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Quantum spin Hall effect in α-Sn/CdTe(001) quantum-well structures
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The electronic and topological properties of heterovalent and heterocrystalline α-Sn/CdTe(001) quantum wells
(QWs) are studied in dependence on the thickness of α-Sn by means of ab initio calculations. We calculate the
topological Z2 invariants of the respective bulk crystals, which identify α-Sn as strong three-dimensional (3D)
topological insulators (TIs), whereas CdTe is a trivial insulator. We predict the existence of two-dimensional
(2D) topological interface states between both materials and show that a topological phase transition from a trivial
insulating phase into the quantum spin Hall (QSH) phase in the QW structures occurs at much higher thicknesses
than in the HgTe case. The QSH effect is characterized by the localization, dispersion, and spin polarization of
the topological interface states. We address the distinction of the 3D and 2D TI characters of the studied QW
structures, which is inevitable for an understanding of the underlying quantum state of matter. The 3D TI nature
is characterized by two-dimensional topological interface states, while the 2D phase exhibits one-dimensional
edge states. The two different state characteristics are often intermixed in the discussion of the topology of 2D
QW structures, especially, the comparison of ab initio calculations and experimental transport studies.
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I. INTRODUCTION

Topological insulators are insulators in the bulk system
but exhibit metallic edge states at their surfaces or interfaces
with a trivial insulator [1–5]. These edge states have special
electronic properties, which give rise to the quantum spin
Hall (QSH) phase, a new quantum phase of matter [6–8].
They possess a linear k dispersion and form Dirac cones.
Their spin polarization may lead to intrinsic spin currents in
the absence of an external magnetic field, but driven by the
internal spin-orbit coupling. These peculiarities [9–12] are
expected to offer novel applications in quantum computing
and spintronics [1,13,14].

The group-IV material α-Sn and the II-VI compound
semiconductor HgTe are ideal candidates to be topological
insulators (TIs), because of their inverted band structures.
In contrast to other tetrahedrally coordinated semiconductors,
they are zero-gap semiconductors, as the fourfold degenerated
�8v states are energetically equivalent to the Fermi level [15].
In addition, as a consequence of the relativistic mass-Darwin
effect, the s-like �6c levels are energetically lower than the
p-like �8v levels and, hence, the band ordering is inverted with
respect to conventional semiconductors like CdTe [15,16]. A
minor strain, e.g., induced by growth on nearly lattice-matched
substrates such as CdTe or InSb, opens a small gap between the
�8v states, which makes the materials insulating. In addition,
the spin-orbit splitting between the �8v and the �7v states is
of the order of magnitude of 1 eV, which is larger than the
negative �6c − �8v gap, and hence gives rise to the existence
of the edge states within the negative gap [17,18].

The topology of a crystalline material can be characterized
by a Z2 invariant index, which equals 1 in the case of a
topological insulator and zero for topologically trivial systems.
Within simplified electronic structure models such as the
k · p theory, strained α-Sn and HgTe have been predicted as
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topological insulators calculating theZ2 index by means of the
eigenvalues of the parity operator using the occupied electronic
states at the time-reversal invariant momenta (TRIM) of the
Brillouin zone (BZ) as basis set [18]. However, the parity
method requires inversion symmetry, and is therefore not
applicable to the zinc-blende material HgTe despite the use
of arguments based on adiabatic continuity [18]. Yu et al. [19]
proposed a method to calculate Z2 invariants, which does not
require inversion symmetry and, importantly, is independent
of a gauge fixing of the wave functions, which is critical in the
case of ab initio calculations, because of the arbitrary phase
factors of different wave functions at different k points. Such
a self-consistent electronic-structure method has been applied
to HgTe [19], but not to α-Sn.

In 2006, Bernevig et al. [10] predicted thick HgTe quantum
wells (QWs) to be two-dimensional (2D) TIs. The QW
structures consist of a HgTe film with thickness d1 sandwiched
between barrier layers of CdTe. The barrier material CdTe
induces a confinement of electrons and holes in the HgTe layers
in-between. For small layers of HgTe, the band ordering of the
QW structure is that of a trivial insulator. With increasing HgTe
thickness, however, the HgTe films dominate the electronic
behavior of the QW. This effect is characterized by an inversion
of the energetic ordering of the s- and p-like states in the center
of the BZ close to the Fermi level and leads to a nontrivial
topology of the QW structures in total [10,17,20,21]. In the
inverted regime, the HgTe films begin to act like HgTe bulk and
the situation becomes similar to that of two interfaces between
two half-spaces of HgTe and CdTe, respectively. Due to the
different electronic band structures of those materials, 2D
topological interface states occur inside the interface planes be-
tween HgTe and CdTe, which has been recently demonstrated
by ab initio calculations [17,20,21]. Despite the presence of
these 2D topological interface states, the respective QSH phase
can be made visible in experiments by one-dimensional (1D)
topological edge states, which are characterized by a linear k
dispersion in a 1D BZ and spin polarization such that electrons
with opposite spin counterpropagate at the sample edges, if
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finite QW structures with surfaces perpendicular to the growth
direction are investigated. In transport experiments, these 1D
edge states are detected at the edges of 2D Hall bars made from
finite QWs [11,22]. While the underlying physical reason in
both cases is the nontrivial topology of the QW, it is important
to point out, that two fundamentally different electronic states
are concerned. This is especially important, as the 2D interface
states, which are typically investigated by means of supercell
calculations [17,20,21], have been mistakenly interpreted as
the 1D edge states found in transport measurements [11,22]
while actually being an indirect verification.

Because of the similarity of the bulk electronic structures
and topology, basically the same effects as in the case of
HgTe/CdTe QW structures should be expected for α-Sn/CdTe
QWs. However, recent ab initio calculations showed [20]
that α-Sn/CdTe(110) QWs do not exhibit a transition into
the QSH regime because of strong interface dipoles induced
by interface bonds due to the pronounced interface bond
differences between α-Sn and CdTe compared to HgTe and
CdTe. The accompanying strong electric fields in [001]
direction arising from the interface electrostatics can be
avoided, if the [001] growth direction is investigated instead of
the [110] cleavage face of zinc-blende materials. The reason
is that in [001] direction the atomic layers consist of the same
atoms, alternating between anion and cation layers. Therefore,
no in-plane dipole perpendicular to the growth direction
can destroy the occurrence of the QSH phase. However,
the stacking of differently charged layers raises another
problem; a sawtooth potential inside the α-Sn QWs and CdTe
barriers in growth direction created by differently charged
α- Sn/Te and α-Sn/Cd interfaces at both interfaces [17].
No respective theoretical or experimental studies are yet
available. How these effects influence the presence or absence
of the QSH phase in α-Sn/CdTe(001) QWs is an open
question.

In this paper, we study electronic and topological properties
of α-Sn/CdTe(001) QWs by means of ab initio calculations. In
Sec. II, the theoretical background, the numerical implemen-
tation and the studied structures are introduced. The results
are presented in Sec. III. In a first step, in Sec. III A, the
topological Z2 invariants are calculated, whereby the 3D TI
character of α-Sn and the trivial character of CdTe is proven.
In the subsequent Sec. III B, interface electrostatics and band
offsets of α-Sn/CdTe(001) QW structures depending on the
thicknesses of both materials are discussed. The resulting
types of the heterostructures are identified and possible effects
on the electronic structure of the respective interfaces are
investigated. In the following part, in Secs. III C 1 and III C 2,
the electronic structure depending on the QW thickness
of these QW structures is described. It is shown, that a
phase transition occurs from a topologically trivial insulating
phase into a QSH phase, which is characterized by two-
dimensional topological states. The characteristic thickness
of α-Sn, where this transition occurs, is calculated and the
2D topological interface states are characterized in detail
concerning their localization, spin polarization, and band
dispersion. In a final step, in Sec. III D, we address the issue of
the distinction of these interface states from the topological 1D
topological edge states, which should be visible in transport
experiments.

II. THEORETICAL AND COMPUTATIONAL METHODS

A. Total energy calculations and atomic models

We apply the density functional theory (DFT) [23] within
the local density approximation (LDA) [24] as implemented
in the Vienna ab initio Simulation package (VASP) [25,26]. Ex-
change and correlation (XC) are treated using the Monte Carlo
simulation results of Ceperly and Alder [27] as parametrized
by Perdew and Zunger [28]. The scalar-relativistic effects
and spin-orbit coupling [29] are included in the electronic-
structure calculations. To describe the electron-ion interac-
tion, pseudopotentials are used, which are generated within
the projector-augmented wave (PAW) [30,31] method. The
Sn 5s, Sn 5p, Cd 4d, Cd 5s, Te 5s, and Te 5p electrons are
explicitly treated as valence electrons. Outside the PAW
spheres, the single-particle Kohn-Sham wave functions are
expanded into a plane-wave basis set. We apply a plane-wave
energy cutoff of 500 eV for bulk calculations or 275 eV
for the superlattices. Bulk BZ integrations are replaced by a
sum over 12 × 12 × 12 Monkhorst-Pack [32] k points. For
the superlattice calculations, a BZ sampling of 6 × 6 × 1
Monkhorst-Pack k points is used. We found the optimized lat-
tice constants of the bulk materials to be a0 = 6.475 Å (α-Sn)
and a0 = 6.46 (CdTe). The calculated lattice constant of α-Sn
is in agreement with the values measured by Farrow [33] and
Davey [34] using x-ray diffraction. A slight underestimation of
5 mÅ (Ref. [33]) and 15 mÅ (Ref. [34]), respectively, within
DFT-LDA can be explained by the well-known tendency of
the LDA to underestimate bond lengths [35]. The optimized
lattice constants of CdTe slightly deviate from the experimental
value of a0 = 6.48 Å (CdTe) [36] because of the used XC
potential. However, in another data collection a measured value
of a0 = 6.460 Å [37] (CdTe), which is much closer to the
theoretical lattice constant, has been published.

Local or semilocal XC potentials significantly underesti-
mate fundamental energy gaps [38]. In addition, in the case
of the zero-gap semiconductor α-Sn, an artificial metallic
behavior is obtained because of a negative indirect � − L

gap. Moreover, within these approximations, the energetic
order of the �7v and �6c levels is interchanged [39]. For
bulk calculations, these problems can be overcome applying
the HSE06 hybrid functional [40], which includes a screened
nonlocal exact Fock exchange, although computed using the
Kohn-Sham single-particle wave functions. Unfortunately,
this method is computationally too expensive to be applied
in the case of nanostructures such as multi-QW structures.
Therefore, we apply the Tran-Blaha method (MBJLDA)
with the modified Becke-Johnson (MBJ) semilocal exchange
functional [41] in the case of superlattice calculations, in
order to approximate the quasiparticle effects beyond the LDA
level. It is based on a model exchange potential designed to
reproduce the shape of exact-exchange optimized effective
potentials [42] and its reliability has been demonstrated for
many zinc-blende compounds [43,44]. We find reasonable
agreement of the electronic structure results computed within
MBJLDA compared to experimental findings and HSE06
calculations [17]. Usually, the application of the MBJLDA
is restricted to homogeneous systems because it involves a
material-specific parameter CMBJ. However, we find a joint
parameter CMBJ = 1.235 to describe both materials, α-Sn and
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FIG. 1. Symmetric unit cell of a (α-Sn)33(CdTe)5(Te)1(001)
superlattice. The Sn (Cd,Te) atoms are shown as red (yellow, and
green, respectively) dots.

CdTe, with reasonable accuracy. This allows the application
of the MBJLDA to α-Sn/CdTe heterostructures.

An α-Sn/CdTe(001) multi-QW structure with an α-Sn film
thickness d1 could be modeled by a corresponding superlattice
with a sufficient thickness d2 of the CdTe barrier layers. How-
ever, (α-Sn)N (CdTe)M (001) superlattices with N α-Sn atomic
layers and the corresponding number M of neutral bilayers of
CdTe consist of inequivalent Sn-Cd and Sn-Te interface bonds
and, hence, give rise to interface dipoles in normal direction.
To obtain equivalent bonds between the two materials, i.e., the
same termination of the CdTe barriers at the two interfaces
in the supercells, e.g., the Te termination, nonstoichiometric
CdTe barriers must be used. In the actual calculations, we add
to the M CdTe(001) bilayers an additional Te monatomic layer.
It makes the barriers nonstoichiometric with (Te)1(CdTe)M �
CdMTeM+1. In order to allow for a translationally invariant
bond stacking, an odd number N of atomic Sn layers is applied
resulting in (α − Sn)N (Te)1(CdTe)M unit cells as illustrated
in Fig. 1 with N = 33 and M = 5. Thereby, we request
N to be an odd number, whereas N + 2M + 1 should be
mod 4 because an irreducible (001) slab of the zinc-blende
crystal consists of four atomic layers [45]. These unit cells
are symmetric with the consequence that no net dipoles and
sawtooth potentials in growth direction can appear. The bulk
lattice constants of CdTe and α-Sn slightly differ by 0.23%.
To adapt this lattice mismatch, we assume that only the
α-Sn layers are strained [46]. The in-plane lattice constants

are fixed in accordance to the calculated lattice constant of
CdTe. Using the ratio of the elastic constants of α-Sn the
biaxial coefficient Rb = − 2C12

C11
= −0.85 [47] determines the

distances between layers in [001] direction. As an example,
the unit cell of an (α − Sn)33(Te)1(CdTe)5(001) superlattice is
displayed in Fig. 1. Since generally the superlattice constant
in [001] direction is large enough to avoid the wave-vector
dispersion in this direction, we discuss the resulting electronic
properties in the translational symmetry perpendicular to the
[001] axis. They are presented versus the 2D square BZ whose
extent is given by the lateral lattice constant of the superlattice,
i.e., of CdTe.

B. Numerical calculation of topological invariants

The topology of the band structure of an insulating
bulk system can be characterized by Z2 topological invari-
ants [5,9,18,48]. For diamond and zinc-blende crystals there
are four Z2 = (ν0; ν1,ν2,ν3) invariants, that allow one to
distinguish three categories of materials: ordinary insulators,
strong TIs, and weak TIs (in three dimensions). The strong
TIs are characterized by ν0 = 1 allowing for the existence of
topologically protected, spin-polarized surface or edge states,
and hence the QSH phase [1,5,8,18]. ν0 is called the strong Z2

invariant because it distinguishes the strong TIs from the weak
TIs. The weak TIs refer to ν0 = 0, while some or all of the
νk,k ∈ {1,2,3} equal 1. However, topologically nontrivial νk

also exhibit chiral edge states, but they depend on the choice
of the lattice vectors and are not preserved in the presence of
weak disorder [8,18]. The weak Z2 numbers are nonetheless
important when clean surfaces are studied. In the case of trivial
insulators, all four Z2 invariants are zero, and no chiral edge
states occur.

For systems with inversion symmetry such as diamond
α-Sn, the four invariants can be determined from the parity
of the occupied Bloch states at the TRIM points of the
BZ [18]. They follow from the evaluation of the matrix
elements of the parity operator. Because of the inversion
symmetry this method can be applied. The biaxial strain leads
to a tetragonal symmetry of the α-Sn layers, the fourfold
degeneracy of the �8v level is lifted, and the α-Sn films become
insulators. The symmetry labels of the unstrained diamond
lattice symmetry do not, in principle, apply for the resulting
tetragonal structures. Nevertheless, the Z2 class of strained
HgTe and α-Sn have been determined applying the ideal
diamond lattice with inversion symmetry based on arguments
of adiabatic continuity [18].

Another possibility proposed by Fu and Kane [18,48] is
the determination of the Z2 invariants from the Pfaffian of
the matrix elements of the time-reversal operator using the
occupied band states at TRIM points as basis set. Despite the
fact that the resulting Z2 invariants calculated by means of
the Pfaffian matrix method are gauge independent, the method
itself depends on a gauge transformation [18,48]. However,
using ab initio methods, the electronic wave functions of
different band states and at different k points do not have a
fixed phase relation to each other but random phase factors.
This makes a gauge fixing of the wave functions obtained from
ab initio calculations nontrivial [19,49–51]. Both methods to
evaluate the topological class from the parities of the occupied
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bands as well as the Pfaffian matrix method are consequently
not appropriate to calculate the Z2 class of materials lacking
inversion symmetry and using ab initio methods.

In 2011, Yu et al. [19] proposed an expression of the
Z2 invariant of bulk insulators using the non-Abelian Berry
connection. We use this method to compute the Z2 invariants,
and implement it in the VASP code. It does not require gauge
fixing of the wave functions or inversion symmetry and can
therefore be directly applied to ab initio calculated wave
functions.

According to the Fu-Kane theory, the number of Kramers
pair switchings modulo 2 along a line connecting two time-
reversal invariant momenta is equivalent to the topological
invariant of the system [5,8,18,48]. Yu et al. [19] showed that
in the two-dimensional case, the Kramers pair switching is
equivalent to the “partner switchings” of the Wannier function
centers (WCCs) during a closed loop in the Brillouin zone. The
starting point for the actual calculation is, that the evolution
of the Wannier charge centers can be related to the phase of
the eigenvalues of the position operator x projected onto the
occupied band states. This eigenvalue problem of the position
operator is then solved by a transfer integral method.

In a first step, the calculation of the Z2 invariant of
two-dimensional systems is explained. The treatment of
three-dimensional systems can then be extended to its two-
dimensional subsystems. A two-dimensional Brillouin zone
spanned by the two reciprocal lattice vectors bx and by , which
are not required to be orthogonal to each other, is considered.
The Brillouin zone is discretized in Nx × Ny intervals with
the interval lengths �kx,y = 2π

Nx,ya
, where π

a
is the distance

between � and the BZ boundary. In order to keep the notation
consistent with the literature [19,51], the values of the kj are
from now on given in units of 1

a
. This means, that the kj

(j = x,y) run from 0 to π for a full path through the BZ
parallel to bj . We calculate the overlap matrices between the
Bloch periodic parts |n,kx,ky〉 of the occupied wave functions
along lines parallel to bx with fixed ky :

(Fi,i+1(kx,ky))m,n = 〈m,i�kx
,ky |n,(i + 1)�kx

,ky〉. (1)

Here, n and m denote the band indices and run over the 2N

occupied bands, where the factor 2 represents the Kramers
degeneracy, and i = 0 . . . Nx defines the position in the
discretized BZ. Consequently, the resulting F̂ (kx,ky) is a
2N × 2N matrix. The overlap integrals fix the phase between
adjacent Bloch states even in the absence of gauge invariance.

In a next step, the 2N × 2N matrix D̂(ky) is calculated as
the matrix product of all Fi,i+1(kx,ky) along a line parallel to
bx :

D̂(ky) = F̂0,1F̂1,2F̂2,3 · · · F̂Nx−2,Nx−1F̂Nx−1,0. (2)

The last multiplication with FNx−1,0 is critical for the
purpose of gauge fixing, because it connects the last point
of each path parallel to bx with the respective starting point
yielding a closed loop in k space. The matrix D̂(ky) is
diagonalized yielding m = 1 . . . 2N complex eigenvalues
λm(ky) = |λm(ky)|eiθm(ky ). Their phases θm(ky) are identified
with the position of the Wannier charge centers and invariant
under a U (2N ) unitary transformation of the occupied band
states. Therefore, the arbitrary phase factors resulting from

the independent calculation of different wave functions at
different k points within ab initio calculations are eliminated.

The topological invariant of the system is calculated by the
number of crossings of an arbitrary horizontal reference line
connecting two TRIM points with ky running from zero to π

with the Wannier center evolution curves θm(ky) mod 2.
For three-dimensional systems it is possible to derive all

four Z2 invariants dividing them in two-dimensional subsys-
tems [19,49]. We consider six 2D subsystems in reciprocal
space defined by one of the momenta fixed at kj = 0 and
kj = π with j ∈ {x,y,z}, each containing four TRIM points.
The weak topological indices νk = (ν1,ν2,ν3) are identified
with the Z2 indices of the planes kj = π . They obviously
depend on the choice of the reciprocal lattice vectors and hence
are not protected against weak disorder. The strongZ2 index ν0

is equivalent to the sum of the Z2 invariants of two “opposite”
kj = 0 and kj = π planes mod 2 for each of the three pairs
given by j = 1,2,3. A strong TI therefore requires that for each
pair of 2D subsystems the respective kj = 0 and kj = π planes
have different Z2 invariants. However, there is some redun-
dancy involved in the choice of the actual planes used for the
calculation of ν0 as each of the three pairs in j = 1,2,3 gives
the same result [49]. The strongZ2 index is therefore obviously
independent of the choice of the reciprocal lattice vectors.

III. RESULTS AND DISCUSSION

A. Z2 invariants

The resulting WCC evolution curves of slightly biaxially
strained α-Sn and CdTe are shown in Fig. 2. In the cases of
α-Sn it is clearly visible that the kz = 0 related 2D subsystem
exhibits a topologically nontrivial behavior with Z2 = 1.
The reference lines are crossed by an odd number of WCC
evolution curves indicating an odd number of Kramers pair
switchings. The opposite face in the BZ kz = π , in contrast,
shows no crossing or an even number of crossings with a
reference line and the WCC evolution curves resulting in
Z2 = 0. From the different topological indices of the two
2D subsystems, it follows that the strong Z2 index of the
three-dimensional system ν0 equals 1, identifying strained
α-Sn as a strong topological insulator. We also calculated the
weak topological indices, which are identical with theZ2 index
of the three faces belonging to kj = π , which equal zero for all
j ∈ {x,y,z}. The resulting Z2 class of biaxially strained α-Sn
is (1; 0,0,0), in accordance with predictions based on parity
evaluation for diamond α-Sn combined with arguments based
on adiabatic continuity [18].

Interestingly, test calculations performed with the ideal
unstrained structures also identify α-Sn as a strong topological
insulator with ν0 = 1. This is astonishing as it contradicts
somehow the original definition of a topological insulator,
which requires an insulating bulk system [18], in whose fun-
damental gap the metallic topological states may appear. Here,
the strain and therefore the splitting of the �8v states may be
infinitely small. The driving factor for the strong TI character
of both materials might be the band inversion with occupied
�6c and two empty �8v states. This is in accordance with
first-principles surface calculations that show the existence of
topological surface states at α-Sn(001) surfaces regardless of
the absence of strain [52].
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FIG. 2. WCC evolution curves of 0.15% biaxially strained α-Sn (a) and CdTe (b) in the 2D subsystems defined by kz = 0 and kz = π of the
zinc-blende lattice. Possible reference lines are depicted in blue. Red arrows indicate the crossing points of the WCC curves and the reference
lines.

The WCC evolution curves along ky for kz = 0 and kz = π

of CdTe are depicted in Fig. 2(b). The other faces are not
shown, because they are topologically equivalent to the latter
ones. All 2D subsystems are characterized by a trivial Z2

index, as the reference lines do not or twice cross the WCC
evolution curves. Consequently, CdTe and can be identified
as topologically trivial insulators with the Z2 class (0; 0,0,0).

The different Z2 classes of α-Sn and CdTe suggest the
occurrence of the QSH phase in the α-Sn QWs due to the
boundaries between both materials, which will be discussed in
detail in the following sections.

B. Band offsets and confinement of electron and hole states

In the present section, the valence band offset �Ev =
ε(�8v,α-Sn) − ε(�8v,CdTe) between the �8v levels in α-Sn
and and CdTe are investigated in order to obtain information
about the quantum confinement of electron and hole states in
the QW structures and their dependence on the thicknesses of
both material layers.

In a first approach, we calculate the natural band disconti-
nuity between α-Sn and CdTe by means of the alignment of the
two bulk band structures using their branch points, or charge
neutrality levels, EB [53,54]. We apply the method of Schleife
et al. [55] together with band structure calculations based
on the hybrid HSE06 XC functional. We find EB = 0.71 eV
(CdTe) and −0.52 eV (α-Sn) with respect to the �8v valence
band top. The value for CdTe is in good agreement with
results of earlier computations [53]. Therefore, at α-Sn/CdTe
interfaces, a natural valence band discontinuity of �Ev =
1.26 eV is predicted, which is in good agreement with the
measured value of �Ev = 1.1 eV [56]. Consequently, the �8v

level of α-Sn is only about 300 meV lower in energy than
the �6v-derived conduction band edge of CdTe and strong
confinement of holes is expected. The confinement of electrons
is, however, more difficult to evaluate because of the inverted
α-Sn bulk band structure.

However, the model of “natural band discontinuities” ne-
glects real-structure effects at the interfaces. The influences of
the atomic interface structure, the interface electrostatics, and
confinement effects in quantum well structures are neglected
within the branch point method [57,58]. These effects can be
included in the calculation of the valence band offsets, if the
electrostatic potential in combination with a self-consistent
interface calculation is used for an alignment of the band
structures [57,58]. This method has been described in detail
elsewhere [17]. Here, we take such effects into account because
of the use of atomic models for the interfaces as illustrated in
Fig. 1.

Following this approach, in α-Sn/CdTe QWs with (001)
orientation we find the fundamental gap of the QW structures
to be completely inside the projected valence bands of CdTe,
which seems to be obviously unphysical. However, as will
be discussed in the next section, Sec. III C, the required
thicknesses of the α-Sn layer are of the order of magnitude of
10 nm, which inevitably limits the barrier thickness of CdTe
to 9.6 Å for reasons of computational cost. In addition, as
explained in Sec. II A, due to the structure of the CdTe barrier
consisting of polar layers in (001) direction, nonstoichiometric
barriers must be used to avoid an intrinsic electrostatic
sawtooth potential. The small barrier thickness together with
the violated stoichiometry may be the reason for a surprising
band alignment. This is verified by the comparison of the
plane-averaged electrostatic potentials of QWs containing 33
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FIG. 3. Plane-averaged electrostatic potential Ves(z)
of (α-Sn)33(Te)1(CdTe)3(001) (black line), (α-Sn)33(Te)1

(CdTe)5(001) (red line), and (α-Sn)33(Te)1(CdTe)7(001) (blue
line) QWs. The space-averaged electrostatic potential of the
superlattice is used as absolute energy zero.

atomic layers of α-Sn but increasing CdTe barrier thicknesses
of 9.6, 16.1, and 22.5 Å in Fig. 3. It is obvious that the
electrostatic potential in the α-Sn region 10 Å away from
the interface is well converged, as the atomic oscillations are
equally high. In the CdTe barriers of the QW, there is a small
upward shift of the atomic oscillations with increasing barrier
thickness. The difference between the smallest barrier and the
largest one amounts to roughly 300 meV. This upward shift
of the energy scale of the superlattice with respect to that
of CdTe bulk causes the conduction band minimum of bulk
CdTe to be just above the conduction band minimum of the
respective supercells. However, the envelope of the maxima

of the atomic oscillations of the electrostatic potential is not
flat in the whole barrier region, even in the case of the largest
barrier considered here, indicating that the potential is not
yet completely converged and a further thickness increase
would therefore lead to a further decrease of the valence
band discontinuity. The valence band discontinuity is found
to be rather independent of the thickness of the α-Sn film.
Consequently, the situation with the fundamental gap being
inside the projected bulk gap of CdTe, which is found for the
22.5-Å-wide CdTe barrier, will be considered in the discussion
of the electronic band structure, despite the fact that in the
actual calculations smaller CdTe barriers are used.

C. Quantum-well band structures and topological states

The nontrivial topology of α-Sn triggers the expectation of
the existence of a 2D quantum spin Hall phase characterized by
metallic, linearly dispersed, helical edge states in the interface
plane to a trivial insulator like CdTe following the definition
of a 3D topological insulator. However, in a superlattice the
situation is different to that of an isolated interface between two
half-spaces due to confinement effects. Only for sufficiently
large thicknesses of the α-Sn and CdTe films can it be expected
that the multi-QW structure behaves like a series of interfaces
and hence exhibits the 2D QSH effect in the α-Sn layers,
which, importantly, in this case is a result of the 3D TI nature
of α-Sn. The existence of this effect depends on the thickness
of the α-Sn content.

1. Quantum spin Hall effect

The quasiparticle subband structures of the (α −
Sn)NTe1(CdTe)10(001) QW structures with varying well

FIG. 4. Subband structures of (α-Sn)N (Te)1(CdTe)5(001) superlattices for different QW thicknesses N = 49 (a) and (d), N = 53 (b) and
(e), and N = 57 (c) and (f). The blue background indicates the projected bulk band structure of the CdTe barrier material. The energy of
the highest occupied SL state is used as energy zero. In the lower panels, the wave-function squares of the lowest unoccupied (black), the
highest occupied (red), and the second-highest occupied (blue) states at �, averaged over planes perpendicular to the QW orientation [001], as
a function of the distance z for the respective SLs with d1 = 8.1 nm (a) and (d), 8.8 nm (b) and (e), and 9.4 nm (c) and (f). Red arrows indicate
the position of the interfaces.
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thicknesses N = 49, 53, and 57 are depicted in Figs. 4(a)–4(c)
in the vicinity of the � point of the 2D BZ of the interface [45]
in the direction ±�X ‖ [±100]. All these heterostructures
exhibit an insulating band structure. The fundamental gap at
� is, however, almost closed for the superlattice (SL) with
N = 53. It is clearly visible, that the highest occupied as well
as the lowest unoccupied SL state exhibit a linear dispersion
in the vicinity around the � point implying the formation of
Dirac cones. This behavior is less pronounced in the cases
N = 49 and 57, where the linear conduction band states also
penetrate deeper into the projected bulk band gap of CdTe
than for the superlattice with N = 49. The formation of 2D
Dirac cones is an indication for a topological transition from
a trivial insulating phase into the quantum spin Hall phase for
increasing α-Sn thickness. The existence of Dirac cones is not,
however, sufficient to claim the existence of a quantum spin
Hall phase. The edge character in terms of a localization at the
interface between α-Sn, the characteristic spin polarization,
and the topological protection remain to be shown. We will
address these issues in the following.

In order to investigate the localization behavior of the
subband states near � around the Dirac point, Figs. 4(d)–
4(f) show the wave-function squares of the states closest to
the Fermi energy along the interface normal direction. The
variation of the maxima of the atomic oscillation can be
interpreted as the envelope function of the respective subband
state.

In the case of the smallest QW [see Fig. 4(d)], the
probability density of the lowest unoccupied state is localized
inside the interface plane and decays exponentially into the
α-Sn film, whereas the probability density almost vanishes
inside the confining CdTe barrier regions. In combination
with the linear dispersion, this is a clear indication for the
beginning of edge state formation. The envelope function
of the highest occupied state clearly exhibits the shape of
an n = 1 confined state in a rectangular quantum well. It is
located inside the α-Sn region with one pronounced maximum
and an almost vanishing probability density inside the CdTe

layer. The second highest unoccupied state in the α-Sn QW
has an elevated probability density at the edges very similar
to the lowest unoccupied one. However, there are two much
smaller maxima inside the α-Sn layer, and it might be an n = 2
confined QW state.

For the N = 53 QW, which exhibits the typical Dirac-cone
dispersion [see Fig. 4(e)] with vanishing gap, the localization
properties do not change significantly. The highest occupied
state is found to be an n = 1 confined state. The second highest
occupied state as well as the lowest unoccupied states are
located at the interface and decay exponentially inside the
α-Sn region, whereas the probability density is close to zero
in the CdTe barriers. This behavior is typical for topological
edge states, if their helical spin character can be proven (see
below).

For the largest QWs studied, the corresponding wave
functions are depicted in Fig. 4(f). There is a significant change
in the localization properties of the states close to the Fermi
energy. The envelope function of the highest occupied and
the lowest unoccupied state are interchanged with respect
to the situation shown in Fig. 4(e), while the localization
of the second highest occupied state remains unchanged. This
interchange is remarkable, as it indicates an interchange in the
band ordering and, therefore, might change the topological
invariant of the whole quantum well. This issue will be
addressed including an analysis of the atomic orbital character
of the corresponding subband states in Sec. III D. It can be
concluded, that the increase of the α-Sn film thickness and the
formation of the Dirac cones is accompanied by a significant
change of the localization character of the states closest to the
Fermi level. For a definite proof of the topological origin of
the linear edge states, their spin polarization has still to be
proven.

2. Spin polarization of interface states

The local magnetization densities at � for the QW structure
with d1 = 8.8 nm (α-Sn) are depicted in Fig. 5 for the highest

FIG. 5. Local magnetization of the lowest unoccupied state (a), and the highest occupied state (b) in the vicinity of the � point in ±�X

direction of a (α-Sn)53(Te)1(CdTe)5(001) QW in the region of the interface. A view from [010] is depicted. The points (±0.01,0,0) mark the
location of the considered state in k space in units of the reciprocal lattice.
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occupied and lowest unoccupied subbands in the vicinity of
the � point in ±�X direction near one interface. For both, the
highest occupied as well as the lowest unoccupied subband,
the spin polarization is mainly perpendicular to the interface
normal and shows a rotation of π between the −X → � and
the � → X direction. This spin flip for a switch from the
direction k to −k in the 2D BZ is a consequence of the
time-reversal symmetry. This spin polarization is characteristic
for topological edge states. In combination with the linear
dispersion of the Dirac cones in Fig. 4(b) and the localization
at the interface in Fig. 4(e), this is a clear indication of the
presence of the quantum spin Hall effect.

The topological protection of those states, i.e., their
robustness against changes in the interface orientation, is
however difficult to prove. Recent ab initio investigations [21]
of α-Sn/CdTe(110) QWs revealed that in these structures
an intrinsic electric field caused by the atomic geometry
and bonding in the interface inhibits the occurrence of the
QSH phase. Nevertheless, topological surface states (TSSs) at
the α-Sn(001) surface have been demonstrated by means of
ab initio calculations [52] and angle-resolved photoemission
spectroscopy (ARPES) [59,60]. In the case of the α-Sn/CdTe
interface as well as for the α-Sn surface, the physical reason
for the occurrence of the topological states is the same. The
topological states occur at the spatial interface between the
topologically nontrival α-Sn and a topologically trivial region,
i.e., CdTe (in the case of the α-Sn/CdTe interface with thick
enough α-Sn films) and the vacuum (for the α-Sn surface),
respectively. Therefore, the existence of the TSSs in α-Sn(001)
surfaces with a totally different passivation as in the interface
case might be considered as an additional indication of the
topological protection of those states.

D. Dimensionality of topological states

The switch in the localization behavior between the highest
occupied and the lowest unoccupied state, as discussed in
Sec. III C 1, is a first indication of a level inversion and a
possible resulting change in the topology of the quantum-well
system versus thickness. In order to allow for an even more
detailed analysis of the band order inversion, the projections
of the band states onto atomic s and p orbitals are shown in
Fig. 6 depending on the QW thickness for a much larger range
of the α-Sn content than which has been discussed so far, in
particular, in Fig. 4.

For N < 53, the orbital-symmetry projections in Fig. 6(a)
show that the lowest unoccupied level is mainly formed by
s orbitals, whereas in the subband below the Fermi level at
� [Fig. 6(b)] the projections onto p orbitals dominate. The
QWs with thicknesses below d1 � 8.1 nm are trivial insulators
with a band ordering (at least with respect to the orbital
symmetries) similar to that of CdTe. For thicknesses larger
or equal to N = 57, this energetic level ordering is inverted
similar to the bulk band structure of α-Sn. The corresponding
topological transition, where the level ordering of s- and p-like
states is inverted, is found to occur between d1 = 8.1 nm
and d1 = 9.4 nm. However, test calculations also show a
weak dependence of the critical thickness of the α-Sn film,
where the level inversion takes place, on the CdTe barrier
thickness. This fact is probably a consequence of the CdTe
thickness-dependent band discontinuities and the resulting
confinement situations (see Sec. III B). From Fig. 6(c), it is
obvious, that the second highest occupied subband is formed
by atomic p orbitals, independently of the QW thickness,
and its orbital symmetry remains, hence, uninfluenced by the
topological transition. Unfortunately, neither theoretical nor
experimental values for comparison of the critical thickness in
α-Sn/CdTe QW structures have been published so far.

In the inverted regime, d1 � 8.1 nm, the studied α-Sn/CdTe
QW structures have been identified as topological insulators.
The appearing quantum spin Hall phase has been essentially
characterized by the occurrence of two-dimensional topologi-
cal interface states which are (i) localized at both α-Sn/CdTe
interfaces of each quantum well, (ii) two-dimensional, i.e.,
dependent on the wave vector in the 2D BZ of the interface,
and (iii) spin polarized. Since the α-Sn QW thickness is
relatively large, the corresponding multi-QW structures may
be interpreted as a 3D TI bulk material. The character of
the topological interface states is similar to those discussed
theoretically [52] and experimentally [59,60] for surfaces
of α-Sn crystals. Since they are topologically protected,
the chemical nature of the surface passivation, here due
to the adjacent CdTe barrier material or Te layers, should
not play a significant role. This situation is schematically
depicted in Fig. 7(a). The 2D topological interface states
have been characterized in Sec. III C. Similar results based on
ab initio supercell calculations were previously reported for
the case of HgTe/CdTe QW structures [17,20,21]. However,
an experimental proof of these interface states, for example by
means of ARPES, is very challenging because of the required
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FIG. 6. Contributions of atomic s and p orbitals to the subband states close to the Fermi level of (α-Sn)N (Te)1(CdTe)5(001) superlattices
depending on the QW size. In (a), the lowest unoccupied subband (CBM) is depicted, while (b) refers to the highest occupied subband (VBM),
and (c) shows the second highest occupied subband (VBM-1).
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FIG. 7. Schematic representation of dimensionality and localiza-
tion of the topological states in 3D multi-QW structures (a) and
finite ones (b) produced as ribbons from the geometry in (a). In
(a), one of the two-dimensional interface states located inside the
interface planes between α-Sn and CdTe in a 3D α-Sn/CdTe(001)
QW structure is highlighted exemplarily by hachures. In (b), the
one-dimensional topological edge states at the edges of a 2D Hall bar
made from a α-Sn/CdTe(001) QW structure are indicated. The spin
polarization of the edge states is indicated by the color of the arrows.
Red (blue) color may indicate spin-up (spin-down) electrons, which
counterpropagate at a given edge. In both cases, the localization of the
states is indicated by the schematic wave-function square depending
on the plane-averaged (a), and line-averaged (b) topological states,
respectively.

large escape depth of the electrons along the interface normal
or the reduced barrier thickness.

A more direct or indirect way to detect indications for the
QSH phase are transport measurements as demonstrated for
HgTe/CdHgTe QW structures [11,22]. In these experiments,
however, the dimensionality of the QW structure in the inverted
regime is reduced toward a 2D Hall bar geometry. The resulting
system has a reduced dimensionality and can, therefore, be
interpreted as a 2D topological insulator. Consequently, one-
dimensional topological edge states appear at the edges of the
multi-QW structure perpendicular to the growth direction of

the QW as schematically illustrated in Fig. 7(b). They are spin
polarized such that electrons of opposite spin counterpropagate
at the sample edges. Such one-dimensional topological edge
states have been detected in transport measurements in the sim-
ilar case of HgTe/CdTe QW structures [11,22]. It is important
to point out, that despite the fact that the underlying physical
principles are the same in both cases, two totally different
topological states are investigated in supercell calculations and
in transport experiments, respectively. The transport of carriers
in the 1D topological states is used to detect indications for
the QSH phase in the QWs which has been characterized in
Sec. III C by 2D topological interface states.

IV. SUMMARY AND CONCLUSIONS

We have presented a detailed ab initio analysis of
α-Sn/CdTe(001) quantum wells depending on the thicknesses
of both materials. The topological Z2 invariants of the
respective strained bulk materials α-Sn and CdTe, have been
computed. We found Z2(α-Sn) = 1 and Z2(CdTe) = 0. This
characterizes strained α-Sn as a 3D TI, whereas CdTe is
a trivial insulator. We have shown that due to the different
topologies of the two materials, a topological phase transition
from a trivial insulating phase into the quantum spin Hall phase
in the QW structures occurs for a critical α-Sn film thickness
between d1 = 8.1 nm and d1 = 9.4 nm. In the nontrivial
regime, the situation is similar to a series of interfaces
between two half-spaces of α-Sn and CdTe. Consequently,
the interfaces support 2D topological interface states, which
we characterized in detail concerning their localization, linear
k dispersion, and spin polarization.

Finally, we have pointed out, that the dimensionality of the
QW structure determines the dimensionality of the occurring
topological states, which is important to distinguish the 2D
interface states from the 1D topological edge states, which
have been found in transport measurements for finite QW
structures. While supercell calculations with a 3D translational
symmetry support the investigation of 2D interface states,
most experiments use 2D Hall-bar structures made of QWs
in the inverted regime. As these two-dimensional systems
are 2D topological insulators, one-dimensional topological
edge states must occur at their rim. Therefore, the theoretical
results can only be interpreted as an indirect verification of the
experimental transport findings and vice versa.
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[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[2] J. Moore, Nature (London) 464, 194 (2010).
[3] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
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