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Effective spin Hall properties of a mixture of materials with and without spin-orbit coupling:
Tailoring the effective spin diffusion length
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We study theoretically the effective spin Hall properties of a composite consisting of two materials with and
without spin-orbit (SO) coupling. In particular, we assume that SO material represents a system of grains in
a matrix with no SO. We calculate the effective spin Hall angle and the effective spin diffusion length of the
mixture. Our main qualitative finding is that, when the bare spin diffusion length is much smaller than the radius
of the grain, the effective spin diffusion length is strongly enhanced, well beyond the “geometrical” factor. The
physical origin of this additional enhancement is that, with small diffusion length, the spin current mostly flows
around the grain without suffering much loss. We also demonstrate that the voltage, created by a spin current, is
sensitive to a very weak magnetic field directed along the spin current, and even reverses sign in a certain domain
of fields. The origin of this sensitivity is that the spin precession, caused by magnetic field, takes place outside
the grains where SO is absent.
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I. INTRODUCTION

The spin Hall effect (SHE) [1–3], predicted theoretically
more than four decades ago [1,2], is nowadays routinely
observed in many materials [4–17], which include traditional
and exotic metals, prominent semiconductors, and graphene.
Moreover, the inverse spin Hall effect (ISHE), i.e., generation
of voltage drop normal to the spin current, was recently “put
to work.” It serves as a tool to detect whether or not the
spin current is injected into a nonmagnetic material from an
ac-driven ferromagnet in the course of spin pumping [18,19].
Most recently [20–23] the pumped spin currents in certain
polymers were registered via inverse spin Hall voltage which
they induced in a Pt electrode located at some distance from
the interface with a ferromagnet.

The latest focus [24–26] of the research on the spin physics
in organics is the study of the properties of platinum-containing
π -conjugated polymers. In these materials Pt atoms are
embedded in the polymer backbone chains. While the SO
coupling, which is the origin of the SHE, is very weak in
polymers, adding of Pt creates the elements of the backbone
where it is locally strong. These elements can be separated
either by one or by three π -conjugated spacer unit lengths. In
this regard, a general question arises: how the spin Hall effect
is realized in composite materials where the strong SO and low
SO domains are intermixed? Note that, by now, all theoretical
studies of SO-related transport assumed that the SO coupling
is homogeneous.

The goal of the present paper is to develop an elementary
theory which addresses the question formulated above. Unlike
Refs. [27,28], we will not specify a mechanism of SO on the
microscopic level, but rather focus on purely “geometrical”
aspects. Namely, we will consider the following minimal
model: a system of SO grains is dissolved in a matrix with
no SO. The question we will be interested in is: what are the
effective spin Hall characteristics of the mixture?

First, we address a mechanism of the formation of the
inverse spin Hall voltage between the edges of the sample in
the geometry of the mixture. Unlike the case of homogeneous

SO, this formation happens as follows. The spin current turns
each SO grain into an electric dipole. All dipole moments are
oriented normal to the spin current. Thus the potentials they
create at the upper and the lower boundaries of the sample
add up. The difference of these potentials is the effective ISH
voltage V SH

eff of the mixture, which can be related to the effective
spin Hall angle θ SH

eff .
Naively, one would expect that, in a mixture of grains of

density n and radius a, the relation θ SH
eff = (na3)θ SH holds within

a numerical factor. Here θ SH is the spin Hall angle of the bulk
SO material. This is simply because na3 is the volume fraction
of the SO material. Equally, one would expect that the effective
spin relaxation time of the mixture is 1/(na3) times longer
than in the SO material, so that spin diffusion length λeff is
related to the spin diffusion length λ of the SO material as
λeff = (na3)−1/2λ.

The above expectations are correct only in the limit when
the grains are small enough, namely, a � λ, so that the portion
of spin polarization, which is lost within a single grain, is
small. The opposite case of large grains, a � λ, is much
less trivial. As we show below, in this limit V SH

eff ∼ λna2V SH,
while λeff ∼ 1

(na)1/2 . In other words, at small λ, the effective
spin diffusion length saturates. This finding can be loosely
interpreted from the perspective of diffusion in the presence of
the absorbing traps. The stronger the absorption, the smaller
is the concentration of particles at the position of the trap.

Finally, we will demonstrate that V SH
eff is sensitive to a very

weak magnetic field. In a homogeneous material, the spin Hall
effect gets suppressed in the field with Larmour frequency
� ∼ τ−1

s
, where τs is the spin-relaxation time. For the mixture,

the characteristic field is ∼T −1, where T is the diffusion time
between the sample edges. This is because spin precession
takes place mostly outside the grains. The paper is organized
as follows. In Sec. II we solve an auxiliary problem of electrical
polarization of a grain with a given radius a by the spin current.
The solution is then employed to calculate the effective inverse
spin Hall voltage in the mixture of grains with concentration n.
Sensitivity of this voltage to a weak longitudinal magnetic field

2469-9950/2016/93(4)/045307(9) 045307-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.045307


Z. YUE, M. C. PRESTGARD, A. TIWARI, AND M. E. RAIKH PHYSICAL REVIEW B 93, 045307 (2016)

is studied in Sec. III. In Sec. IV the effective diffusion length
λeff of the mixture is expressed via λ, a, and the parameter na3.
The physics of elongation of λeff for small λ � a is discussed
in Sec. V. Concluding remarks are presented in Sec. VI.

II. CALCULATION OF EFFECTIVE CHARACTERISTICS
OF THE MIXTURE

A. Single grain

The simplest way to incorporate the spin Hall effect on a
quantitative level [29] is to add to the current density j = σ E,
the term γD curl P , where σ and D are the conductivity and the
diffusion coefficient, respectively, and P(r) is the coordinate-
dependent spin polarization. The strength of the SO coupling
is quantified by a dimensionless parameter γ . The system of
coupled equations for the spatial distribution of P(r) and j (r)
reads [29,30]

j = σ E + eγD curl P, (1)

qij = −D
∂Pj

∂xi

+ γ

e
σεijkEk. (2)

The second equation defines the component i of the flux of the
j projection of spin polarization. The system becomes closed
[29,30] when it is complemented by the continuity equation

∂qij

∂xi

+ Pj

τs

= 0. (3)

Consider an isolated spherical grain with radius a and
with the strength of SO-coupling γ embedded into an infinite
medium with γ = 0 and with no spin relaxation τs = ∞,
Fig. 1. Assume that the flux of spins, oriented along the x

axis and flowing along the y axis, is incident on the grain. In
application to the geometry, Fig. 1, the essence of the inverse
spin Hall effect is that the incident spin current is induces
an effective electric dipole on the sphere. The induced dipole
moment is perpendicular to both the current direction and
polarization direction in the incident flux, i.e., it is directed
along the z axis.

To calculate the magnitude Pc of the dipole moment it is
natural to switch to spherical coordinates in which the incident
polarization Px = − is

Dout
y and the spin-current density iy = is

have the form

P = − is

Dout

r sin θ eφ, i s = is(sin θ er + cos θ eθ), (4)

where er , eθ , and eφ are the unit vectors along radial, polar, and
azimuthal axes, respectively, see Fig. 2.

Induced dipole moment along z creates an electrostatic
potential,

ϕout = Pc cos θ

r2
, (5)

outside the sphere.
From the form of ϕout we conclude that the θ dependence of

ϕ inside the sphere is also proportional to cos θ . This, together
with Poisson’s equation 
ϕ = 0, suggests that the induced
electric field E in inside the sphere is homogeneous, so that

ϕin = −Einr cos θ. (6)

λ

y
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λ
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z

Pc
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τout
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L z
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FIG. 1. (a) Conventional geometry for the inverse spin Hall effect.
Spin current flowing along y causes a buildup of the voltage V ISH

between the edges z = ±L/2. The buildup takes place as long as y is
smaller than the spin diffusion length λ. (b) Schematic illustration of
a “granular” geometry, where the SO-coupled material is dissolved in
the matrix with no SO coupling. (c) Microscopic scenario of ISHE on
a single spherical granule of a radius a. Spin current with polarization
along x turns the sphere into an electrical dipole directed normally
to the current. The magnitude of a dipole moment Pc depends on the
ratio between a and λ, while the electric field inside the granule is
homogeneous.

Substituting Eq. (2) into Eq. (3), and taking into account
that ∂ E in/∂xi = 0, we conclude that all the components of
polarization inside the sphere satisfy the diffusion equation

Din
Pj + Pj

τs

= 0, (7)

where Din is the diffusion coefficient inside the sphere.
As we will see below, the polarization P(r) has only φ

component inside the sphere and at all distances outside the
sphere. As in the incident flux, Eq. (4), the angular dependence
of Pφ is ∝ sin θ . Outside the sphere, where 
P = 0, the
general form of Pφ is

P out = − is

Dout

(
r + χs

r2

)
sin θ eφ, (8)

where the constant χs is the “spin polarizability.” Inside the
sphere, the solution of Eq. (7), proportional to sin θ , has the
form

P in = P̃ i1(r/λ) sin θ eφ, (9)

where P̃ is a constant and

λ = (Dinτs)
1/2 (10)

is the diffusion length. The function i1(x) is a modified
spherical Bessel function. We chose the function i1 because it
is finite at x = 0.

While the polarization has only φ component, the spin
current, defined as a flow of the φ component of spin, can
be presented in the vector form

i φ = is

[(
1 − 2χs

r3

)
sin θer +

(
1 + χs

r3

)
cos θeθ

]
, (11)
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FIG. 2. (a) The cross section z = 0. Distribution of the spin
current in the (x,y) plane in the presence of a spherical grain,
Eq. (38), is illustrated schematically for r > a. Inside the grain,
r < a, this distribution is determined by Eq. (29). (b) Distribution of
the spin polarization along the radius r is plotted for Dout/Din = 2 and
three values of λ: a/λ = 0.2 (green), a/λ = 4 (blue), and a/λ = 12
(purple). Enhancement of the effective spin diffusion length for small
λ/a is a result of a strong suppression of polarization near the
boundary r = a.

where the first term is ∂P φ

out/∂r , while the second term is
( 1
r
)∂P φ

out/∂θ . At large distances the current Eq. (11) reproduces
Eq. (4).

There are two unknown constants, Pc and χs , in the
expressions for electric field and spin polarization inside
the sphere, and two unknown constants, Ein and P̃ , in the
corresponding expressions outside the sphere. These constants
are determined from the four boundary conditions at r = a:

(i) Continuity of the tangent component of electric field

Ein = −Pc

a3
. (12)

(ii) Continuity of the normal component of the charge
current

σinEin + 2eγDinP̃

a
i1(a/λ) = 2σoutPc

a3
. (13)

(iii) Continuity of the spin polarization

− is

Dout

(
a + χs

a2

)
= P̃ i1(a/λ). (14)

(iiii) Continuity of the spin flux though the boundary

DinP̃

λ
i ′1(a/λ) + γ

e
σinEin = is

(2χs

a3
− 1

)
. (15)

The system Eqs. (12)–(15) yields the sought expression for
the spin-current-induced dipole moment

Pc = − 6ea3γ

(σin + 2σout)M
is, (16)

where M in denominator is the dimensionless combination

M = 2Dout

Din

− 2γ 2σin

σin + 2σout

+ ai ′1
(

a
λ

)
λi1

(
a
λ

) . (17)

Naturally the proportionality coefficient between Pc and the
spin current contains the first power of the SO coupling
strength γ .

The second term in Eq. (17) contains γ 2, and can be safely
neglected. The ratio Dout/Din can be replaced by σout/σin. It
is seen from Eq. (17) that the factor M depends strongly
on the relation between the radius of the sphere and the spin
diffusion length. For a � λ the last term in Eq. (17) is 1, while
for λ � a it is big and equal to a/λ. In the latter case Eq. (16)
yields Pc ∝ λa2. This dependence has a simple interpretation.
Namely, for λ � a the induced dipole is generated only inside
a spherical layer of a thickness ∼λ near the surface of the
sphere, see Fig. 2.

Description of a direct spin Hall effect for a sphere is
completely similar to the case of the inverse spin Hall effect
considered above. A charge current ic along the y direction
generates a spin dipole momentPs in the z direction. Analytical
expression for Ps is similar to Eq. (16),

Ps = 3σina
3γ

e(σin + 2σout)DinM
ic. (18)

B. Finite density of grains

Consider a sample of a rectangular shape with a width L

and thickness d (L � d). As the injected spin current flows
through the cross section, the voltage builds up between the
edges z = ±L/2. The easiest way to calculate this voltage
is to sum the contributions of individual dipoles. If a grain
is located at a point with coordinates (xi,yi,zi), see Fig. 3,
then the potential difference between the edges, created by an
induced dipole, reads

V (xi,yi,zi) =
(

L
2 − zi

)
Pc[

x2
i

+ y2
i

+ (
L
2 − zi

)2]3/2

−
(

−
(

L
2 + zi

)
Pc[

x2
i

+ y2
i

+ (
L
2 + zi

)2]3/2

)
, (19)

where Pc is given by Eq. (16). In calculating the effective
inverse spin Hall voltage the summation over dipoles is
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FIG. 3. The effective spin Hall voltage is the sum of contributions
from individual SO-induced dipoles. With density of granules n the
typical distance between the neighbors is n−1/3. It is much bigger
than the radius a, but much smaller than the sample width L, which
allows us to replace the sum by the integral Eq. (20).

replaced by integration

V SH
eff (y0) = n

∫ d
2

− d
2

dx

∫ ∞

−y0

dy

∫ L
2

− L
2

dzV (x,y,z), (20)

where y0 is the distance from the point at which voltage is
measured to the point of spin-current injection. Naturally
the replacement of the sum by integral is justified when
nL2d � 1. The integration over y is straightforward.
Subsequent integral over z diverges logarithmically at
z = L/2 and z = −L/2. This divergence should be cut off
at (z ± L/2) ∼ d. Then the integration over x reduces to
multiplication by d. The final result reads

V SH
eff (y0) = 2ndPc

×
⎡
⎣ln

(
L

d

)
+ ln

(
2y0

d

)
− ln

⎛
⎝

√
L2

y2
0

+ 1 + L
y0

+ 1√
L2

y2
0

+ 1 + L
y0

− 1

⎞
⎠
⎤
⎦.

(21)

At small distances from the injection point, d � y0 � L, the
first two terms in Eq. (21) dominate. The second logarithm
describes a gradual increase of V SH

eff with y0. At large distances,
y0 � L, the second and the third logarithms combine into
ln(L/d) leading to the result

V SH
eff (∞) = 4ndPc ln

(
L

d

)

= − 24e(na3)d ln
(

L
d

)
γ

(σin + 2σout)
[

2Dout
Din

+ ai ′1( a
λ

)
λi1( a

λ
)

] is . (22)

Note, that for highly conducting grain, both factors in the de-
nominator do not depend on the characteristics σout and Dout of
the matrix. In this domain V SH

eff depends strongly on the relation
between λ and a. Overall, Eq. (21) describes the growth and
subsequent saturation of the inverse spin Hall voltage.

In calculating V SH
eff we have neglected the distortion of the

spin current, incident on a given grain, due to the presence of
the neighboring grains. This is because the correction to the
incident spin current, caused by an isolated grain, falls off with
distance r from the center as (a/r)3. Since the neighboring
grain is located at r ∼ n−1/3, the distortion of the spin current,
incident on this neighboring grain, is ∼na3, i.e., it is small.

III. MAGNETIC-FIELD DEPENDENCE

The behavior of V SH
eff with position y0 becomes nontrivial

in the presence of magnetic field directed along the y axis,
a somewhat similar effect was pointed out in Ref. [29]. If
the magnetic field is weak, so that the Larmour frequency
ωL is much smaller that τ−1

s
and much smaller than Dout/a

2,
which is the inverse diffusion time through the grain, then
the effect of magnetic field on generation of electric dipole can
be neglected. Instead, the field affects only the polarization in
the spin current incident on the grain. This allows one to use
the result Eq. (16) in calculation of the ωL dependence of V SH

eff .
Outside the grains, the polarization components Px and

Pz satisfy the system of equations: Dout
d2Px

dy2 + ωLPz = 0 and

Dout
d2Pz

dy2 − ωLPx = 0. Assuming that at the point of injection
the polarization was along x, we find

Px(y) = Px(0) cos

[(
ωL

2Dout

)1/2

y

]
exp

[
−
(

ωL

2Dout

)1/2

y

]
,

Pz(y) = Px(0) sin

[(
ωL

2Dout

)1/2

y

]
exp

[
−
(

ωL

2Dout

)1/2

y

]
.

(23)

Suppose that a grain is positioned at y = y0. Then the induced
dipole moment will be a vector orthogonal to polarization with
components

Pz(y0) =
(

Px(y0)

Px(0)

)
Pc, Px(y0) = −

(
Pz(y0)

Px(0)

)
Pc, (24)

where Pc, given by Eq. (16), is proportional to the magnitude
of the spin current is which does not change in the presence of
magnetic field. To proceed further, we notice that only the Pz

component of the induced dipole moment contributes to the
buildup of V SH

eff and should be substituted into Eq. (19) instead
of Pc. We first perform integration over z and x. The remaining
integral over y takes the form

V SH
eff (y0,ωL) = 2ndPc

∫ ∞

0
dy

[
1√

(y − y0)2 + d2

− 1√
(y − y0)2 + L2

]
cos

[(
ωL

2Dout

)1/2

y

]

× exp

[
−
(

ωL

2Dout

)1/2

y

]
. (25)

For ωL = 0 Eq. (25) reproduces the limiting cases of Eq. (21).
With characteristic distance y0, being ∼L, we conclude that
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(ωL/2Dout)1/2
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FIG. 4. Dependence of the effective ISHE voltage on a longitu-
dinal magnetic field ωL is plotted from Eq. (25) for three different
positions. y0 in the units of (dL)1/2 along the sample. Blue, violet, and
green curves correspond to y0 = 2, y0 = 4, and y0 = 6, respectively.

characteristic magnetic field is

ω̃L = 1

T
= Dout

L2
, (26)

which is a natural scale at which the diffusion time through a
square with a side L is equal to the Larmour period. Simple
asymptotic expressions for V SH

eff can be obtained in the domain
ωL � ω̃L, when the second term in the integrand can be
neglected:

(i) d � y0 � (Dout/ωL)1/2. In this limit the log-divergence
at large y is cut off at y ∼ (Dout/ωL)1/2, and we get

V SH
eff (y0,ωL) = 2ndPc ln

(√
Dout

ωL

y0

d2

)
. (27)

(ii) y0 � (Dout/ωL)1/2. We can now neglect y compared to
y0 in the square brackets. Then the integration can be easily
performed yielding

V SH
eff (y0,ωL) = ndPc

(
Dout

ωLy2
0

)1/2

. (28)

The asymptotes Eqs. (27) and (28) do not cover the entire
domain of ωL. At the crossover field ωL ∼ Dout/y

2
0 . Equation

(27) exceeds Eq. (28) by a large factor ∼ ln(y0/d). As the
magnetic-field dependence of voltage is plotted numerically,
see Fig. 4, it appears that in the intermediate domain the
ISHE voltage exhibits two sign reversals. This means that
the oscillations in Eq. (23) do not average out completely after
integration over the positions of the spheres.

IV. EFFECTIVE SPIN DIFFUSION LENGTH

There are two reasons why the effective spin diffusion
length of the mixture exceeds λ. The first reason is obvious: the
grains are sparse and there is no spin relaxation in between the
grains. The second reason is much more subtle and becomes
important when λ is much smaller than the grain radius.
Namely, the rate of the spin relaxation at the grain surface

is suppressed. Formally, this suppression, illustrated in Fig. 2,
follows from the behavior of polarization inside the grain

P in(r) = − 3a

DinM

(
i1
(

r
λ

)
i1
(

a
λ

))is sin θ eφ

= − 3ai1
(

r
λ

)
2Douti1

(
a
λ

) + Din
a
λ
i ′1
(

a
λ

) is sin θ eφ. (29)

It is seen from Fig. 2 that, for λ = a/12, the radial distribution
of P in(r) not only falls off rapidly from the surface towards
the center, but its value at the surface is small. Physical origin
of this smallness is elucidated in the Appendix.

While our goal is to find λeff, in order not to deal with
boundaries we first calculate the effective spin relaxation time
of the mixture. Spin relaxation takes place only inside the
spheres. If at time t = 0 the polarization inside the sphere is
distributed according to Eq. (29), then the rate of decay of this
polarization is given by the integral over the volume of the
sphere

R = 1

τs

∫
d�[P in(r)]φ. (30)

Using the explicit form i1(x) = [x cosh(x) − sinh(x)]/x2 of
the modified spherical Bessel function, the integral can be
evaluated, and the result can be cast in the form

R = 3π2a4is

Dinτs

F

(
a

λ

)
, (31)

where the dimensionless function F (x) is defined as

F (x) = x sinh(x) − 2 cosh(x) + 2

2
(

Dout
Din

− 1
)
[x cosh(x) − sinh(x)]x + x3 sinh(x)

.

(32)
The result Eq. (31) can be also expressed through the
polarization outside the sphere by replacing is by PoutDout/a,
see Eq. (8). One has

R = 3π2a3PoutDout

Dinτs

F
(a

λ

)
. (33)

In the absence of spin current, the spin relaxation inside
the spheres causes the time decay of the spin polarization in
the medium between the spheres. This is because diffusing
carriers eventually “hit” a sphere. Consider an interval (y0 −
δy

2 ,y0 + δy

2 ), and assume that there are hard walls at the ends, so
electrons do not flow in or out. Then the initial net polarization
Pout(y0)δy inside the interval will decay with some effective
rate τ−1

eff . To find this rate, we substitute the two-dimensional
density of spheres in the interval nδy into the balance equation

Pout(y0)δy

τeff

= nδyR. (34)

Substituting Eq. (33) into Eq. (34) we readily find

τeff = Dinτs

3π2na3DoutF
(

a
λ

) . (35)

Note that the product in the numerator is equal to λ2. We can
now use the expression for the effective relaxation time to find
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the effective spin diffusion length

λeff =
√

Doutτeff = λ[
3π2na3F

(
a
λ

)]1/2 . (36)

Let us trace the decrease of λeff as the spin diffusion
rate inside the sphere gradually decreases. For λ � a,
the function F (x) can be replaced by F (0) = Din

4(2Dout+Din) .
Thus the enhancement of the spin diffusion length due to
patterning the SO material into granules is ∼(na3)−1/2. In
the opposite limit λ � a we have F (x) ≈ 1/x2. This leads to
the unexpected conclusion that in this limit λeff saturates at
the value ∼ 1

(na)1/2 . The origin of this saturation is suppression
of polarization at the surface, the effect discussed above and
further elaborated on in the Appendix.

V. DISCUSSION

(i) The two main results of the present paper are Eqs. (21),
(22), and (36) for the effective inverse spin Hall voltage and
the effective spin diffusion length of the mixture [31]. It is
convenient to cast Eq. (22) in the form of the relation between
the effective spin Hall angle θ SH

eff of the mixture and the spin Hall
angle θ SH of the material of the grain. The spin Hall angle is
defined as the proportionality coefficient between the charge
and spin current densities, more precisely, jc = θ SH(2e/�)js .
Then Eq. (22) takes the form

θ SH
eff = 12(na3) ln

(
L
d

)
2Dout
Din

+ ai ′1( a
λ

)
λi1( a

λ
)

θ SH, (37)

where we assumed σin � σout. Essentially, the proportionality
between θ SH

eff and θ SH is determined by a “volume factor” na3.
Note, however, that θ SH is the characteristics of a homogeneous
SO film, only as long as the film thickness w is much smaller
than λ. For w � λ, θ SH falls off as λ/w. At the same time, the
decay of θ SH

eff with y0 sets in only when y0 exceeds the effective
spin diffusion length of the mixture. This length is much bigger
than λ, as it was shown in Sec. IV.

(ii) Note that, strictly speaking, Eq. (36) describes λeff only
within a numerical factor. This factor was lost as we replaced is

by PoutDout/a, assuming that the first term in Eq. (8) dominates.
In fact, precisely at r = a, the two terms almost cancel each
other. Indeed, substituting the expression for χs into Eq. (8),
we can cast it in the form

P out = − is

Dout

⎛
⎝r − a3

r2
+ 3a3[

2 + aDini
′
1( a

λ
)

λDouti1( a
λ

)

]
r2

⎞
⎠ sin θ eφ. (38)

In the limit λ � a and r = a the expression in the brackets is
equal to 3λDout/Din, and thus is much smaller than a. However,
for bigger r ∼ a the compensation of the first two terms does
not take place, and the relation is ∼ PoutDout/a holds.

The suppression of Pout near the surface of the sphere,
expressed by Eq. (38), is the reason why λeff saturates when
λ → 0, see Fig. 5. Loosely speaking, strong relaxation “repels”
the spins from the boundary, which, in turn, slows down the
effective relaxation. The above physics is quite general. To
illustrate it, in the Appendix we consider a model example
of diffusion of particles in the presence of an absorbing trap

0 5 10 15 20 25 30
0

1

2

3

4

a/λ

λeff/(3π2na)−1/2

Dout/Din = 1
Dout/Din = 5

Dout/Din = 10

FIG. 5. The effective spin diffusion length in the units
(3π 2na)−1/2 is plotted from Eq. (36) for ratios Dout/Din: Dout/Din = 1
(green), Dout/Din = 5 (purple), and Dout/Din = 10 (blue). Note the
saturation of λeff at small λ.

and demonstrate that, with increasing the absorption rate, the
concentration of particles vanishes at the position of the trap.

(iii) It is instructive to compare our result Eq. (22) with
the expression for the perturbation of spin current flowing in
a normal metal around a ferromagnetic sphere [32]. Rather
that the SO coupling in our case, the difference of spin-up
and spin-down carriers in Ref. [32] is caused by the difference
of their conductivities inside the ferromagnet. As a result,
the induced dipole moment in our case is normal to the spin
current, while the induced “spin dipole moment” [32] is along
the spin current. Other than that, the two expressions resemble
each other. There is, however, an important difference. If the
conductivity of the ferromagnetic sphere [32] is much higher
than the conductivity of the surrounding normal medium, then
the perturbation of the spin current is suppressed (resistance
mismatch). On the contrary, for the inverse spin Hall effect,
the bigger the ratio Din/Dout, the stronger is the modification
of the spin current outside the sphere.

(iv) For a quantitative example of the effect of granularity on
the effective parameters of the mixture, assume that the density
of the SO granules is na3 = 10−2, while the spin diffusion
length in the material of the granule is λ = 0.2a. Compared
to the geometry in Fig. 1 with no granularity we “lose” 100
times in the inverse spin Hall voltage. At the same time we
gain in λeff. Substituting λ = 0.2a into Eq. (36), and assuming
Din � Dout, we find λeff = 10λ.

VI. CONCLUDING REMARKS

(1) For experimentally verifying our theoretical results,
composites of SO and no SO materials can be prepared
using a variety of widely available fabrication techniques.
For example, in Ref. [33] authors used a pulsed laser
deposition technique to prepare a composite comprising of
gold nanoclusters embedded in a ZnO matrix. In Ref. [34]
a self-assembly approach was used to fabricate a composite
comprising of nickel nanoclusters embedded in an amorphous
Al2O3 matrix. In Ref. [35] a nanofabrication approach was
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employed to prepare a magnonic crystal comprising of cobalt
nanodots embedded in a permalloy film. Similar approaches
can be used to prepare the desired composite structures of
SO and no SO materials, say Pt or Au nanodots (with large
θ SH) embedded in films of low θ SH materials (such as copper,
molybdenum, or even semiconductors like silicon).

(2) From a device point-of-view, an obvious way to
enhance the spin diffusion length would be by creating a
one-dimensional structure of alternating SO and no SO layers
To achieve this, however, the thickness of the SO layer should
be smaller than λ. Conversely, in a granular system the
enhancement takes place when λ � a. This is because the
spin current can flow around the spheres.

(3) In numerous spin-pumping experiments, see, e.g.,
Refs. [4–17], the measured quantity V SH is proportional either
to θ SHλ, when the thickness of nonmagnetic material is much
bigger than λ, or simply to θ SH in the opposite limit. A
comprehensive list of experimental values of θ SH and λ for
a number of heavy metals can be found in Refs. [36,37]. This
list indicates that, while separately θ SH and λ vary within wide
ranges, the range of change of their product is much narrower,
see also Ref. [38].

Overall there is still experimental ambiguity in extracting
the intrinsic SO parameters of materials from the experiment.
In this regard, granularity can offer a help by bringing a new
spatial scale, the radius of the grain a. As shown in Fig. 5,
the value λeff depends very strongly on the relation between λ

and a.
(4) In a specific case of a semiconductor ZnO the inverse

spin Hall effect was studied both in pumping experiment [39]
and directly by measuring the nonlocal voltage [40]. In both
measurements the value θ SH was found to be anomalously big,
compared, e.g., to Si [14,15]. It has recently been shown [41]
that the value θ SH in ZnO can be tuned very sensitively by
changing the oxygen ambient under which it is grown [42].
Films prepared under a high oxygen rich environment showed
a large value for θ SH (∼0.1), while the films prepared under
a low oxygen ambient showed an order of magnitude lower
value of θ SH.
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APPENDIX

Consider a diffusion in one dimension. If at time t = 0 the
distribution of particles is a δ peak, i.e., n(x,0) = δ(x), then it
spreads with time as

n(x,t) = 1

2
√

πDt
exp

(
− x2

4Dt

)
, (A1)

where D is the diffusion coefficient.
Suppose now that an absorbing trap is placed at the

coordinate origin. Then the spreading is governed by the

equation

−∂n

∂t
= −D

∂2n

∂x2
+ aδ(x)n

τs

, (A2)

where a is the size of the trap, and τs is the absorption
rate. Then the time-dependent concentration n(x,t) can be
expressed through the Green function of Eq. (A2),

n(x,t) =
∫

dx ′G(x,x ′,t)n(x ′,0). (A3)

It is convenient to present the Green function in terms of
eigenfunctions ψk of Eq. (A2), which satisfy the Schrödinger-
like equation

−D
∂2ψk

∂x2
+ aδ(x)

τs

ψk = k2ψk. (A4)

Then the expression for G(x,x ′,t) reads

G(x,x ′,t) =
∑

k

ψk(x)ψk(x ′) exp(−Dk2t). (A5)

The second term in Eq. (A4) plays the role of delta-potential
barrier, and causes the discontinuity of the derivative of ψk ,

∂ψk

∂x

∣∣∣
x=0+

− ∂ψk

∂x

∣∣∣
x=0−

= a

Dτs

ψk(0). (A6)

The normalized solutions ψk(x), which satisfy Eq. (A4), have
the form

ψk(x) = 1

π1/2
cos(k|x| + ϕk), (A7)

where the phase ϕk is found from the condition

tan ϕk = − a

2Dτsk
, (A8)

imposed by Eq. (A6).
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n(x, to)n(x, to)

n(x, to)
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(c)

(x/Dto)1/2 (x/Dto)1/2

(x/Dto)1/2

(a) κ = 0.2

(b) κ = 2

(c) κ = 20

to = τs

[arb. units] [arb. units]

[arb. units]

FIG. 6. Diffusive spreading of the initial particle distribution
n(x,0) = δ(x) in the presence of an absorbing trap located at x = 0 is
described by Eq. (A10). Shown is n(x,t) at a fixed time t0 for different
absorption efficiencies κ , Eq. (A13). The more absorbing the trap, the
deeper is the dip at the origin, and the slower is the decay of the net
number of particles at long times, as follows from Eq. (A12).
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Upon substituting Eq. (A5) into Eq. (A3) and using the
initial condition, we arrive at the final result

n(x,t) = 1

π

∫ ∞

0
dk

cos k|x| + a
2Dτsk

sin k|x|
1 + (

a
2Dτsk

)2 e−Dk2t . (A9)

It is now convenient to introduce a dimensionless coordinate
x̃ = x/(Dt)1/2 and the dimensionless time dependent parame-
ter t̃ = a2t/4Dτ 2

s
. In new variables Eq. (A9) assumes the form

n(x,t) = a

2πDτs

√
t̃

∫ ∞

0
dq

q2 cos |x̃|q + √
t̃q sin |x̃|q

q2 + t̃
e−q2

.

(A10)
We see that the characteristics of the trap a and τs enter
only into rescaling of time. In Fig. 6 we plot Eq. (A10) for
four different t̃ . It is seen from Fig. 6 that, with time, the
density n(0,t) at the origin develops a dip. The smaller is τs ,
i.e., the more absorbing is the trap, the sharper is the dip.
This conclusion also follows from the long-time asymptote
of n(x,t), when we neglect q2 in denominator compared to t̃ .
Then the integration yields

n(x,t)
∣∣∣
t̃�1

= a

8
√

πDτs t̃
3
2

(
√

t̃ |x̃| + 1)e− x̃2

4

=
√

Dτ 2
s√

πa2t
3
2

(
a|x|
2Dτs

+ 1

)
e− x2

4Dt . (A11)

This asymptote indicates that the ratio of concentrations at
half-width, x ≈ (Dt)1/2, and at the origin is ∼t̃1/2, i.e., the dip
is deep.

The next question we ask ourselves is how the total number
of particles

∫
dxn(x,t) decreases with time. Upon integration

of Eq. (A10) we get

N (t) =
∫ ∞

−∞
dxn(x,t)

= Erfc(t̃1/2) exp(t̃) =
{

1 − a
τs

(
t

πD

)1/2
, t̃ � 1,

2τs

a

(
πD
t

)1/2
, t̃ � 1,

(A12)

where Erfc(s) is the complementary error function. It is seen
from Eq. (A12) that the change of the decay rate ∂N/∂t takes
place at t̃ ∼ 1. This change is caused by the development of
the dip. Indeed, for t̃ � 1 the decay rate falls off with time as
t−3/2.

Overall we conclude that the spreading of the particle
density in the presence of a trap is governed by a dimensionless
parameter

κ = a

(Dτs)1/2
, (A13)

which is the dimensionless efficiency of absorption by the trap.
If this efficiency is small, the spreading will proceed as in the
absence of the trap for most of the time, until the concentration
at x = 0 becomes really small. Only then, n(x,t) will develop
a dip at x = 0 and the decay of the net number of particles
will proceed even slower. For large efficiency, the dip will
developed early, namely at t ∼ τs/κ

2 � τs , after which time
the decay of N (t) will be governed by the value of n(0,t) of
the concentration at the dip.

Formation of a dip in our model problem puts into a
general perspective the behavior of the effective spin diffusion
length in the system of the SO grains. In the limit λ � a, see
Eq. (36), the value λeff saturates because the polarization near
the boundary gets suppressed as a result of the development
of a local minimum.
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J.-P. Attanè, L. Vila, J.-M. George, and A. Fert, Appl. Phys. Lett.
104, 142403 (2014).

[39] J.-C. Lee, L.-W. Huang, D.-S. Hung, T.-H. Chiang, J. C. A.
Huang, J.-Z. Liang, and S.-F. Lee, Appl. Phys. Lett. 104, 052401
(2014).

[40] M. C. Prestgard and A. Tiwari, Appl. Phys. Lett. 104, 122402
(2014).

[41] M. C. Prestgard, Z. Yue, M. E. Raikh, and A. Tiwari (in
preparation).

[42] M. C. Prestgard, Ph.D thesis, University of Utah, 2015.

045307-9

http://dx.doi.org/10.1038/nphys2901
http://dx.doi.org/10.1038/nphys2901
http://dx.doi.org/10.1038/nphys2901
http://dx.doi.org/10.1038/nphys2901
http://dx.doi.org/10.1063/1.4922007
http://dx.doi.org/10.1063/1.4922007
http://dx.doi.org/10.1063/1.4922007
http://dx.doi.org/10.1063/1.4922007
http://dx.doi.org/10.1103/PhysRevB.91.224422
http://dx.doi.org/10.1103/PhysRevB.91.224422
http://dx.doi.org/10.1103/PhysRevB.91.224422
http://dx.doi.org/10.1103/PhysRevB.91.224422
http://dx.doi.org/10.1103/PhysRevB.86.195203
http://dx.doi.org/10.1103/PhysRevB.86.195203
http://dx.doi.org/10.1103/PhysRevB.86.195203
http://dx.doi.org/10.1103/PhysRevB.86.195203
http://dx.doi.org/10.1038/srep02653
http://dx.doi.org/10.1038/srep02653
http://dx.doi.org/10.1038/srep02653
http://dx.doi.org/10.1038/srep02653
http://dx.doi.org/10.1103/PhysRevLett.106.106602
http://dx.doi.org/10.1103/PhysRevLett.106.106602
http://dx.doi.org/10.1103/PhysRevLett.106.106602
http://dx.doi.org/10.1103/PhysRevLett.106.106602
http://dx.doi.org/10.1103/PhysRevB.85.115201
http://dx.doi.org/10.1103/PhysRevB.85.115201
http://dx.doi.org/10.1103/PhysRevB.85.115201
http://dx.doi.org/10.1103/PhysRevB.85.115201
http://dx.doi.org/10.1103/PhysRevLett.99.126601
http://dx.doi.org/10.1103/PhysRevLett.99.126601
http://dx.doi.org/10.1103/PhysRevLett.99.126601
http://dx.doi.org/10.1103/PhysRevLett.99.126601
http://dx.doi.org/10.1103/PhysRevB.82.121310
http://dx.doi.org/10.1103/PhysRevB.82.121310
http://dx.doi.org/10.1103/PhysRevB.82.121310
http://dx.doi.org/10.1103/PhysRevB.82.121310
http://dx.doi.org/10.1103/PhysRevB.91.045202
http://dx.doi.org/10.1103/PhysRevB.91.045202
http://dx.doi.org/10.1103/PhysRevB.91.045202
http://dx.doi.org/10.1103/PhysRevB.91.045202
http://dx.doi.org/10.1166/jnn.2003.217
http://dx.doi.org/10.1166/jnn.2003.217
http://dx.doi.org/10.1166/jnn.2003.217
http://dx.doi.org/10.1166/jnn.2003.217
http://dx.doi.org/10.1166/jnn.2004.107
http://dx.doi.org/10.1166/jnn.2004.107
http://dx.doi.org/10.1166/jnn.2004.107
http://dx.doi.org/10.1166/jnn.2004.107
http://dx.doi.org/10.1103/PhysRevLett.109.137202
http://dx.doi.org/10.1103/PhysRevLett.109.137202
http://dx.doi.org/10.1103/PhysRevLett.109.137202
http://dx.doi.org/10.1103/PhysRevLett.109.137202
http://dx.doi.org/10.1103/PhysRevLett.112.197201
http://dx.doi.org/10.1103/PhysRevLett.112.197201
http://dx.doi.org/10.1103/PhysRevLett.112.197201
http://dx.doi.org/10.1103/PhysRevLett.112.197201
http://dx.doi.org/10.1103/RevModPhys.87.1213
http://dx.doi.org/10.1103/RevModPhys.87.1213
http://dx.doi.org/10.1103/RevModPhys.87.1213
http://dx.doi.org/10.1103/RevModPhys.87.1213
http://dx.doi.org/10.1063/1.4870835
http://dx.doi.org/10.1063/1.4870835
http://dx.doi.org/10.1063/1.4870835
http://dx.doi.org/10.1063/1.4870835
http://dx.doi.org/10.1063/1.4863750
http://dx.doi.org/10.1063/1.4863750
http://dx.doi.org/10.1063/1.4863750
http://dx.doi.org/10.1063/1.4863750
http://dx.doi.org/10.1063/1.4869117
http://dx.doi.org/10.1063/1.4869117
http://dx.doi.org/10.1063/1.4869117
http://dx.doi.org/10.1063/1.4869117



