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Repeated measurements that typically occur in two-time or multitime correlators rely on von Neumann’s
projection postulate, telling how to restart the system after an intermediate measurement. We invoke the principle
of deferred measurement to describe an alternative procedure in which coevolving quantum memories extract
system information through entanglement, combined with a final readout of the memories described by Born’s
rule. Our approach to repeated quantum measurements respects the unitary evolution of quantum mechanics
during intermediate times, unifies the treatment of strong and weak measurements, and reproduces the projected
and (anti)symmetrized correlators in the two limits. As an illustration, we apply our formalism to the calculation
of the electron charge correlator in a mesoscopic physics setting, where single electron pulses assume the role of
flying memory qubits. We propose an experimental setup that reduces the measurement of the time correlator to
the measurement of currents and noise, exploiting the (pulsed) injection of electrons to cope with the challenge
of performing short-time measurements.
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I. INTRODUCTION

Within the quantum world, the question of what quantities
can be measured in an experiment is often a nontrivial one,
e.g., measuring time correlators (with times τj ) requires
finding the correct ordering of operators. Concrete examples in
mesoscopic physics and quantum optics are the measurements
of charge correlators [1–4] or full counting statistics [5–7]
and that of photon correlators [8,9]. The question is usually
resolved by including the measurement apparatus in the
description, and its internal workings decide upon the form of
the measured correlator. Examples are the Ampèremeter, the
double-dot detector, and the spin counter used in Refs. [1,3,5],
or the different photodetectors introduced by Glauber and
Mandel [10]. These detectors then act back on the system,
thereby influencing the measurement outcome, i.e., the specific
form of the correlator. For example, a weak measurement
such as that used in Ref. [1] (see also Ref. [11]) leads to
symmetrized [RS(τ1,τ2)] and antisymmetrized [IS(τ1,τ2)]
correlators weighted with different detector response functions
[2,12], while a strong measurement produces a projected
correlator SP (τ1,τ2).

These different forms of measured correlators can be
derived [13] by invoking the von Neumann projection postulate
[14], which tells us how to restart the system after the first
measurement at τ1 (or after previous measurements at times
τj < τn in an nth-order correlator). The measurement with a
weakly coupled detector can be treated perturbatively, with
the von Neumann projection exerted on the detector and no
backaction on the system [1]. In a strong measurement with a
large system-detector coupling, the projection can be formally
applied directly to the system, thereby producing a maximal
backaction [13].

In this paper, we invoke the principle of deferred measure-
ment [15] known from quantum information theory, where
it can be used for quantum computing, and we apply it
to the problem of repeated measurements, specifically of
time correlators. We replace the von Neumann projection by
entangling the measured system with coevolving quantum

memories (see Fig. 1), thereby (effectively) expanding the
Hilbert space of the total system in every measurement
step. The desired correlator is then derived from a final
measurement of all the quantum memories by invoking Born’s
rule [16]. Hence the entire system plus memories undergoes a
unitary quantum evolution until the very end, where the Born
rule takes us from the quantum to the classical world. Our
scheme captures the cases of weak and strong measurement
within a unique formalism by merely changing the degree of
entanglement between the system and the quantum memory. In
the limits of weak and strong entanglement, we reproduce the
results previously derived via use of the projection postulate.
No simple physical form for the time correlators has been
found so far in the intermediate-coupling regime.

Describing a measurement by entangling the system with a
detector and including a (dissipative) bath in the evolution of
the density matrix is a concept that has been well developed
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FIG. 1. Schematic illustration of different measurement proce-
dures for a two-time (τ1,τ2 > τ1) correlator: (a) strong measurement
described by von Neumann projection acting directly on the system
at time τ1 and providing a projected correlator SP after readout at τ2;
for a weak measurement, the von Neumann projection at time τ1 acts
on the weakly coupled detector. (b) Repeated measurement without
von Neumann projection at τ1: unitary coevolution of the system and
quantum memories that are entangled at times τ1 and τ2 and final
readout after τ2. The coupling strength between the system and the
quantum memories determines the degree of entanglement.
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over the past two decades [17–20]. Here, we extend the idea
of system-detector entanglement to the case of repeated mea-
surement. Thereby, the quantum memories evolve coherently
during and after the information transfer from the system due
to entanglement, with the (dissipative) measurement deferred
to the very end of the process.

The proposed scheme for the measurement of time-
correlated observables finds an interesting application in
mesoscopic physics. In particular, measuring the charge Q̂

dynamics of a quantum dot with the help of a nearby quantum
point contact is a classic problem [21]. In such a setup,
single-electron pulses [5,22] assume the role of flying qubit
memories, which are either transmitted or reflected by the
quantum point contact (QPC), depending on the dot’s charge
state; see Fig. 2. Analyzing the charge transmitted across
the QPC then provides the desired information on the dot’s
charge correlator. Making use of recent developments in
electron quantum optics [23,24], we propose a setup (see
Fig. 3) that shifts the task of resolving short times, typically
done on the level of the detection, to the proper timing of
electron pulses and gate operations.

We briefly sketch the main idea of the paper: Consider a
system observable Ô with an eigenbasis {|n〉} that is to be
measured. We start with a system state at the initial time τin,

|ψ(τin)〉 =
∑

n

ψn(τin)|n〉, (1)

and a quantum memory in the initial state |φ(1)
in 〉, and we

have them transiently interact at time τ1 with the help of
an externally controlled interaction (to be identified with a
quantum detector). The system and memory then become
entangled,[∑

n

ψn(τ1)|n〉
]∣∣φ(1)

in

〉 →
∑

n

ψn(τ1)|n〉∣∣φ (1)
n

〉
, (2)

where |φ(1)
n 〉 denote memory states after interaction with the

system in state |n〉, and we assume a negligible evolution of
the system during the time of interaction. Evolving the system
to the later time τ2 and entangling it with a second memory,
we obtain the state∑

m,n

Umn(τ21)ψn(τ1)|m〉∣∣φ (1)
n

〉∣∣φ(2)
m

〉
, (3)

with Umn(τ ) the matrix elements of the system propagator
Û (τ ) and τ21 = τ2 − τ1. The unitary evolution of the memory
states |φ(j )

n 〉 preserves the system information gained at times
τj . At time τfin > τ2, we measure the memory observables
â(1) and â(2) with discrete spectra a(1,2)

α . Making use of Born’s
rule, we find the probability distribution function Pαβ for
the measurement outcomes α and β on the two memory
observables; this probability distribution contains the desired
information on the system’s two-time correlator. The specific
relation between the distribution function Pαβ of measurement
outcomes and the correlator of system observables Ô(τ1)
and Ô(τ2) depends on the system-detector coupling and
the observables measured on the memories; we will show
below how to extract the well-known (anti)symmetrized and
projected correlators from the probabilities Pαβ in the limits
of weak and strong measurements.

In the end, by making use of quantum memories that store
the information acquired from the system at the quantum level
at earlier times τ1 and τ2 until the final time τfin, we have
avoided the intermediate readout, which requires the use of
the projection postulate. Hence the entire measurement process
follows a unitary quantum evolution until the transition to the
classical world is done via Born’s rule.

In the following, we will first derive the general framework
describing the deferred measurement of a correlator with
the intermediate von Neumann projection replaced by a
system-detector entanglement (Sec. II). In Sec. II A, we
discuss the limit of weak measurement, and we use qubits as
quantum memories to arrive at a simple relation between the
measurement outcome on the qubits and the (anti)symmetrized
correlators of the system. In Sec. II B, we first discuss a strong
measurement at strong coupling using qudit memories, and
then we invoke (weakly coupled) qubit registers to show that
both types of strong measurements produce the projected time
correlator of the system. An illustration of our formalism
is given in Sec. III, where we describe the measurement of
the charge correlator in a mesoscopic setting, specifically the
two-time charge correlator of a quantum dot (QD) as measured
by a quantum point contact (QPC). Section III E describes
a possible experimental implementation, and in Sec. IV we
summarize our results.

II. CORRELATOR MEASUREMENTS
BY QUANTUM MEMORIES

We consider the situation in which a two-time correlator
of a system operator Ô is measured with the help of two
quantum memories; the system’s initial state |ψ〉 is given by
Eq. (1), while the memories are described by initial states
|φ(j )

in 〉, j = 1,2 (see below for the discussion of an open
system described by a density matrix ρ̂). The memories
interact with the system at times τ1,2 during a small time
interval δτ . After this interaction, the resulting memory states
|φ(j )

n 〉 = ûn|φ(j )
in 〉 depend on the system state |n〉, where ûn

describes the time evolution of the quantum memories during
the interaction with the system (we assume a trivial evolution of
the free memories). The system state |ψ(τ )〉 = ∑

n ψn(τ )|n〉
is assumed to remain unchanged during the time δτ of the
individual interaction events; see Sec. III C for an extended
discussion of this point. After the second interaction event at
τ2, the wave function |ψ(τfin > τ2)〉 of the system is entangled
with the states |φ(j )

n 〉 of the memories, and the combined wave
function |	f 〉 reads

|	f 〉 =
∑
l,m,n

Ulm(τf 2)Umn(τ21)ψn(τ1) |l〉 ∣∣φ(1)
n

〉 ∣∣φ (2)
m

〉
, (4)

with τf 2 = τfin − τ2. The quantum memories are supposed to
retain their system information after their interaction. At time
τfin, we measure the operators â(1) and â(2) on the first and second
memory, respectively. Denoting the (discrete) eigenvalues and
eigenstates of â(j ) by a(j )

α and |ϕ(j )
α 〉, we rewrite the memory

states |φ(j )
n 〉 = ∑

α sα
n |ϕ(j )

α 〉. Applying Born’s rule to the final
state (4) provides us with the probability distribution

Pαβ(τ21) = 〈	f |p̂(1)
α p̂

(2)

β |	f 〉, (5)
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where p̂(j )
α is the projector onto the eigenstate α of the j th

memory, i.e., p̂(j )
α = |ϕ(j )

α 〉〈ϕ(j )
α |. Making use of the unitarity con-

dition
∑

l UlmU ∗
lm′ = δmm′ [rendering the evolution Ulm(τf 2) in

Eq. (4) irrelevant], we obtain the probabilities

Pαβ (τ21) =
∑
m

∣∣∣∣∑
n

sβ
mUmn(τ21)sα

n ψn(τ1)

∣∣∣∣
2

. (6)

The above expressions (5) and (6) for the probabilities Pαβ (τ21)
provide us with the desired information on the two-time
correlator of the system. They are easily generalized to the
case of open systems by introducing the combined system
plus bath (the open system) density matrix ρ̂, and evolving
it in time including the subsequent entanglement with the
quantum memories: Starting from the initial density matrix
ρ̂0 ⊗ |φ(1)

in 〉〈φ(1)
in | ⊗ |φ(2)

in 〉〈φ (2)
in | describing the open system plus

memories at time τin, we proceed as in the case of isolated
systems by conditioning the time evolution of the memory
states on the corresponding system states, and we obtain the
final density matrix at time τf ,

ρ̂f =
∑

k,k′,n,n′,m,m

Ûkm(τf 2)Ûmn(τ21) ρ̂nn′ (τ1) Û
†
n′m′(τ21)

× Û
†
m′k′(τf 2) |k〉〈k′| ⊗ ∣∣φ (1)

n

〉〈
φ

(1)

n′
∣∣ ⊗ ∣∣φ (2)

m

〉〈
φ

(2)

m′
∣∣, (7)

with the open system’s density matrix ρ̂(τ1) at time τ1, its
reduced part ρ̂nn′ (τ1) = 〈n|ρ̂|n′〉, and the reduced operators
Ûil = 〈i|Û |l〉, with Û the evolution operator of the open
system. Note that here, the outgoing states |φ(1)

n(′)〉 and |φ(2)

m(′)〉
are conditioned on the system states n(′) and m(′) at times τ1 and
τ2. We define the probabilities Pαβ as

Pαβ (τ21) = Tr
[
p̂(1)

α p̂
(2)

β ρ̂f

]
(8)

with the trace taken over both the open system and the memory
states. Calculating this expression with the final density matrix
Eq. (7), we obtain

Pαβ (τ21) =
∑

n,n′,m

Tr
[
sβ
m Ûmn(τ21) sα

n ρ̂nn′ (τ1)sα∗
n′ Û

†
n′m(τ21) sβ∗

m

]
,

(9)

with the remaining trace taken over the bath degrees of
freedom. This result is the direct generalization of (6) to the
case of open systems. Expressions (5) and (6) as well as (8)

and (9) constitute the basic formulas, which we will develop
further in the following sections. Indeed, as expressed in terms
of the evolution amplitudes of the system and detectors, it
is difficult to appreciate the physical meaning and content of
these results. To make progress, we consider next the two cases
of weak and strong measurements.

A. Weak measurement

Given a weak system-detector coupling, the most direct way
to find the probabilities Pαβ in terms of physically transparent
quantities is to start from Eq. (5) and evaluate this expression
perturbatively in the linear system-detector coupling Hsd =∑

j b̂(j )(τ )Ô, where the time-dependent coupling b̂(j )(τ ) acts on
the j th memory during a time δτ around τj . The unperturbed
evolution of the memories is described by the Hamiltonian
ĥ0, and we make use of the interaction representation. We go
over to irreducible quantities by subtracting the uncorrelated
contribution,

P irr
αβ = Pαβ − P (1)

α P
(2)

β , (10)

with P (1)
α = 〈	 (1)

f |p̂(1)
α |	 (1)

f 〉 and P
(2)

β = 〈	 (2)

f |p̂(2)

β |	 (2)

f 〉 describing
measurements involving a single entanglement at time τ1 or τ2

with only one memory, respectively. The quantity P (1)
α can be

obtained by a simple summation of Pαβ ,

P (1)
α =

∑
β

Pαβ, (11)

and P (2)
α = P (1)

α for a time-independent problem (otherwise,
the determination of P (2)

α necessitates a second measurement).
Note that the sum over the first index of Pαβ already includes
correlations [see Eq. (6)], and hence P

(2)

β �= ∑
α Pαβ .

The task then is to evaluate the irreducible expression

P irr
αβ = 〈〈	|Û †

D
(τf ,τin)p̂(1)

α (τf )p̂(2)

β (τf )ÛD(τf ,τin)|	〉〉, (12)

with the expectation value to be taken over the initial system
state |ψ(τin)〉, 〈〈·〉〉 refers to the irreducible part, and the time
evolution operator reads

ÛD(τf ,τin) = T exp

[
− i

�

∫ τf

τin

dτ ′Ĥsd(τ ′)
]
, (13)

with T denoting time-ordering. Evaluating (12) to lowest
relevant order in the coupling, we find

P irr
αβ = (−i)2

�2

∫ τf

τin

dτ ′
∫ τ ′

τin

dτ ′′ 〈〈	|[[p̂(1)
α (τf )p̂(2)

β (τf ),Ĥsd(τ ′)
]
,Ĥsd(τ ′′)

]|	〉〉

= (−i)2

�2

∫ τ

τin

dτ ′
∫ τ ′

τin

dτ ′′[〈〈ψ |Ô(τ ′)Ô(τ ′′)|ψ〉〉 〈
φ (1)

in

∣∣p̂(1)
α (τf )b̂(1)(τ ′′)

∣∣φ (1)
in

〉 〈
φ(2)

in

∣∣p̂(2)

β (τf )b̂(2)(τ ′)
∣∣φ (2)

in

〉
−〈〈ψ |Ô(τ ′′)Ô(τ ′)|ψ〉〉 〈

φ (1)
in

∣∣b̂(1)(τ ′′)p̂(1)
α (τf )

∣∣φ (1)
in

〉 〈
φ(2)

in

∣∣p̂(2)

β (τf )b̂(2)(τ ′)
∣∣φ (2)

in

〉
−〈〈ψ |Ô(τ ′)Ô(τ ′′)|ψ〉〉 〈

φ (1)
in

∣∣p̂(1)
α (τf )b̂(1)(τ ′′)

∣∣φ (1)
in

〉 〈
φ(2)

in

∣∣b̂(2)(τ ′)p̂(2)

β (τf )
∣∣φ (2)

in

〉
+〈〈ψ |Ô(τ ′′)Ô(τ ′)|ψ〉〉 〈

φ (1)
in

∣∣b̂(1)(τ ′′)p̂(1)
α (τf )

∣∣φ (1)
in

〉 〈
φ(2)

in

∣∣b̂(2)(τ ′)p̂(2)

β (τf )
∣∣φ (2)

in

〉]
, (14)

where we made sure that the first memory interacts with the
system at the earlier time τ ′′. For a slow system dynamics and

exploiting that b̂(j )(τ )|φ(j )
in 〉 �= 0 only for τ ≈ τj , we can replace

Ô(τ ′′) → Ô(τ1) and Ô(τ ′) → Ô(τ2). We make use of the
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standard definitions for the symmetrized and antisymmetrized
irreducible correlators (with [·,·] and {·,·} denoting the usual
commutator and anticommutator),

RS irr
OO(τ1,τ2) = 〈〈{Ô(τ1),Ô(τ2)}〉〉/2, (15)

IS irr
OO(τ1,τ2) = −i〈〈[Ô(τ1),Ô(τ2)]〉〉, (16)

to arrive at the final result,

P irr
αβ(τ21) =IS

(1)

det,αIS
(2)

det,βRS irr
OO(τ1,τ2)

+ RS
(1)

det,αIS
(2)

det,βIS irr
OO(τ1,τ2), (17)

with the detector response functions

RS
(j )

det,α = − 1

2�

∫ τf

τin

dτ
〈
φ(j )

in

∣∣{p̂(j )
α (τf ),b̂(τ )

}∣∣φ (j )
in

〉
, (18)

IS
(j )

det,α = −i

�

∫ τf

τin

dτ
〈
φ(j )

in

∣∣[p̂(j )
α (τf ),b̂(τ )

]∣∣φ(j )
in

〉
. (19)

The symbols R and I address symmetrized and antisym-
metrized quantities (or equivalently, up to factors of 2, real
and imaginary parts).

In a situation in which the full information Pαβ can be
extracted from the memories, the individual correlators RS irr

OO

and IS irr
OO can be obtained from (17) by combining two

different probabilities, e.g., using P irr
αβ and P irr

ᾱβ one obtains

RS irr
OO = [

RS
(1)

det,ᾱP irr
αβ − RS

(1)

det,αP irr
ᾱβ

]/
D(1) IS

(2)

det,β , (20)

IS irr
OO = [−IS

(1)

det,ᾱP irr
αβ + IS

(1)

det,αP irr
ᾱβ

]/
D(1) IS

(2)

det,β , (21)

with D(1) = RS
(1)

det,ᾱIS
(1)

det,α − RS
(1)

det,αIS
(1)

det,ᾱ . Alternatively,
one may have preferential access to combinations of proba-
bilities Pαβ (see Sec. III E for an example) or make use of
specific detector properties; see below and the Appendix for
examples.

A generic choice for the quantum memories are qubit
devices that couple to the system via the Hamiltonian Ĥsd(τ ) =
�(τ )σ̂xÔ, where the coupling �(τ ) is switched on during a
short time δτ around τj . Assuming initial states∣∣φ(j )

in

〉 = [|ϕ0〉 + eiθ (j ) |ϕ1〉]/
√

2, (22)

a system residing in a state |n〉 with eigenvalue On will rotate
the qubit around the x axis by δϑ On with δϑ = �δτ/�. The
response functions (18) and (19) involve integrals of the type∫ τf

τin

dτ
〈
φ(j )

in

∣∣p̂α(τf )�(τ )σ̂x

∣∣φ (j )
in

〉 = δϑ ei(1−2α)θ (j )
, (23)

and we obtain the response functions

RS
(j )

det,0 = δϑ cos θ (j ), RS
(j )

det,1 = δϑ cos θ (j ), (24)

IS
(j )

det,0 = 2δϑ sin θ (j ), IS
(j )

det,1 = −2δϑ sin θ (j ). (25)

Choosing θ (2) = π/2, i.e., polarizing the second memory along
the y axis, we can directly find the correlator RS irr

OO (IS irr
OO)

from the memory correlator P irr
αβ by choosing θ (1) = π/2

(θ (1) = 0). Alternatively, we may use the results (20) and
(21) and θ (1) = θ (2) = π/4 to find (we choose α = 0, ᾱ = 1,

and β = 0)

RS irr
OO = P irr

00 − P irr
10

4δϑ2
, (26)

IS irr
OO = −P irr

00 + P irr
10

2δϑ2
. (27)

Note that the sums P irr
00 + P irr

10 and P irr
00 + P irr

01 contain very
different types of information, one a correlation and the
other only a mean value, as discussed in more detail in
Sec. III E. Hence, we find that the delayed measurement of
the two quantum memories provides the symmetrized and
antisymmetrized correlators (15) and (16). Finally, we note
that a weak linear coupling between the system observable
and the detector/memory variable canonically conjugated to
the detector readout provides a more effective entanglement.
Such a von Neumann–like interaction allows to produce a
strong entanglement and a strong measurement even for weak
coupling if sufficient time is available for the entanglement
process [25].

B. Strong measurement

We are now going to show that a strong system-detector
coupling naturally leads to projective correlators. Consider
a situation in which the system operator Ô is measured
via entanglement with two quantum memories. We first
consider an operator Ô with a nondegenerate spectrum, and
we comment on the general case in the end. A strong coupling
between the system and the memory implies that the memory
states |φ (j )

n 〉 after interaction with the system in state |n〉 are
fully distinguishable, i.e.,〈

φ (j )
m

∣∣φ (j )
n

〉 = δnm. (28)

The observables â(j ) distinguish between memory eigenstates
|ϕ(j )

α 〉, and we assume a one-to-one relation with the evoluted
memory states |φ(j )

n 〉, ∣∣φ (j )
n

〉 = ∣∣ϕ(j )
αn

〉
, (29)

with αn �= αm for n �= m (otherwise, the observable â(j )

measures linear combinations of eigenstates of Ô and thus
is not suitable for a measurement of this observable). Under
these (strong-coupling) conditions, the amplitudes sα

n reduce
to sα

n = δααn
(for j = 1, s

β
m = δββm

for the second memory).
To describe the strong-coupling situation, it is favorable to
proceed with the expression (6), and we obtain the result

Pαnβm
(τ21) = |Umn(τ21)ψn(τ1)|2. (30)

The right-hand side of the above expression is merely the
projected system correlator

SP
PnPm

(τ21) =
∑

l

〈l|P̂m(τ2)P̂n(τ1)ρ0P̂n(τ1)|l〉

= |Umn(τ21)ψn(τ1)|2, (31)

with the projected density matrix ρP (τ1) =∑
k P̂k(τ1) ρ0P̂k(τ1) and the projectors P̂k = |k〉〈k| onto

different system states; see Eq. (1). The projected correlators
SP

PnPm
(τ21) are easily combined into the desired two-time
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correlator SP
OO(τ21),

SP
OO(τ21) = Tr[Ô(τ2)Ô(τ1)ρP (τ1)]

=
∑
nm

OnOmSP
PnPm

(τ21)

=
∑
nm

OnOmPαnβm
(τ21), (32)

thereby establishing the general result relating the system
correlator to the memory readings. A further simplification
can be achieved if the eigenvalues of â(j ) and Ô obey a linear
relation On = η(j )a(j )

αn
, in which case we obtain the simple result

SP
OO(τ21) =

∑
nm

η(1)a(1)
αn

η(2)a
(2)

βm
Pαnβm

(τ21)

= η(1)η(2)〈â(1)â(2)〉, (33)

directly relating the projected system correlator to the memory
correlator 〈â(1)â(2)〉.

These results can easily be generalized to the case in
which the observable Ô involves a degenerate spectrum:
The system evolution of the memories is conditioned on the
eigenvalue On rather than the state |n〉 of the system. Degen-
erate eigenstates produce equal evolutions of the memories,
implying that Pαnβm

(τ21) has to be replaced by PαOβO′ (τ21) =∑
{m|Om=O ′} |∑{n|On=O} Umn(τ21)ψn(τ1)|2 and ρP (τ1) is sub-

stituted by
∑

O P̂O(τ1)ρ0P̂O(τ1) with the projection operator
P̂O = ∑

{n|On=O} |n〉〈n|. With these replacements, the above
results remain valid also for a degenerate spectrum.

Hence, the perfect entanglement between the system and
the memories arising due to strong coupling is equivalent to
a von Neumann projection applied to the system. While no
backaction is apparent on the level of the system dynamics,
the strong backaction of this maximal entanglement with the
memories manifests itself in a strong change of the system’s
density matrix when tracing over the memories.

The realization of a strong measurement as described above
requires equal or more memory states |ϕα〉 than system states
|n〉, hence quantum memories with dimensionality d or qudits
are required. Besides the obvious difficulty in realizing qudit
memories, their coupling to the system in order to serve as a
measurement device is equally nontrivial. As an alternative,
we discuss a measurement scheme involving qubit registers.

Such an alternative setup implementing a strong measure-
ment involves a weak system-detector coupling but invokes
multiple measurements. We replace the strongly coupled qudit
memories by weakly coupled qubit registers with J qubits
each, probing the system state close to τ1 and τ2 within a
short time interval δτ . For a strong measurement, J is chosen
sufficiently large to distinguish the different eigenvalues On

of the system. Assuming the system does not change during
the interaction time Jδτ with one register, the final state of the
system and memory registers is of the same form as in Eq. (4),
with the outgoing individual memory states |φ(1)

n 〉 and |φ(2)
m 〉

replaced by the outgoing register states |�(1)
n 〉 = ∏J

j=1 |φ(j )
n 〉

and |�(2)
m〉 = ∏2J

j=J+1 |φ(j )
m 〉. Making use of Born’s rule, we

obtain the probabilities P
μν
αβ (τ21) for finding μ (ν) qubits of

the first (second) register in states α ∈ {0,1} (β ∈ {0,1}),

P
μν
αβ =

(
J

μ

)(
J

ν

)∑
m

∣∣∣∣∑
n

(
sβ
m

)ν(
sβ̄
m

)J−ν

×Umn

(
sα
n

)μ(
sᾱ
n

)J−μ
ψn

∣∣∣∣
2

,

with sᾱ
n = s1−α

n and s
β̄
n = s

1−β
n . Introducing the conditional

probability P μ
α (n) = (

J

μ

)|sα
n |2μ|sᾱ

n |2(J−μ) for measuring μ of
the J qubits in the state α after interaction with the system in
state |n〉, we can separate the system and detector response in
the above equation,

P
μν
αβ =

∑
n,n′,m

[UmnψnU
∗
mn′ψ

∗
n′ ]P μ

α (n,n′)P ν
β (m), (34)

with the “off-diagonal” conditional probabilities P μ
α (n,n′) =(

J

μ

)
(sα

n sα
n′

∗)μ(sᾱ
n sᾱ

n′
∗)(J−μ) [note that P μ

α (n,n) = P μ
α (n)]. The

conditional probabilities P μ
α (n) depend only on the eigenvalue

On of the state |n〉 (and not on the state |n〉 itself). We then
have to distinguish two cases: (i) all system eigenvalues are
nondegenerate, i.e., On �= On′ for n �= n′, and (ii) there are
degenerate system states.

In the nondegenerate case (i) and for a strong measurement,
the probability distributions P μ

α (n) and P μ
α (n′) for different

n �= n′ do not overlap as functions of μ (this is the very
definition of this measurement being a strong one), and the
“off-diagonal” elements P μ

α (n,n′) for n′ �= n are suppressed,
as follows from the relation |P μ

α (n,n′)| =
√

P
μ
α (n)P μ

α (n′).
We can then simplify expression (34) to the form P

μν
αβ ≈∑

n,m |Umnψn|2P μ
α (n)P ν

β (m). The register correlators (replac-
ing the distribution functions Pαβ) take the form

Sαβ(τ21) = 〈	f |
J∑

j=1

p̂(j )
α

2J∑
j=J+1

p̂
(j )

β |	f 〉 =
∑
μ,ν

μνP
μν
αβ

=
∑
n,m

|Umnψn|2
∑

μ

μP μ
α (n)

∑
ν

νP ν
β (m). (35)

Assuming again a linear system-qubit coupling Ĥsd(τ ) =
�(τ )σ̂xÔ that rotates the qubits by an angle δϑ On around
the x axis, the evolution

ûn =
(

cos(δϑ On) −i sin(δϑ On)
i sin(δϑ On) cos(δϑ On)

)
(36)

produces the memory states |φ(j )
n 〉 = ûn|φ(j )

in 〉, where we again
assume initial states polarized in the xy plane; see (22). The
probabilities Pα(n) for an individual qubit to reside in state
α = 0,1 are given by

P0(n) = 1 − P1(n) ≈ 1
2 + (1 − 2α)δϑ On sin θ. (37)

With the qubits initially polarized along the y axis, i.e., θ (j ) =
π/2, we define the register’s “magnetizations”

M(n) =
∑

μ

μ
[
P

μ

0 (n) − P
μ

1 (n)
] = 2Jδϑ On, (38)

where we have made use of (37) in the preceding equation. The
combination S11 − S10 − S01 + S00 then involves the product
of register polarizations M(n)M(m), and using the relation
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SP
OO(τ21) = ∑

nm OnOm|Umnψn|2 [see Eq. (32)], we can relate
the system correlator to the register correlators via

SP
OO(τ21) = S11 − S10 − S01 + S00

4J 2δϑ2
. (39)

Note the normalization S11 + S10 + S01 + S00 = J 2, which
follows from replacing M(n) = ∑

μ μ[P μ

0 (n) − P
μ

1 (n)] by
�(n) = ∑

μ μ[P μ

0 (n) + P
μ

1 (n)] = 〈μ〉0 + 〈μ〉1 = J .
In the degenerate case (ii), the distribution functions

separate only for states with different eigenvalues On �= On′ ,
implying that P μ

α (n,n′) ∼ 0, while for degenerate eigenvalues
with On = On′ , P μ

α (n,n′) = P μ
α (n). The probabilities P

μν
αβ are

then given by

P
μν
αβ ≈

∑
m,n

∑
{n′|On′=On}

[UmnψnU
∗
mn′ψ

∗
n′ ]P μ

α (n)P ν
β (m).

On the other hand, the projected density matrix ρP (τ1)
appearing in the system correlator SP

OO(τ21) involves the
projectors P̂O = ∑

{n|On=O} |n〉〈n|, such that the result (39)
remains unchanged.

Summarizing, we have seen that the measurement scheme
invoking entanglement with quantum memories and their
delayed measurement provides us, in the weak- and strong-
measurement limits, with the same results as those obtained
via the traditional route using an intermediate von Neumann
projection. Furthermore, these results have been obtained
within a unified description starting from the same initial
formula in the form (5) or (6).

The above general theoretical considerations are rather non-
trivial to implement in a practical situation, as the preparation,
entanglement, and measurement of many quantum memories
is often a nontrivial task. The implementation of these ideas is
less demanding, though still challenging, when considering
specific examples. Indeed, quantum memories for delayed
measurement are naturally provided in a scattering geometry,
where individual scattered particles take the role of flying
qubits. In the following, we focus on a specific example
in mesoscopic physics, i.e., the measurement of a charge
correlator of a quantum dot by scattering electrons in a nearby
quantum point contact. We first analyze the situation for a
simple two-state system with charges Q = ne, n = 0,1, and
then we extend these considerations to arbitrary charge states.

III. CHARGE-CORRELATOR MEASUREMENT

We consider a classic problem [21], namely the charge Q̂

dynamics of a quantum dot (QD) (attached to leads or coupled
to another dot in an isolated double-dot system) measured
by a nearby quantum point contact (QPC); see Fig. 2 and
Ref. [13] for a recent discussion of this system. Here, we
want to characterize the dot’s dynamics by its two-time charge
correlator. In this system, the measurement is executed by
the electrons that are transmitted across/reflected by the QPC
with probabilities that depend on the dot’s charge state. For the
present discussion, it is convenient to view the QPC current as a
sequence of individual electron pulses; during recent years, this
theoretical idea [5,26,27] has progressed to an experimental
reality [22–24], opening the new field of electron quantum
optics [28]. The quantum memories can then be viewed as

1 2 2 1

τ fin (τ  −τ  )2 1vF

QDin

2 1

QPC

τ

QPC

QD

FIG. 2. Quantum dot system (QD) measured by a capacitively
coupled quantum point contact (QPC): Single-electron pulses inci-
dent on the QPC from the left (at τin) are either transmitted (with
amplitude t) or reflected (amplitude r); the outgoing Lippmann-
Schwinger wave functions describe flying qubits without own
dynamics, and they serve as quantum memories. Two pulses separated
in time by τ2 − τ1 are needed to measure the two-time correlator
of the dot’s charge. After scattering at the QPC, the two electrons
(flying qubits) are entangled with the quantum dot system and carry
information on its dynamics. Simultaneous detection of the two
scattered electrons (at τfin), e.g., a distance vF(τ2 − τ1) away with
both positions on the right of the QPC, provides information on the
two-time charge correlator.

flying qubits, individual electron pulses arriving at the QPC at
times τ1 and τ2 that probe the charge state of the QD through
the capacitive coupling between the QD and the QPC; see
Fig. 2.

The memory states |ϕ(j )
α 〉 are the two scattered states where

the electron is reflected (α = r) or transmitted (α = t), i.e.,
the outgoing state is given by |φ(j )

n 〉 = tn|ϕ(j )

t 〉 + rn|ϕ(j )
r 〉 with

scattering coefficients tn ↔ s t
n and rn ↔ sr

n depending on
the charge state of the system. We assume well-separated
single-electron pulses and an evolution of the scattered waves
|ϕ(j )

r,t〉 emanating from the QPC at times τj that preserves the
corresponding system information, in particular 〈φ(2)

m |φ(1)
n 〉 = 0.

This allows us to envision an individual detection of the
electrons [24,29]. In the final readout, the flying qubits are
detected on the right or left side of the QPC, telling whether
the two electrons have been transmitted (with probability Ptt),
reflected (Prr), or mixed (Ptr and Prt). These probabilities then
contain the information about the two-time charge correlator
of the QD.

Formally, such a final-state analysis corresponds to measur-
ing the (charge) operators â(j ) = ∑

α a(j )
α p̂(j )

α , with the projectors
p̂(j )

α = |ϕ(j )
α 〉〈ϕ(j )

α | providing the transmitted (α = t) or reflected
(α = r) components of the j th electron. The eigenvalues a(j )

α

depend on the measured charge, e.g., a
(j )

t = 1 and a(j )
r = 0 if

the transmitted charge is measured on the right of the QPC,
while a(j )

r = 1 and a
(j )

t = 0 if the reflected charge is measured
on the left. Both types of measurements provide us with the
same probability distributions (5) or (6) with α,β = r,t.

In the following, we first analyze the case of a QD with
binary charge states |0〉 and |1〉 and eigenvalues Q0 = 0,
Q1 = 1, Q̂ = |1〉〈1| (defined in units of e) and an initial state
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|ψ(τin)〉 = ψ0(τin)|0〉 + ψ1(τin)|1〉; see Eq. (1). Second, we
generalize the discussion to a QD with multiple charge states
as described by the charge operator Q̂ = ∑

n Qn|n〉〈n|. While
two-state quantum memories (qubits) are always sufficient for
a complete description when the measurement is weak, for
a strong measurement a QD with multiple charge states will
require the use of qubit registers, i.e., finite trains of electron
pulses.

A. Weak measurement

For the case of a weak measurement, we can make
immediate use of the general results Eqs. (17), (20), and (21)
by replacing Ô → Q̂ and choosing the values α,β equal to r
and t. It remains to determine the detector response functions
(19) and (18). We consider a linear system-detector coupling
of the form Hsd = e2q̂Q̂/C = v̂Q̂, with q̂ the charge on the
QPC. Furthermore, we parametrize the scattering matrices
for the system in states |0〉 and |1〉 by t0 = √

T eiθ , r0 =√
R eiχ , t1 = √

T − δT ei(θ+δθ), and r1 = √
R + δT ei(χ+δχ),

with small corrections δT , δθ , and δχ .
To find the detector response functions (18) and

(19), we replace b̂ by v̂ and determine the integral
(−i/�)

∫ τf

τin
dτ 〈φin|p̂α(j )(τf )v̂(τ )|φin〉 (we drop the memory

index (j ) as the electrons are scattered by the same QPC).
To lowest order in v̂, this can be written in the form
〈φin|û†

0p̂αû1|φin〉 − 〈φin|û†
0p̂αû0|φin〉, with û0 = e−iĥ0(τf −τin)/�

and û1 = e−i(ĥ0+v̂)(τf −τin)/� describing the dynamics of the
detector in the Heisenberg representation in the absence and
presence of a charge on the dot, respectively. Furthermore, we
have used that û1 = û0ûD with

ûD = T exp

(
−i

∫ τf

τin

dτ v̂(τ )/�

)
(40)

and v̂(τ ) in the interaction representation. The initial memory
states |φin〉 evolve under û1 and û0 according to ûn|φin〉 = |φn〉
and hence 〈φin|û†

mp̂αûn|φin〉 = 〈φm|p̂α|φn〉 = sα∗
m sα

n , where we
have used that p̂α = |ϕα〉〈ϕα|. Expanding sα

1 in δT , δθ , and δχ ,
we find that

−i

�

∫ τf

τin

dτ 〈φin|p̂t(τf )v̂(τ )|φin〉 = −1

2
δT + iT δθ, (41)

−i

�

∫ τf

τin

dτ 〈φin|p̂r(τf )v̂(τ )|φin〉 = 1

2
δT + iRδχ, (42)

and taking real and imaginary parts, we arrive at the final
results,

RSdet,t = T δθ, RSdet,r = Rδχ, (43)

ISdet,t = −δT , ISdet,r = δT . (44)

Using these detector response functions in the general expres-
sions (20) and (21), one easily arrives at the system correlators
(we choose α = t, ᾱ = r, and β = t),

RS irr
QQ = R(δχ/δT ) P irr

tt − T (δθ/δT ) P irr
rt

δT (Rδχ + T δθ )
, (45)

IS irr
QQ = − P irr

tt + P irr
rt

δT (Rδχ + T δθ )
. (46)

Alternatively, the QPC can be tuned to deliver the individual
system correlators RS irr

QQ or IS irr
QQ. Indeed, using a detector

with high transmission, e.g., a QPC with energetic (E) single-
electron pulses E � V0, where V0 is the QPC barrier, one
easily finds that (although δT � |δθ |,|δχ |, we have δT �
R|δχ |)

|RSdet,t| � |ISdet,r/t| � |RSdet,r|, (47)

and therefore P irr
tβ measures IS irr

QQ, while P irr
rβ measures

RS irr
QQ. When the detector predominantly reflects particles,

e.g., for low-energy single-electron pulses with E � V0,
the situation is reverse, |RSdet,r| � |ISdet,r/t| � |RSdet,t|, and
IS irr

QQ (RS irr
QQ) is measured by P irr

rβ (P irr
tβ ); see the Appendix

for further details on the QPC detector response.
For a quantum dot with multiple charge states, we have

to require that the expansion of the scattering amplitudes
tn = √

Tne
iθn and rn = √

1 − Tne
iχn of the QPC detector scale

linearly in the charge Qn of the dot, i.e., Tn = T − QnδT ,
θn = θ + Qnδθ , and χn = χ + Qnδχ . A straightforward cal-
culation then shows that the results (43) and (44) for the
detector response functions as well as the final results (45)
and (46) remain unchanged.

B. Strong measurement

When performing a strong measurement of a quantum dot
with a binary charge, it is sufficient to invoke individual
electron pulses as quantum memories. For a strong dot–
QPC coupling, we require a one-to-one relation between the
presence of a charge on the dot and the outcome of the
measurement, i.e., |φ0〉 = |ϕt〉 and |φ1〉 = |ϕr〉 [see Eq. (29)] or
sr

1 = 1 and sr
0 = 0. This is achieved by tuning the QPC so as to

generate a unique scattering outcome with |r1| = 1, |r0| = 0
and |t0| = 1, |t1| = 0, i.e., the presence of a charge Q1 = 1
on the dot reflects the QPC electron back to the left. In this
case, it is the reflection probability Prr(τ21) that directly traces
the charge Q̂, and according to (6) we have to evaluate the
expression

Prr(τ21) =
∑
m

∣∣∣∣∑
n

rmUmn(τ21)rnψn(τ1)

∣∣∣∣
2

. (48)

With rm = δm1, we obtain the simple result Prr(τ21) =
|U11(τ21)ψ1|2 [see also (30) with n,m = 1 and α1 = β1 = r],
and since Qn = δn1, we find the projected correlator [see
Eq. (32)]

SP
QQ(τ1,τ2) = Prr(τ21) = |U11(τ21)ψ1|2. (49)

Similarly, the probability to find no charge on the dot in either
of the two measurements is Ptt = |U00ψ0|2, while the mixed
results are Ptr = |U10ψ0|2 and Prt = |U01ψ1|2.

The strong measurement of the charge correlator for a
multicharge quantum dot quite naturally involves trains of
electron pulses [19], with the number J of electrons in each
train sufficiently large to distinguish the different charge
eigenvalues Qn of the dot. The separation δτ between electron
pulses within a train has to be sufficiently long in order to
allow for their separate detection (i.e., counting), while the
train duration J δτ must remain small on the scale τsys of the
dot’s dynamics.
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When going over from qubit registers to electron trains
scattered at the QPC, we replace the “magnetization” (38) by
the imbalance between reflected and transmitted electrons,

D(n) =
∑

μ

μ
[
P μ

r (n) − P
μ
t (n)

] = J [R − T + 2QnδR],

(50)

where we have assumed a linear QPC characteristic with a
reflection probability scaling linearly with the dot’s charge
Qn, Rn = R + QnδR. Operating the QPC at the symmetry
point T = R = 1/2, we can determine the combination Srr −
Srt − Str + Stt and relate this quantity to the projected charge
correlator SP

QQ(τ21),

SP
QQ(τ21) = Srr − Srt − Str + Stt

4J 2δR2
. (51)

Operating the QPC away from the symmetric point, one has to
determine the weighted sum T 2Srr − T R Srt − RT Str + R2Stt

instead and divide by J 2δR2 to arrive at the projected correlator
SP

QQ.

C. Finite-width memory wave packets

Above, we have assumed an instantaneous (within a short
time δτ ) entanglement between the system and the memory
states, requiring that both the width τwp of the wave packet
and the scattering time τsca at the QPC satisfy τwp,τsca � τsys,
where τsys denotes the characteristic time scale of the system.
Here, we allow for a spread in time of the detector’s electron
wave function, and we drop the condition τwp � τsys, i.e.,
we assume that τwp � τsys while the scattering event itself
remains fast, τsca � τsys. In general terms, this corresponds
to a measurement that probes the system sharply (τsca � τsys)
during some finite time (τwp � τsys; longer measurement times
τwp > τsys do not provide meaningful results).

Let us suppose that the j th wave packet incident on the QPC
around τj is described by the wave function f (j )(τ ), which is
normalized [

∫
dτ |f (j )(τ )|2 = 1] and peaked at the time τj .

Assuming instantaneous scattering, we obtain the final state

|	̃f 〉 =
∫

dτ ′
1 f (1)(τ ′

1)
∫

dτ ′
2 f (2)(τ ′

2)

×
∑
l,m,n

Ulm(τ ′
f 2)Umn(τ ′

21)ψn(τ ′
1) |l〉 ∣∣φ(1)

n (τ ′
1)

〉 ∣∣φ (2)
m (τ ′

2)
〉
,

(52)

with τ ′
f 2 = τf − τ ′

2 and τ ′
21 = τ ′

2 − τ ′
1 and the outgoing mem-

ory states |φ(j )
n (τ ′

j )〉 that have been scattered at the QPC at time
τ ′
j . Making use of 〈φ(j )

n′ (τ ′′
j )|φ(j )

n (τ ′
j )〉 = δ(τ ′

j − τ ′′
j )〈φ(j )

n′ |φ(j )
n 〉, we

obtain the smeared probabilities

P̃αβ(τ21) =
∫

dτ ′
1

∫
dτ ′

2 |f (1)(τ ′
1)|2|f (2)(τ ′

2)|2Pαβ(τ ′
21) (53)

with Pαβ given by Eq. (6). The finite-width wave packets
enter as integration kernels. While for sharp wave packets
the entanglement between system and memories (i.e., the
“measurement”) takes place at times τ1 and τ2, for broader
wave packets the entanglement arises within a finite time τwp

around τ1 and τ2 with distribution functions |f (1)(τ ′
1)|2 and

|f (2)(τ ′
2)|2. As a consequence, for the case of strong coupling

where the entanglement gives rise to projective measurements,
the times of projection are not fixed but are distributed with
the distribution functions above.

Note that the result (53) is only valid for negligible
scattering time τsca in the QPC. If the scattering time τsca is
finite compared to the system time τsys, the effect of interaction
cannot be accounted for by the scattering matrices ŝn of the
QPC depending on the system state, but the interaction during
the scattering has to be treated in more detail.

The limit of τsca � τsys considered above also has impli-
cations for the resulting backaction: While the backaction for
τsca � τsys only consists of dephasing, i.e., a suppression of
off-diagonal elements of the system’s density matrix, for finite
τsca the backaction of the measurement on the system goes
beyond pure dephasing and alters the system’s dynamics.

D. Higher-order correlators

The study of higher-order correlators is straightforward,
e.g., to measure a third-order charge correlator we send three
electrons scattering from the QPC at times τ1 < τ2 < τ3 and
obtain the probabilities

Pαβγ =
∑

l

∣∣∣∣ ∑
m,n

s
γ

l Ulm(τ32)sβ
mUmn(τ21)sα

n ψn(τ1)

∣∣∣∣
2

(54)

describing electrons transmitted across (α,β,γ = t) or re-
flected from (α,β,γ = r) the QPC. For weak coupling, its
irreducible part can be recast in the form

P irr
αβγ =

∑
σσ ′=±

S
(1),σ̄

det,αS
(2),σ̄ ′
det,βS

(3),−
det,γ S

σσ ′,irr
QQQ (τ1,τ2,τ3) (55)

with σ̄ = −σ , the detector responses S
(j ),+
det,α = RS

(j )

det,α and
S

(j ),−
det,α = IS

(j )

det,α , and the third-order correlators

S
σσ ′,irr
QQQ = cσ cσ ′ 〈〈[Q̂(τ1),[Q̂(τ2),Q̂(τ3)]σ ′]σ 〉〉 (56)

with the constants c+ = 1/2 and c− = −i, and [·,·]− = [·,·]
and [·,·]+ = {·,·}, respectively [note that (anti)symmetrized
charges in S irr

QQQ (encoded in σ ) relate to opposite detector
response functions (encoded by σ̄ )]. This result agrees with
the one in Ref. [4] obtained with the help of the von Neumann
projection postulate, and it shows that only Keldysh time-
ordered charge correlators are measurable.

E. Experimental implementation

Our general concept of deferred repeated measurements has
been formulated with quantum memories, e.g., qubits, qubit
registers, and qudits; see Sec. II. In our application of these
general considerations, the measurement of a charge correlator
with the help of a quantum point contact (Sec. III), the
quantum memories have been replaced by scattered electrons
(flying qubits). It is then natural to seek an experimental
implementation, where the final measurement of the quantum
memories, i.e., the scattered electrons, can be cast into a
measurement of currents and noise rather than an individual
detection of qubit states. Such an implementation is proposed
below.
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It(3)

It(1)pump
I

splitter

QPC QD
r

t

ssb

dsb

I (2)t

delay(1)

(2’)
(3)

(2)

(4)

FIG. 3. Schematic illustration of a quantum Hall device with
a single-electron pump (left), the QPC-QD setup (middle), and a
detector arrangement (right), inspired by Refs. [23,24]. Pairs of
electrons are injected by the single-electron pump with a time delay
τ21 and scattered by the quantum point contact with scattering
coefficients r and t depending on the charge state of the quantum
dot. The dynamically switchable barrier [23] (dsb) separates the first
and second electron (flying qubits j = 1 and 2) into arms 1 and 2.
Closing the static switchable barrier (ssb) and measuring the currents
I

(1)
t = I

(3)
t + I

(4)
t and I

(2)
t provides the antisymmetrized charge-charge

correlator IS irr
QQ. Opening the static switchable barrier (ssb), having

the two-particle streams along the trajectories 1 and 2′ interfere at
the 50/50 beam splitter, and measuring the current noise S (3)(τ ) as a
function of the tunable delay τ in detector 3 provides the symmetrized
correlator RS irr

QQ.

By now, several experiments have demonstrated the con-
trolled generation of individual electron pulses [22–24], and
even the detection of such pulses via qubit detectors seems
to be in reach [29]. A setup particularly well suited within
the current context is that of Fletcher et al. [23], involving a
single-electron pump and a time-correlated detector setup in
a quantum Hall device; see Fig. 3 for an illustration. Pairs of
electron pulses of width ∼100 ps are injected at a typical rate
νp ∼ (10 ns)−1 and are well suited to probe the dynamics of
a dot with a system time τsys ∼ 100–1000 ns. The detector
involves a dynamically switchable barrier (dsb in Fig. 3) that
can be switched on or off with a nanosecond precision in time.

We propose an experiment implementing a weak measure-
ment of a charge correlator along the lines of Sec. III A,
where electron pairs with a tunable delay time in the range
τ21 = 10–100 ns are injected by the single-electron pump
(with injection currents in the I = 2eνp ∼ 10 pA regime)
and scattered at the QPC probing the quantum dot QD. The
transmitted electrons arrive at the detector dsb after a delay
time τd . The detector barrier dsb is switched on at a time
τd + τ21/2 in order to let the first electron pass along the path
1 and deflect the second electron along 2; see Fig. 3. With the
static barrier (ssb) closed, the measured currents I

(1)
t and I

(2)
t

resulting from the transmission of the first and second electron,
respectively, can be related to the probabilities Pαβ via

I
(1)
t /eνp = Ptt + Ptr, (57)

I
(2)
t /eνp = Ptt + Prt. (58)

The two sums
∑

β Pαβ and
∑

α Pαβ in the above equations
are fundamentally different in a subtle way: summing over
the second particle β produces the trivial probability P (1)

α =
〈	f |p̂(1)

α |	f 〉 for the (independent) transmission (α = t) or
reflection (α = r) of the first electron by the QPC,

∑
β Pαβ =

P (1)
α . Hence, the first equation (57) reduces to I

(1)
t /eνp = P

(1)
t

and thus contains only information about the mean charge on
the dot.

On the contrary, summing over the first particle α does not
generate P

(2)

β as the interaction of the first electron at the earlier
time τ1 introduces nontrivial correlations, see Eq. (6). This
becomes apparent when going over to irreducible probabilities
P irr

αβ = Pαβ − P (1)
α P

(2)

β and using the normalization
∑

α P (j )
α =

1. Then, the second equation (58) becomes I
(2)
t /eνp = P irr

tt +
P irr

rt + P
(2)
t which includes information about the dot’s charge

correlator. Assuming a time-independent mean charge on the
dot, we have P

(2)
t = P

(1)
t = I

(1)
t /eνp and using the general result

(17), the measured currents are easily transformed to provide
the antisymmetrized correlator

IS irr
QQ =

(
I

(2)
t − I

(1)
t

)
/eνp

δT (Rδχ + T δθ )
. (59)

Note that the evaluation of the irreducible probability P irr
tt +

P irr
tr with the help of (17) indeed provides a vanishing result,

P irr
tt + P irr

tr ∝ (ISdet,r + ISdet,t) = 0, explicitly demonstrating
that the sum P irr

tt + P irr
tr contains no correlations.

To find the symmetric correlator RS irr
QQ, one has to measure

a time correlator on the transmitted channel. This can be
conveniently done with the help of a Hong-Ou-Mandel-type
splitter as implemented in the experiment of Bocquillon et al.
[24] and sketched in Fig. 3. In this experiment, the dynamically
switchable barrier (dsb) again splits the two electrons in each
pair to propagate along the paths 1 and 2 → 2′, respectively.
The static barrier (ssb) is left open, such that the two particles
interfere in the splitter. Measuring the current noise S (3)(τ )
in channel 3 as a function of mutual delay τ (tuned via an
additional gate in loop 1; see the figure) then provides all
information needed to construct RS irr

QQ.
We can calculate the evolution of the state through the

Hong-Ou-Mandel setup using the wave function |	f 〉 =
|	f 〉tt + |	f 〉tr + |	f 〉rt + |	f 〉rr describing the two-electron
state after the scattering events at the QPC, with Pαβ =
αβ〈	f |	f 〉αβ , i.e., the individual components are not nor-
malized and only 〈	f |	f 〉 = 1. Due to the orthogonality
of these four components, the particle numbers N̂ (i), i = 3,4,
emerging from our Hong-Ou-Mandel splitter can be analyzed
term by term. In particular, the particle number fluctuations
〈	f |(δN̂3)2|	f 〉 in channel 3 involve single-particle and
two-particle contributions, rt〈	f |N̂3|	f 〉rt = (1/2) × 1 × Prt

and rt〈	f |N̂2
3 |	f 〉rt = (1/2) × 12 × Prt, hence

rt〈	f |(δN̂3)2|	f 〉rt = 1
4Prt, (60)

and the same result holds true for the |	f 〉tr scattering
component. While there is no contribution from |	f 〉rr, the one
originating from |	f 〉tt depends on the time delay τ . Let f1(x)
and f2(x) denote the two-electron wave packets propagating
along the incoming paths 1 and 2 of the HOM interferometer.
As shown in Ref. [30], we can relate the number fluctuation in
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the component |	f 〉tt to the overlap of wave functions as

tt〈	f |(δN̂3)2|	f 〉tt = 1
2 (1 − |〈f1|f2〉|2)Ptt, (61)

where 〈f1|f2〉 = ∫
dxf ∗

1 (x)f2(x). For a large time delay
between the first and second electron, these do not interfere,
〈f1|f2〉 = 0, such that the fluctuations are just the double of
(60),

tt〈	f |(δN̂3)2|	f 〉tt = 1
2 Ptt. (62)

Compensating the original time delay τ = −τ21 (such that the
two electrons arrive simultaneously at the splitter), we have

tt〈	f |(δN̂3)2|	f 〉tt = 0, (63)

since the Pauli exclusion forces the two particles to propagate
to different channels. The final result 〈	f |(δN̂3)2|	f 〉 then
involves separately the probabilities Prt + Ptr and Ptt,

〈	f |(δN̂3)2|	f 〉∞ = 1
4 (Prt + Ptr) + 1

2Ptt, (64)

when the delay between electron pulses is not compensated,
and

〈	f |(δN̂3)2|	f 〉0 = 1
4 (Prt + Ptr), (65)

when the time delay is properly compensated, τ = −τ21.
In a next step, we express the charge fluctuations in channel

3 through the irreducible current-current correlator [30],

〈	f |(δN̂3)2|	f 〉 = 1

e2

∫
W

dt1dt2 〈〈Î (3)(t1)Î (3)(t2)〉〉, (66)

where the time window W is centered around the arrival time
of the wave packets at the detector 3 and has a width of the
order of �τ = ν−1

p , with νp the rate of pair injection by the
pump. The particle number fluctuations then can be expressed
through the low-frequency current noise S (3)(ω),

〈	f |(δN̂3)2|	f 〉 =
∫

dω

2π

S (3)(ω)

e2

sin2(ω/2νp)

(ω/2)2
, (67)

with ω � νp. Neglecting the frequency dependence of the
noise at small ω, S (3)(ω) ∼ S (3)(0), we obtain

〈	f |(δN̂3)2|	f 〉 = S (3)/e2νp, (68)

and hence

Prt + Ptr = 4
S

(3)

0

e2νp

, Ptt = 2
S (3)

∞ − S
(3)

0

e2νp

. (69)

Using Eq. (17), we can derive an alternative (more
symmetrized) version of Eq. (45) that involves just the
combinations P irr

rt + P irr
tr and P irr

tt ,

RS irr
QQ = (Rδχ )2 P irr

tt − T δθ Rδχ
(
P irr

rt + P irr
tr

) + (T δθ )2 P irr
rr

(δT )2(Rδχ + T δθ )2
.

(70)

Defining the detector parameters κ = T δθ/(Rδχ + T δθ ) and
going over to irreducible probabilities (with P

(1)
t = P

(2)
t =

I
(1)
t /eνp independent of time), we obtain the final result

(δT )2 RS irr
QQ

= 2(1−2κ)
S (3)

∞ − S
(3)

0

e2νp

+ 4κ
S

(3)

0

e2νp

+ κ2 −
(

I
(1)
t

eνp

− κ

)2

.

(71)

Note that in this setup, the final measurement of qubit
memories does not require fast or time resolved detection
schemes, but merely relies on the measurement of average
currents and low-frequency noise. This is due to the fact,
that all timing tasks are realized by the properly time-delayed
electron pulses in the incoming channel and the dynamically
switchable gate (dsb) which separates the electron pairs; both
elements have been realized in an experiment [23]. Hence,
the new measurement scheme, combined with novel elements
from electron quantum optics, allows to shift the (difficult)
timing issues in the measurement of a time-correlator from the
detector to the source.

A strong coupling between the quantum dot and the
quantum point contact provides us with a projected correlator.
For the simplest case of a binary charge on the dot with
values Q = 0,1, the projected charge correlator is given
by Eq. (49), SP

QQ = Prr. Making use of the normalization
Ptt + Prt + Ptr + Prr = 1 and the result Eq. (69), we find that

SP
QQ = 1 − 2

S
(3)

0 + S (3)
∞

e2νp

. (72)

IV. CONCLUSION

In conclusion, we have applied the principle of deferred
measurement to the problem of repeated measurement, and
we have derived physical expressions for the two- and
multitime correlators. The measurement involves the inclusion
of quantum memories that are entangled with the system at
specific times τj where the system observable is to be probed.
The expanded system plus memories undergoes a unitary
evolution until the very end, where the result is extracted via
application of Born’s rule to the memories. The measured
probabilities Pαβ [see Eq. (6)] or memory correlators Sαβ [see
Eq. (35)] can then be combined to extract the desired system
correlators. The limits of weak and strong measurements
provide the standard (anti)symmetrized and projected time
correlators previously obtained by invoking the (nonunitary)
von Neumann projection. The general results have been
illustrated by using qubits and qubit registers as quantum
memories. Our analysis sheds new light on the problem of
repeated measurement, and it illustrates the usefulness of
qubits as sensitive measurement devices.

Although our paper’s main results are rather on the
conceptual side, one could imagine an implementation of
such a deferred measurement in an experiment. A system
that naturally lends itself for a realization of these ideas is
the classic mesoscopic setup, which probes the charge of a
quantum dot through a quantum point contact. The individual
scattered electrons in the QPC can be understood as flying
qubits that are either transmitted or reflected, with amplitudes
depending on the charge state of the quantum dot. In particular,
the qubit register required in the strong measurement of a dot
with a multivalued charge is easily implemented in terms of
finite trains of electrons. We have applied our formalism to
this situation and derived the corresponding expressions for a
weak and strong measurement.

The experimental implementation of these ideas requires a
system control that can only be met with a modern quantum en-
gineering approach. Recent developments in electron quantum
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optics provide controlled single-electron pulses and allow for
their time-resolved manipulation/detection on a subnanosec-
ond time scale [23,24]. Using the setup of Ref. [23] as a base
and augmenting it with a Hong-Ou-Mandel-type analyzer [24],
we propose to include a quantum point contact and a quantum
dot in order to realize the principle of repeated measurement
by a deferred measurement of quantum memories.

As a final remark, one may appreciate the relation of
the deferred measurement principle to Everett’s idea of a
multiverse [31,32]. Rather than applying a projection after
the first measurement and pursuing a single further evolution
(of the system = “universe”), the principle of a deferred
measurement involving the system’s entanglement with a
quantum memory enhances the overall dimensionality, e.g.,
for a qubit memory the dimensionality is doubled (with two
“universes” evolving in parallel). It is then only the final
measurement that determines which evolution (i.e., which
“universe”) has actually been realized.
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APPENDIX: DETECTOR PROPERTIES

A quick overview is provided by the example of a δ-function
scatterer: Expressing the strength of the scatterer �

2λ/m

for the two charge states by λ0 = λ and λ1 = λ + δλ, an
incoming state with wave vector k is transmitted with ampli-
tude tn = k/(k + iλn), n ∈ {0,1}. Expanding the transmission
Tn = k2/(k2 + λ2

n) and phase θn = − arctan(λn/k), we find the
modifications δT and δθ = δχ (for a symmetric scatterer) in
the scattering characteristic of the QPC upon charging the dot,

δT ≈ − 2k2λ2

(k2 + λ2)2

δλ

λ
, (A1)

δθ = δχ = − kλ

k2 + λ2

δλ

λ
. (A2)

In the limit of a large incoming energy, i.e., k � λ,
we find δT ≈ −2λ δλ/k2 and δθ = δχ ≈ −δλ/k and
hence δθ,δχ � δT ; with T ≈ 1 and R ≈ λ2/k2 � 1,
we have T |δθ | � |δT | � R|δχ | and therefore |ISdet,t| �
|RSdet,r/t| � |ISdet,r|. For a small incoming energy k � λ, we
obtain δT ≈ −2k2δλ/λ3 and δθ ≈ −kδλ/λ2, and using T ≈
k2/λ2 and R ≈ 1, we find |ISdet,r| � |RSdet,r/t| � |ISdet,t|.
When k ≈ λ, all response functions are of the same order.

Alternatively, we can consider a single electron transistor
(SET) with the level position kres,n affected by the capacitive
coupling and depending on the dot’s charge state |n〉, i.e.,
kres,0 = kres and kres,1 = kres + δkres. The transmission coef-
ficient is given by tn = iγ /(k − kres,n + iγ ), where γ is the
level width. Again expanding Tn = γ 2/[(k − kres,n)2 + γ 2]

0

L 2 L 2

V

0

E
V
V1

FIG. 4. QPC modeled by a parabolic potential.

and tan θn = (k − kres,n)/γ for small δkres � kres, we find

δT = − 2(k − kres)γ 2δkres

[(k − kres)2 + γ 2]2
, (A3)

δθ = δχ = − γ δkres

(k − kres)2 + γ 2
. (A4)

For incoming electrons on resonance with the level, i.e., |k −
kres| � γ , we obtain δT ≈ −2(k − kres)δkres/γ

2 and δθ =
δχ ≈ −δkres/γ , such that δθ,δχ � δT , and using T ≈ 1
and R ≈ (k − kres)2/γ 2, we find that |ISdet,t| � |RSdet,r/t| �
|ISdet,r|. On the other hand, for off-resonant electrons δT ≈
−2γ 2δkres/(k − kres)3 and δθ = δχ ≈ −γ δkres/(k − kres)2,
such that δθ,δχ � δT , and using T ≈ γ 2/(k − kres)2 and
R ≈ 1, we find |ISdet,r| � |RSdet,r/t| � |ISdet,t|. When |k −
kres| ≈ γ , all response functions are of the same order.

A more realistic description for the quantum point contact
(QPC) is achieved by considering a parabolic scattering
potential Vn(x) = Vn − kx2/2, where the offset Vn is the QPC
barrier height when the dot is in the charge state |n〉. Here, we
assume a quasiclassical description and consider the two limits
of electrons with energy E � Vn and E � Vn, respectively;
see Fig. 4.

Using the Kemble formula [33], we obtain the trans-
mission Tn = 1/{1 + exp[−2π

√
mL2/8�2(E − Vn)/

√
Vn]},

where we have chosen V (±L/2) = 0. For weak coupling
δV = V1 − V0 � V0, we obtain the shift (we define the energy
scale EL = �

2/2mL2)

δT = π

4

E + V0

V0
TERE

δV√
ELV0

, (A5)

which is suppressed exponentially for E � V0 and E � V0

due to an exponentially small reflection or transmission.
The change in phase at large energies E � V0 is deter-

mined by the transmission phase accumulated in the region
[−L/2,L/2]; within a quasiclassical description, this is given
by (ε ≡ E/Vn)

θn =1

�

∫ L/2

−L/2
dx

√
2m[E − Vn(x)]

=1

2

√
Vn

EL

[
√

ε − (ε − 1) log(ε − 1)1/2

+ (ε − 1) log(1 + √
ε)]. (A6)
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Expanding this result for small δV , we obtain the change in
phase δθ = δχ ,

δθ ≈ −1

3

√
V0

E

δV√
ELV0

. (A7)

Given the exponential suppression of δT at large energies E �
V0, we find that δT � |δθ | = |δχ |, and for large transmission
we have |ISdet,t| � |RSdet,r/t| � |ISdet,r|. In the opposite
regime of small energies, E � V0, we determine the change
in phase (within quasiclassics) from the phase of the reflection
amplitude,

χn ≈ 2

�

∫ x0

−L/2
dx

√
2m[E − Vn(x)], (A8)

where the reversal point x0 < 0 is characterized by V (x0) = E.
To leading order in δV , we find that

δχ ≈ −1

3

(
E

V0

)3/2
δV√
ELV0

. (A9)

Once more, it follows that |δθ |,|δχ | � δT due to the expo-
nential suppression of T , and the response functions respect
the order |RSdet,r| � |ISdet,r/t| � |RSdet,t|. At intermediate
energies, the response functions are of similar magnitude.
Summarizing, we find that a scatterer with large transmission is
characterized by the response functions satisfying |RSdet,t| �
|ISdet,r/t| � |RSdet,r| while at small transmission |RSdet,r| �
|ISdet,r/t| � |RSdet,t|.
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