via certain intervalley trion states, as shown
in Fig. 6(a). For example, |v1,2〉 can be coupled with equal
strength to the trion state |X−

1 〉 = e
†
−,↓e

†
+,↑h

†
−,⇑|G〉|↓〉n by

a σ−-polarized light or |X−
2 〉 = e

†
−,↓e

†
+,↑h

†
+,⇓|G〉|↑〉n by a

σ+-polarized light. Optical Raman processes using these
trion states realize an optical quantum pathway to control
these electron-nuclear entangled states. However, we note
that because the energy splitting (2ht ) between |v1〉 and |v2〉
is typically less than 1 μeV, the oscillating terms ∝ e−i2ht t

are slow ones and cannot be neglected in this case as we did
in Eq. (6). To realize a coherent rotation of the two-level
system spanned by |v1〉 and |v2〉, we use a single optical
pulse to couple both states to the trion state [35,46], as
shown in Figs. 6(b) and 6(c). Applying an optical pulse with
σ+ polarization to virtually excite the trion state |X−

2 〉, the
dynamics is governed by the following Hamiltonian:

H ′ = htσx − 
|X−
2 〉〈X−

2 | − [
(t)|−, ↓〉e|↑〉n〈X−
2 | + H.c.],

where 
(t) is the Rabi frequency in the rotating frame and 


is the detuning of the laser relative to |X−
2 〉. For large detuning,

we can use the adiabatic approximation to eliminate the trion
state. The dynamics is described by

H ′
eff = |
|2

2


(
1 eiht t

e−iht t 1

)
= ε0I + �n(t) · �σ , (20)
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FIG. 6. (a) Optical and hyperfine couplings between the electron
states in the presence of a nuclear spin. The brown arrows denote
the nuclear spin state, e.g., from 183W nuclei. The 	-type three-level
systems formed by the electron-nuclear entangled states and trion
states are connected via an optical pulse with σ+ polarization (b) or
σ− polarization (c).

describing the qubit state precessing under a time-dependent
magnetic field �n(t) with the strength 
2/(2
) rotating in
the x-y plane with the angular frequency ht . Because ht is
typically less than 1 μeV and 
2/(2
) is several hundreds
of μeV, the optical pulse in the picosecond scale can be
regarded as an instantaneous one. To complete an arbitrary
rotation, two subsequent rotations along x and y directions,
which constitute two SU(2) generators, are needed. Explicitly,
at t = 2nπ

ht
(where n is an integer), �n(t) is in the x direction,

whereas at t = (2n+1/2)π
ht

, �n(t) is in the y direction. For 183W
nuclei in triangular-shapes WS2 quantum dots with N = 100,
the shortest time interval for these two subsequent operations is
287 ns. Because ht ∝ 1

N
, this operation time can be shortened

by using smaller quantum dots.
We note that the possibility to control the coherent rotation

in the subspace spanned by |+,↑〉e|↓〉n and |−, ↓〉e|↑〉n,
combined with the RF control that flips the nuclear state,
can potentially realize the intervalley rotation in the electron
subspace spanned by |+,↑〉e and |−, ↓〉e. We also note that,
in our scheme, a single nuclei with state |s〉n is used to couple
electron states of different valleys. The interaction strength
ht ∝ 1

N
. Alternatively, if a connection of nuclei with a fully

polarized initial state |↓,↓,↓ · · · 〉n is used, the interaction
strength ∝

√
ν√
N

, so the operation speed can be increased

by
√

νN time, where ν is the abundance of M nuclei. In
this case, the electron-nuclear entangled states are |v′

1,2〉 =
1√
2
(|+,↑〉e|↓,↓,↓ · · · 〉n ± |−,↓〉e

∑
k ck|↓,↓,↑k · · · 〉n).

C. Nuclear spin-induced decoherence

The interaction with lattice nuclear spins causes the
decoherence of localized electron spin [47–52]. Because the

hyperfine interaction with the M nuclei is much stronger
than the one with X nuclei, we consider the decoherence
effect arising from interaction with the former one. From
Eq. (18), we know that there are four decoherence channels
in the basis of {|+,↑〉,|−, ↓〉,|+, ↓〉,|−,↑〉}. The first one
arises from the term ∝ I k

z Sz, which causes dephasing between
electron states with different spin. The second one arises from
the term ∝ [I k

+S−(τ+ + τ−) + H.c.], which causes relaxation
between electron states with different spin and valley. The
third one arises from the term ∝ [I k

z Sz(τ+ + τ−) + H.c.],
which causes relaxation between electron states with different
valley while the same spin. The last one arises from the term
∝ (I k

+S− + H.c.), which causes relaxation between electron
states with different spin in each valley. The last two relaxation
channels are much weaker compared with the former two,
because the hyperfine interaction is small compared to the
spin-valley coupling so the energy cost associated with the
transitions (a few to a few tens meV) is much larger than
the hyperfine induced transition matrix element. So relaxation
between the initial and final states are suppressed by the
large energy cost. Therefore, in the following, we make an
estimation of the decoherence time arising from the first two
channels.

For the dephasing between electron states with different
spin induced by the term ∝ I k

z Sz, the effective nuclear field
experienced by the localized electron in each single valley
is heff = Ac

M

∑
k 
|Fc

Q( �Rk)|2I k
z . The statistical fluctuation in

the nuclear spin configurations therefore corresponds to an
uncertainty in the energy difference between the electron states
with opposite spins and hence results in pure (inhomogeneous)
dephasing. We assume that there is no correlation between
different nuclear spins and that the nuclear spins are distributed
uniformly within the quantum dot, and the variance of the field
is

〈
h2

eff

〉 = (
Ac

M

)2 ∑
k

ν
2
∣∣Fc

Q( �Rk)
∣∣4〈

I k2
z

〉
, (21)

where 〈· · · 〉 denotes the average over nuclear spin states. The
coherence time for electron state is T ∗

2 ∼ 2π√
〈h2

eff〉
.

The intervalley electron-nuclear flip-flop term ∝
[I k

+S−(τ+ + τ−) + H.c.] causes the population relaxation be-
tween the degenerate electron states |+,↑〉 and |−, ↓〉 and
between |+, ↓〉 and |−,↑〉. The relaxation time for this process
is T1 ∼ 2π√

〈h′2
eff〉

[47], where 〈h′2
eff〉 is the variance of the in-plane

nuclear field,

〈
h′2

eff

〉 = �2
(
Ac

M

)2 ∑
k

ν
2
∣∣Fc

Q( �Rk)
∣∣4〈(

I k2
x + I k2

y

)〉
. (22)

For an infinite-temperature state, we have 〈I k2
x,y,z〉 =

I k(I k + 1)/3. Since
∑

k 
2|Fc
Q( �Rk)|4 ∼ 1

N
, the decoherence

time increases with the increase of
√

N . In Table II, we list T ∗
2

and T1 for quantum dots with different size (represented by N )
and the abundance of the nuclear spins. The decoherence time
is several hundreds of ns, which is serval orders larger then the
operation time in the optical quantum control of spin-valley
qubit.
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TABLE II. Decoherence time in MoS2 and WS2 quantum
dots with different numbers of nuclear spin. ν = 25.5% (14.3%)
corresponds to the natural abundance in MoS2 (WS2), and ν = 100%
corresponds to the case that each metal atom within the quantum dot
has a nuclear spin.

N 100 500 1000

MoS2

ν 25.5% 100% 25.5% 100% 25.5% 100%
T1 (ns) 298 150 668 337 944 477
T ∗

2 (ns) 97 49 217 110 307 155

WS2

ν 14.3% 100% 14.3% 100% 14.3% 100%
T1 (ns) 557 210 1246 471 1762 666
T ∗

2 (ns) 292 110 652 246 922 349

VI. OPTICALLY CONTROLLED TWO-QUBIT
OPERATIONS IN A SINGLE QUANTUM DOT

With the extra valley degree of freedom in TMDs, a single
electron in the ground state of the QD confinement has four
spin-valley configurations that one can exploit to encode two
qubits. Here we discuss the possibility of utilizing both qubits
in a single dot and realizing two-qubit logic controls.

We consider first the logic operations in the presence of
valley hybridization but in the absence of in-plane magnetic
field. We define the computational basis as |mn〉 = |m〉s ⊗ |n〉v
where m,n = {1,0}, and the subscripts s and v denote spin and
valley degrees of freedom. Explicitly, |11〉 = |u1,↑〉, |10〉 =
|u2,↑〉, |01〉 = |u1, ↓〉, and |00〉 = |u2, ↓〉 [see Fig. 7(a)].
Under this definition, the two qubits do not have interaction at
rest. The optical control for two-qubit operations uses the two
trion states e

†
−,↓e

†
+,↑h

†
−,⇑|G〉 and e

†
−,↓e

†
+,↑h

†
+,⇓|G〉, which have

energies higher than the other trion states by the conduction
band spin-orbit splitting λ. As highlighted in Fig. 7(a), these
two trion states couple to the four states of the two qubits
by light of different circular polarizations. These two trion
states then can be used as the intermediate states in our control
scheme, where the lower-energy trion states can be neglected
with λ in the range of a few meV to a few tens of meV [32,33]
[cf. Figs. 7(b) and 7(c)]. Via virtually exciting these trion
states with different circularly polarized lights, one can obtain
the controlled two-qubit gates. For example, applying a single
pulse of σ+ light (
1 = 0), only the state |00〉 will pick up a
phase shift due to the ac Stark shift [Fig. 7(b)], so we have a
controlled phase-shift gate,

UPφ
=

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiφ

⎞
⎟⎟⎟⎠. (23)

One can also use two σ+ polarized pulses to selectively couple
the |00〉 and |01〉 states via a Raman-type process [cf. Fig. 7(b)].
By controlling the amplitudes and phases of the two pulses
so the pseudomagnetic field �n defined in Eq. (9) is in the x

FIG. 7. Optically controlled two-qubit operations between the
spin qubit and valley qubit carried by a single electron in a quantum
dot. (a) Definition of the two-qubit states. The trion states with
higher energy (highlighted in red and blue background) are used
as intermediate states for optical control in two-qubit operations.
(b) Energy level scheme for realizing a controlled phase gate and
controlled-NOT gate in the presence of valley hybridization. (c) Energy
level scheme for realizing a SWAP gate in the presence of valley
hybridization and applied magnetic fields. The unwanted transitions
(dashed doubled-arrowed lines) are detuned from the two-photon
resonant condition by 2Bz and suppressed.

direction, a controlled-NOT gate can be realized,

UN =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠. (24)

For MoS2 quantum dot with an intervalley coupling strength of
1 meV (see Appendix A), if we set the detuning 
 = 0.3 meV
and E1D0 = 0.05 meV, then this two-qubit gate can be realized
in ∼5 ns.

To realize a SWAP gate, we consider nanostructures with
valley hybridization and in applied external magnetic field. In
this scenario, the electron eigenstates are both spin and valley
hybridized, which are used as the basis states for the qubits,

|11〉 = (cos θ |+〉 + sin θ |−〉)(cos θ ′|↑〉 + sin θ ′|↓〉),
|00〉 = (cos θ |+〉 + sin θ |−〉)(sin θ ′|↑〉 − cos θ ′|↓〉),
|01〉 = (sin θ |+〉 − cos θ |−〉)(sin θ ′|↑〉 − cos θ ′|↓〉),
|10〉 = (sin θ |+〉 − cos θ |−〉)(cos θ ′|↑〉 + sin θ ′|↓〉).

In this definition, the two qubits do not have interaction at rest.
Each of these states is now optically coupled to the trion states
e
†
−,↓e

†
+,↑h

†
−,⇑|G〉 and e

†
−,↓e

†
+,↑h

†
+,⇓|G〉 [cf. Fig. 7(c)]. For

example, applying σ+ polarized lights, these states can couple
to the trion state e

†
−,↓e

†
+,↑h

†
+,⇓|G〉 with strengths ∝ sin θ sin θ ′,

sin θ cos θ ′, cos θ cos θ ′, and cos θ sin θ ′ respectively. In order
to selectively control these states, we apply a magnetic field
in the z direction to make the unwanted optical transitions
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detuned from the two-photon resonant condition by the
Zeeman splitting 2Bz and suppressed, as shown in Fig. 7(c).
Via virtually exciting the trion state e

†
−,↓e

†
+,↑h

†
+,⇓|G〉 with σ+

light, one can realize coherent rotations selectively between
|01〉 and |10〉 to realize a SWAP gate,

UW =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎠. (25)

For MoS2 quantum dot with an intervalley coupling strength
of 1 meV (see Appendix A) and applied magnetic fields
Bx = Bz = 1 meV, if we set the detuning 
 = 0.3 meV and
E1D0 = 0.05 meV, then the SWAP gate can be realized in
∼2 ns.

VII. DISCUSSION AND CONCLUSIONS

In conclusion, we have studied the optical controllability
of the spin-valley qubit carried by single electrons localized in
nanostructures of monolayer TMDs, including small quantum
dots and charged impurities. Various control scenarios with
and without valley hybridization caused by the quantum
confinement are considered. For nanostructures with finite in-
tervalley coupling, the low-energy states are valley hybridized
with definite spin index. Because of valley hybridization, the
electron states with the same spin index can be coupled to
a common trion state by lights of the same polarization,
which makes possible the arbitrary coherent rotation via
Raman processes. And states with different spin index can be
selectively accessed by light of different circular polarization.
Without intervalley coupling, which is the case when the
confinements have C3 or higher rotational symmetry about
a chalcogen atom site or the hollow center of the hexagon
lattice, we use a magnetic field with an in-plane component
to hybridize the spin states in each valley. The low-energy
states in this case are spin hybridized with a definite valley
index and can also be selectively accessed by light of different
circular polarization. For a single electron confined in the
nanostructure, its four spin-valley configurations can encode
two qubits, where two-qubit logic operations such as the
controlled-NOT gate, controlled phase gate, and SWAP gate can
be realized in the presence of valley hybridization.

We also studied the effect of interaction with lattices
nuclear spins on the localized electrons and holes in the
nanostructures. The hyperfine interaction has intervalley terms
besides intravalley ones because of its short-range nature.
Based on this, we studied the possibility to optically control
the electron-nuclear spin entanglement. Some decoherence
channels induced by the statistical fluctuations of the nuclear
spin configurations are discussed.

Controlled interplay between electrons localized in adjacent
nanostructures may be realized using schemes developed for
coupling III-V quantum dots, e.g., by applying an electrical
gate to tune the tunneling amplitude between two dots [53] or
virtually exciting the delocalized exciton to interact with the
electrons in both dots [54]. The generalization and quantitative
analysis of these schemes in TMDs nanostructures will be
interesting topics for future studies.

We also note that the breaking of mirror symmetry about
the metal atom plane can give rise to Rashba-type spin-orbit
coupling which, together with phonon scattering, can be an
important cause for the relaxation of the spin-valley qubit [10].
This can be the case for quantum dots defined by patterned
electrodes [10] or charged impurity at a chalcogen atom site.
The detailed investigation of the mechanisms and time scales
for the relaxation and decoherence of a spin-valley qubit in
systems with or without mirror symmetry is also an interesting
topic for future study.

ACKNOWLEDGMENTS

The work was supported by the Croucher Foundation
(Croucher Innovation Award), the Research Grant Council of
HKSAR (HKU705513P and HKU9/CRF/13G), and the HKU
OYRA and ROP. G.B.L. acknowledges support by the NSF of
China (Grant No. 11304014).

APPENDIX A: INTERVALLEY COUPLING STRENGTH
IN THE CONFINEMENT BY SMALL QUANTUM DOTS

AND CHARGED IMPURITY

We use the real-space tight-binding (RSTB) method to
calculate the intervalley coupling strength in different types
of quantum dots as well as the charged impurity systems. The
validity of this RSTB method in calculating the intervalley
coupling has been tested by comparing it with an entirely
different approach, i.e., the envelope function method as
discussed in Ref. [31]. We calculate the strength of intervalley
coupling in the quantum dots and impurity systems with
supercells and using periodic boundary conditions.

To calculate the strength of intervalley coupling in small
quantum dots, we take the monolayer MoS2 system with
lateral confinement as an example. We consider three different
types of confinement potential, i.e., the triangular-shape,
hexagonal-shape, and square-shape potentials. The center of
the confinement potential is set at the Mo site to maximize
the intervalley coupling (cf. Fig. 8). The results are plotted in
Fig. 9. Under an external confinement of 0.2 eV the intervalley
coupling is on the scale of meV in small quantum dots
(several lattice length scale). With the increase of the potential
radius R, the intervalley coupling decreases. In triangular and
hexagonal quantum dots, the intervalley coupling decreases
very fast to μeV order and even lower when R increases.
However, in square quantum dots with the same R the coupling

FIG. 8. Schematics of quantum dot confinement potential with
triangular (a), hexagonal (b), and square (c) shapes. The red spots
denote quantum dot regime and the potentials are all centered at M

atoms. R is the potential radius.
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FIG. 9. Intervalley coupling strength h and the energy separation
Es between the first excited state and ground state as functions of R

in MoS2 quantum dots of triangular (a), hexagonal (b), and square (c)
shapes. We set the confinement potential to be 0.2 eV and take the
length unit as the lattice constant a = 3.193 Å.

strength is still very large. We also calculate the energy
separation between the ground state and the first excited state
in the quantum dots. We find that the energy separation also
decreases with the increase of R. For all three types of quantum
dots with R = 7 ∼ 30a, with a being the lattice constant,
the energy separation is about 10–90 meV, which convinces
us that the excited-state levels are well separated from the
ground-state level.

To calculate the strength of intervalley coupling in charged
impurity systems, we consider the example of monolayer
WSe2 with one W atom replaced by a Re one, using the
2D hydrogenic confinement potential − e2

4πεr ε0r
, where r is

the distance from the impurity center and εr is the relative
dielectric constant. The known corrections to the Coulomb
potential, and the possible breakdown of the effective mass
approximation for the donor system will make the quanti-
tative numbers inaccurate here. However, we want to give
an estimation of the order of magnitude of the intervalley
coupling strength for the strongly localized electron. We use
the estimated exciton binding energy to describe the on-site
confinement Uon at the impurity cite, i.e., about −1.0−0.5 eV.
The calculated intervalley coupling strength h and the energy
separation between first excited state and ground state Es are
listed in Table III. From the results, one can see that the first
excited state are well separated from the ground state and can
be safely neglected.

TABLE III. Intervalley coupling strength h and the energy
separation between the first excited state and ground state Es in the
WSe2 impurity system for different parameters including the on-site
confinement Uon and relative dielectric constant εr .

Uon (eV) −0.5 −1.0 −1.0 −1.0

εr 16 16 7 27
h (meV) 2 14 4 10
Es (meV) 49 49 169 19

APPENDIX B: DERIVATION OF
HYPERFINE INTERACTION

The complete form of the hyperfine interaction between the
electron and nuclear spins is

Hhf = −μ0γe

4π

∑
k

γk I k

·
[

L

r3
k

− r2
k S − 3rk(S · rk)

r5
k

+ 8π

3
Sδ(rk)

]
, (B1)

where μ0 is the vacuum permeability, γe and γk are the
gyromagnetic ratios of electron and nuclei, rk = r − Rk is
the electron coordinate measured from the k-th nucleus, and
S and L are the spin and angular momentums of the electron
respectively.

As one may directly infer from Eq. (B1), in order to get
a reduced form of the hyperfine interaction for the localized
electron and hole in the envelope function approximation, it
is important to study several integrals concerning rk for the
band-edge Bloch functions. Because there are two species
of nuclei in the system, we use �Rk to denote the position
of Mo nuclei and �R′

k for S nuclei (accordingly, we have
�rk = �r − �Rk and �r ′

k = �r − �R′
k). We have used two approaches

to give the band-edge Bloch functions. In the first approach,
we extract the orbital compositions of the band-edge Bloch
states from first-principles calculations and then write the
Bloch functions by using the Roothaan-Hartree-Fock atomic
orbitals (Appendix B1). In the second approach, we use the
numerically calculated Bloch functions from ABINIT (Ap-
pendix B2). The two approaches give consistent results on the
form and magnitude of hyperfine interactions [Eqs. (14)–(17)
in main text], which are also consistent with the symmetry
analysis presented in Appendix B4. We take MoS2 as an
example and list the numerical results from the two approaches
below.

1. Evaluation based on Bloch functions constructed
using Roothaan-Hartree-Fock atomic orbitals

The Roothaan-Hartree-Fock method gives analytic wave
functions for the various orbitals of neutral atoms. Together
with the first-principles calculated orbital compositions of
both conduction and valence band-edge states, as listed in
Table IV, we are able to give an analytical expression for the
band-edge Bloch functions for the evaluation of the hyperfine
interaction, assuming that the atomic orbitals in the crystal
has not changed too significantly from that in the neutral
atoms. Similar approach has been used for the evaluation of

TABLE IV. Orbital compositions of the Bloch states in con-
duction and valence bands for ±K valleys from first-principles
calculations [32].

Mo-5s Mo-4d0 Mo-4d+2 Mo-4d−2 S-3p+1 S-3p−1

c(+K) 4.7% 87.6% 0 0 7.7% 0
c(−K) 4.7% 87.6% 0 0 0 7.7%
v(+K) 0 0 84.3% 0 0 15.7%
v(−K) 0 0 0 84.3% 15.7% 0
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TABLE V. Intravalley and intervalley integrals for the Mo nucleus regime. ABINIT denotes the results are from the ABINIT wave function,
and RHF denotes the Roothaan-Hartree-Fock wave function. The unit used here is Å−3.

〈+| 1
r3
k

|+〉c 〈+| r2
kz

r5k
|+〉c 〈+| r2

kx

r5
k

|+〉c 〈+| r2
ky

r5
k

|+〉c 〈+| rkx rky

r5
k

|+〉c 〈+| rkx rkz

r5
k

|+〉c 〈+| rky rkz

r5
k

|+〉c

ABINIT 24.23 11.68 6.28 6.27 0.01 0.00 0.00
RHF 20.60 10.79 4.90 4.90 0.00 0.00 0.00

|〈+| 1
r3
k

|−〉c| |〈+| r2
kz

r5
k

|−〉c| |〈+| r2
kx

r5
k

|−〉c| |〈+| r2
ky

r5
k

|−〉c| |〈+| rkx rky

r5
k

|−〉c| |〈+| rkx rkz

r5
k

|−〉c| |〈+| rky rkz

r5
k

|−〉c|
ABINIT 24.18 11.68 6.25 6.25 0.00 0.00 0.00
RHF 20.60 10.79 4.90 4.90 0.00 0.00 0.00

〈+| 1
r3
k

|+〉v 〈+| r2
kz

r5
k

|+〉v 〈+| r2
kx

r5
k

|+〉v 〈+| r2
ky

r5
k

|+〉v 〈+| rkx rky

r5
k

|+〉v 〈+| rkx rkz

r5
k

|+〉v 〈+| rky rkz

r5
k

|+〉v

ABINIT 19.06 2.88 8.10 8.08 0.02 0.00 0.00
RHF 19.82 2.83 8.50 8.50 0.00 0.00 0.00

|〈+| 1
r3
k

|−〉v| |〈+| r2
kz

r5
k

|−〉v| |〈+| r2
kx

r5
k

|−〉v| |〈+| r2
ky

r5
k

|−〉v| |〈+| rkx rky

r5
k

|−〉v| |〈+| rkx rkz

r5
k

|−〉v| |〈+| rky rkz

r5
k

|−〉v|
ABINIT 0.04 0.00 0.10 0.08 0.10 0.00 0.00
RHF 0.00 0.00 0.00 0.00 0.00 0.00 0.00

hyperfine interaction of holes in III-V semiconductors [39]. In
the Roothaan-Hartree-Fock method, Slater-type orbitals [55]
are linearly combined to form the atomic orbitals. The radial
part of the Slater-type orbitals is

f (r) = Nsr
n−1e−ζ r , (B2)

where Ns is a normalization constant and n is the principal
quantum number. According to Table IV, we focus on three
atomic orbitals, Mo-5s, Mo-4d, and S-3p. The optimized
atomic orbitals for neutral Mo and S atoms are listed in
Appendix B 5. Based on these results, we write the Bloch
functions for the conduction and valence band at the +K

valley as

φc
+(�r) =

∑
�Rk

ei �K· �Rk
[
αc

s f5s(rk)Y 0
0 (θk,ϕk) + αc

df4d (rk)Y 0
2 (θk,ϕk)

] +
∑

�R′
k

ei �K· �R′
k

αc
p√
2
f3p(r ′

k)Y+1
1 (θ ′

k,ϕ
′
k),

φv
+(�r) =

∑
�Rk

ei �K· �Rkαv
df4d (rk)Y+2

2 (θk,ϕk) +
∑

�R′
k

ei �K· �R′
k

αv
p√
2
f3p(r ′

k)Y−1
1 (θ ′

k,ϕ
′
k), (B3)

where α2 is the orbital composition as listed in Table IV;
f3p, f4d , andf5s are the radial parts of the atomic orbitals
(see Appendix B 5); Y 0

0 , Y 0
2 , and Y+1

1 are the corresponding
spherical harmonics. There is a factor 1√

2
before the S-3p

orbital part because we have 2 S atoms with mirror symmetry
in one unit cell. For the −K valley, we have φc

−(�r) = [φc
+(�r)]∗

and φv
−(�r) = [φv

+(�r)]∗. In this way, we give an estimation of
the Bloch wave function �c(v)

τ (�r) = φc(v)
τ (�r). Then we can

calculate those integrals for the terms involving rk (r ′
k) in

the Hamiltonian (B1), and the results are listed in Tables V
and VI. These integrals then lead to the expressions of the
hyperfine interaction in Eqs. (14)–(17). In the evaluations of
those integrals, we find that only the on-site atomic orbitals
have significant contributions to the hyperfine interaction.
Namely,

〈+| 1

r3
k

|+〉c =
∫

V

d�r[φc
+(�r)]∗

1

r3
k

φc
+(�r), (B4)

where V can be just taken as the unit cell centered at rk = 0
(cf. Fig. 10). The corrections from nearest-neighbor and next-
nearest-neighbor unit cells are found to be negligible. The
same is true for other integrals presented in Tables V and

VI. Therefore, although the hyperfine interaction is dominated
by the dipolar part for the p and d orbitals, it is still of an
“on-site” or “contact” form. This is similar to the case of
the hyperfine interaction for holes in III-V semiconductors as
shown in Refs. [39] and [40].

2. Evaluation based on first-principles calculated Bloch
functions using ABINIT

We also numerically evaluated the integrals in the hyperfine
interaction (B1) using the ABINIT all-electron (AE) wave
function. The results are also given in Tables V and VI.
In deriving the AE wave function, we choose a three-
dimensional (3D) unit cell. The unit cell is like what we
choose in Appendix A, but here all the lattice vectors
are expended to 3D space, that is, �a1 = (3.193,0,0),�a2 =
( 3.193

2 , 3.193
√

3
2 ,0), and �a3 = (0,0,18.804). The Mo atom is

located at ( 3.193
2 , 3.193

√
3

6 ,1.567), while the two S atoms are
at (0,0,0) and (0,0,3.134). The unit is Å. ABINIT gives us the
periodic part of the Bloch states on 120×120×720 discrete
points which cover this 3D unit cell.

From Tables V and VI, we clearly see that the results
from the numerical ABINIT calculation agree well with the
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TABLE VI. Intravalley and intervalley integrals for the S nucleus regime. The index and unit are the same as in Table V.

〈+| 1
r ′3
k

|+〉c 〈+| r ′2
kz

r ′5
k

|+〉c 〈+| r ′2
kx

r ′5
k

|+〉c 〈+| r ′2
ky

r ′5
k

|+〉c 〈+| r ′
kx

r ′
ky

r ′5
k

|+〉c 〈+| r ′
kx

r ′
kz

r ′5
k

|+〉c 〈+| r ′
ky

r ′
kz

r ′5
k

|+〉c

ABINIT 2.26 0.46 0.91 0.89 0.01 −0.01 −0.01
RHF 1.26 0.25 0.50 0.50 0.00 0.00 0.00

|〈+| 1
r ′3
k

|−〉c| |〈+| r ′2
kz

r ′5
k

|−〉c| |〈+| r ′2
kx

r ′5
k

|−〉c| |〈+| r ′2
ky

r ′5
k

|−〉c| |〈+| r ′
kx

r ′
ky

r ′5
k

|−〉c| |〈+| r ′
kx

r ′
kz

r ′5
k

|−〉c| |〈+| r ′
ky

r ′
kz

r ′5
k

|−〉c|
ABINIT 0.00 0.01 0.45 0.44 0.45 0.01 0.01
RHF 0.00 0.00 0.25 0.25 0.25 0.00 0.00

〈+| 1
r ′3
k

|+〉v 〈+| r ′2
kz

r ′5
k

|+〉v 〈+| r ′2
kx

r ′5
k

|+〉v 〈+| r ′2
ky

r ′5
k

|+〉v 〈+| r ′
kx

r ′
ky

r ′5
k

|+〉v 〈+| r ′
kx

r ′
kz

r ′5
k

|+〉v 〈+| r ′
ky

r ′
kz

r ′5
k

|+〉v

ABINIT 4.14 0.79 1.68 1.67 0.00 0.00 0.00
RHF 2.57 0.51 1.03 1.03 0.00 0.00 0.00

|〈+| 1
r ′3
k

|−〉v

∣∣ |〈+| r ′2
kz

r ′5
k

|−〉v| |〈+| r ′2
kx

r ′5
k

|−〉v| |〈+| r ′2
ky

r ′5
k

|−〉v| |〈+| r ′
kx

r ′
ky

r ′5
k

|−〉v| |〈+| r ′
kx

r ′
kz

r ′5
k

|−〉v| |〈+| r ′
ky

r ′
kz

r ′5
k

|−〉v|
ABINIT 0.00 0.00 0.82 0.83 0.83 0.00 0.00
RHF 0.00 0.00 0.51 0.51 0.51 0.00 0.00

ones in Appendix B 1 using the Roothaan-Hartree-Fock wave
functions for the atomic orbitals.

3. Corrections beyond the on-site contribution

Using the ABINIT AE wave function, we examine here the
corrections beyond the on-site contribution to the hyperfine
interaction. Here we list some numerical results in calculating
the integrals by involving more neighboring unit cells in
Table VII. One can see that for the integrals related to Mo
nuclei the correction from all nearest-neighbor unit cells
(cf. Fig. 10) is about 0.1%, and the next-nearest neighbors’
correction is even smaller. We check all nonvanishing integrals
and find the correction is of the same order. Therefore, we
conclude that the hyperfine interaction between electron and
Mo nuclear spins are well counted within an on-site unit cell.
For the integrals related to S nuclei, the nearest neighbors’
correction can be 10%, and the next nearest neighbors’

FIG. 10. Schematics of the on-site unit cell (red diamond),
six nearest-neighbors ones (green diamonds), and six next-nearest-
neighbors ones (yellow diamonds) for the evaluation of the hyperfine
interaction with the (a) transition metal and (b) chalcogen nuclear
spin. Large blue balls denote metal sites and small orange balls denote
chalcogen sites. The metal site in the red diamond of (a) corresponds
to rk = 0 in Eq. (B4), and the chalcogen site in the red diamond of (b)
corresponds to r ′

k = 0. In the evaluation of the on-site contribution,
the range of integral V in Eq. (B4) corresponds to the red diamond. In
the evaluation of the nearest- (next-nearest) neighbor contribution, V
in Eq. (B4) corresponds to the sum of the green (yellow) diamonds.

correction is about 1%. This does not affect the magnitude
of the hyperfine interaction we estimated very much.

4. Analysis from the rotational symmetry

In this following, we analyze the integrals involved the
hyperfine Hamiltonian (B1) based on the symmetry properties
of the Bloch wave functions. Under a C3 rotation centered at
the k-th M nucleus, we have

C3�
c
τσ (�r) = �c

τσ (�r),

C3�
v
τσ (�r) = eiτ 2π

3 �v
τσ (�r). (B5)

For the intravalley integrals in the conduction band,

〈+| r
2
kx

r5
k

|+〉c =
∫

d�r�c∗
+ (�r)

r2
kx

r5
k

�c
+(�r)

=
∫

d�r|C3�
c
+(�r)|2 C3(r2

kx)

C3(r5
k )

= 1

4
〈+| r

2
kx

r5
k

|+〉c + 3

4
〈+| r

2
ky

r5
k

|+〉c

+
√

3

2
〈+| rkxrky

r5
k

|+〉c. (B6)

TABLE VII. Integral corrections contributed from the six nearest-
neighbor (n.n.) unit cells and the six next-nearest-neighbor (n.n.n.)
ones. The unit is Å−3 (the same as in Tables V and VI). See Fig. 10
for the illustration of the n.n. and n.n.n. unit cells.

Integrals for Mo 〈+| r2
kz

r5
k

|+〉c 〈+| r2
kx

r5
k

|+〉c 〈+| r2
ky

r5
k

|+〉c

n.n. 0.0133 0.1070 0.1195
n.n.n. 0.0007 0.0193 0.0185

Integrals for S 〈+| r ′2
kz

r ′5
k

|+〉c 〈+| r ′2
kx

r ′5
k

|+〉c 〈+| r ′2
ky

r ′5
k

|+〉c

n.n. 0.0440 0.0599 0.0731
n.n.n. 0.0034 0.0165 0.0158
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Similarly, we have

〈+| rkxrky

r5
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|+〉c = −
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4
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|+〉c. (B7)

From the above two equations we find that
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kx
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k

|+〉c = 〈+| r
2
ky

r5
k

|+〉c,

〈+| rkxrky
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|+〉c = 0. (B8)

Other integrals can be worked out in the same way. We find
that 〈+| rkx rkz

r5
k

|+〉c = 〈+| rky rkz

r5
k

|+〉c = 0.

The same relations hold for the intervalley integrals,
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|−〉c = 0.

In the valence band subspace, the intravalley integrals are
similar to those in the conduction band subspace. However, it
differs for the intervalley integrals. We find that
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|−〉v. (B9)

The Bloch wave functions under the C3 rotation around the
X nucleus have the following relations:

C ′
3�

c
νσ (�r) = eiν 2π

3 �c
νσ (�r),

C ′
3�

v
νσ (�r) = e−iν 2π

3 �v
νσ (�r). (B10)

We find that the intravalley integrals have the same property
as for the M nucleus. In the following we list the relations
of intervalley integrals both for conduction and valence band
subspaces:
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By comparing the relations obtained from symmetry anal-
ysis with the numerical estimation in Tables V and VI, one
can find that they agree very well. We note that the relative
errors between the two numerical estimations becomes larger
when we deal with the S nuclei regime, which are possibly
due to the small magnitude of the integrals. In the numerical
results obtained from the ABINIT wave function, we find a finite
intervalley interaction in the valence band subspace for Mo
nuclei, which is predicted to be 0 in the Roothaan-Hartree-Fock
method. However, the values are so small that they are probably
the result of calculation errors.

5. Optimized atomic orbital functions

In the RHF method, we have the radial part of Mo-5s,
Mo-4d, and S-3p orbitals as follows [56,57]:

f5s(r) = 7.22802e−42.7425r + 116.248e−36.2098r r − 110.945e−19.9247r r + 8.81419e−52.4536r r2 + 21.0326e−14.652r r2

+ 104.34e−8.1505r r2 − 3214.89e−23.3229r r3 − 37.4997e−5.1157r r3 − 4.14133e−3.4917r r3 + 316.287e−13.6857r r4

+ 0.749325e−2.3571r r4 + 0.120996e−1.4897r r4 + 0.006006e−0.9661r r4,

f4d (r) = 81.5662e−22.9005r r2 + 329.352e−12.658r r2 + 40.5766e−6.0525r r2 − 14.1228e−3.5536r r2 + 227.235e−9.7486r r3

− 4.0599e−2.7024r r3 − 0.451674e−1.7351r r3 − 0.0220095e−1.1346r r3,

f3p(r) = 3.55739e−22.6414r r − 19.0356e−10.4197r r − 9.64606e−6.116r r − 7.56414e−4.4156r r + 45.9701e−17.3448r r2

+ 4.35629e−2.6496r r2 + 1.39527e−1.6975r r2 + 0.179256e−1.1477r r2. (B12)

These atomic orbitals are used to form the Bloch states. Note that in the above expressions r’s are all in the atomic unit here. We
need a transform of the unit in order to calculate the integrals in the hyperfine interaction.
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