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Circular photon drag effect in bulk tellurium
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The circular photon drag effect is observed in a bulk semiconductor. The photocurrent caused by a transfer
of both translational and angular momenta of light to charge carriers is detected in tellurium in the midinfrared
frequency range. Dependencies of the photocurrent on the light polarization and on the incidence angle agree
with the symmetry analysis of the circular photon drag effect. Microscopic models of the effect are developed
for both intra- and intersubband optical absorption in the valence band of tellurium. The shift contribution to
the circular photon drag current is calculated. An observed decrease of the circular photon drag current with
the increase of the photon energy is explained by the theory for intersubband optical transitions. Theoretical
estimates of the circular photon drag current agree with the experimental data.
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I. INTRODUCTION

Circularly polarized light has an angular momentum which
can be transferred to charge carriers. The transfer of angular
momentum from light to charge particles is studied in various
fields of condensed-matter physics, in particular in semicon-
ductors and metals [1,2]. Interaction of circularly polarized
light with matter results in spin orientation of free carriers [3],
in magnetization control by light in magnetic materials [4], and
in generation of charge and spin currents in semiconductor and
ferromagnetic structures [5–7] and graphene [8–10].

The presence or absence of the light angular momentum
depends on its polarization state. However, a light wave
always carries a translational momentum. First demonstrated
by Lebedev in his classical experiment [11], light translational
momentum has been detected in semiconductors by an
electrical current. The current is generated by the transfer of
the translational momentum from light to charge carriers (see,
e.g., Refs. [12,13] and references therein). The photocurrent
generation due to this mechanism is known as the photon
drag effect. It is investigated as a fundamental phenomenon
in various media, e.g., in semiconductors [13] and dielectrics
[14], and has practical application in work of photodetectors
[13,15–17]. Now the photon drag effect is intensively being
studied in graphene for material characterization [8] and
generation of terahertz radiation [18–20], in carbon nanotubes
[21], and in thin-metal films, where the photon drag current is
enhanced in the vicinity of surface plasmon resonance [22].

An additional control over the photon drag current can be
made at simultaneous transfer of both angular and translational
momenta from light to charge carriers. There is a part of the
photon drag current which is sensitive to the light helicity and
reverses its direction on switching from right- to left-circular
polarization of light. Generation of the helicity-dependent
photon drag current is known as a circular photon drag
effect (CPDE). In contrast to the intensively studied photon
drag currents insensitive to the circular polarization, the
history of CPDE is rather short. While CPDE was discovered
theoretically in the 1980s in Refs. [23,24] and some theoretical
research was done in the next decade [25], experimentally, it

was demonstrated only in 2007 by studying quantum wells
[26,27]. Further experiments also deal exclusively with two-
dimensional systems as photonic crystal slabs [28], graphene
[29–31], metamaterials [32], and quantum-well structures
[33]. Most recently, CPDE became the focus of investigations
of two-dimensional surface states in topological insulators
[34,35] with the aim to realize optical control of spin currents
and to characterize high-frequency electron transport in these
novel materials. However, CPDE has not been observed so
far in bulk systems. The reason is that CPDE is forbidden by
symmetry in cubic crystals like III–V semiconductors, or it is
masked by other effects in those media where it is allowed. In
this work, we address the fundamental question of whether the
transfer of both angular and translational momenta is possible
in three-dimensional structures.

We report on the observation of CPDE in a bulk semicon-
ductor demonstrating that the photon drag current sensitive
to the light helicity is indeed possible in three-dimensional
systems. For this purpose we choose tellurium, which demon-
strates a few related phenomena, namely, electric-current-
induced optical activity, the linear photon drag effect, and
linear and circular photogalvanic effects [13,36]. In contrast
to the two-dimensional systems [26,27], for tellurium we can
choose a particular geometry where CPDE is not hidden by
any other effect. We show that the values of the CPDE current
are two orders of magnitude higher than in quantum well
structures.

This paper is organized as follows. In Sec. II, the
phenomenological analysis of photocurrents in tellurium is
performed. In Sec. III we present results of experimental
observation of the CPDE current. In Sec. IV, the microscopic
theory of CPDE is developed. Section V discusses the obtained
results, and Sec. VI concludes the paper.

II. DETERMINATION OF EXPERIMENTAL GEOMETRY

In order to choose a proper geometry for observation
of the CPDE current we perform the symmetry analysis
of helicity-dependent photocurrents in tellurium. The point
symmetry group of tellurium is D3. In the plane perpendicular
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FIG. 1. The experimental geometry.

to the optical axis z, there are three rotation axes C ′
2, which

form an angle of 120◦ with each other. We denote one of
them as x and also denote a perpendicular axis in the same
plane as y (see Fig. 1). We consider a radiation incident in
the plane (xz). Performing a symmetry analysis, we obtain the
photocurrent which reverses its direction under switching from
right-hand- to left-hand-polarized radiation. The density of
this photocurrent j circ proportional to the circular polarization
degree of light Pcirc is given by

j circ
z = γPcirc

qz

q
E2, (1)

j circ
x = γ̃ Pcirc

qx

q
E2 + T̃ Pcirc

q2
x

q
E2, (2)

j circ
y = T Pcirc

qxqz

q
E2. (3)

Here q and E are the radiation wave vector and electric field,
respectively, and E = |E|. The constants γ and γ̃ describe
the circular photogalvanic effect caused solely by transfer
of an angular momentum of photons to free carriers but not
accompanied by a linear momentum transfer. The longitudinal
CPDE current described by the constant T̃ is present due
to a trigonal symmetry of tellurium. The transverse CPDE
described by the constant T is caused by a nonequivalence of
the z direction and the directions in the perpendicular plane
(xy), i.e., due to uniaxiality of tellurium. This CPDE current
is odd in the incidence angle θ0.

Equations (1)–(3) demonstrate that the current j circ
y is

caused solely by the CPDE, in contrast to two other pho-
tocurrent components. Therefore in the experimental part we
focus on the photocurrent transverse to the incidence plane
(xz).

III. OBSERVATION OF CPDE

Experimental investigations were performed on a p-Te
single crystal, which is characterized at room temperature by
the concentration p = 7 × 1016 cm−3 and the hole mobility
μ = 700 cm2/(V s). The tellurium single crystal was grown
by the Czochralski method in a hydrogen atmosphere. The
samples had the form of a hexagonal prism, in which the
lateral surface was a natural facet of the crystal, and the end

faces were subjected to optical polishing. It was found that the
crystal under investigation exhibits a natural optical activity
and is levorotatory. The thickness of the sample in the direction
of the crystal optical axis z was L = 0.8 mm. To measure the
photocurrent Jy in the direction perpendicular to the incidence
plane, two contacts were located at the lateral surface of
the sample. The contacts were prepared from an alloy of
tin, bismuth, and antimony with a low melting temperature
(Sn:Bi:Sb = 50:47:3). A few samples fabricated from the same
single crystal were studied and demonstrated similar results.

We applied midinfrared radiation of a tunable Q-switched
as well as pulsed transversely excited atmosphere (TEA) CO2

lasers with an operating spectral range from 9.2 to 10.8
μm, corresponding to photon energies ranging from 114 to
135 meV [37,38]. The laser pulses had a peak power P of about
500 W (for TEA laser after attenuation), the pulse duration was
100–250 ns, and the repetition frequency was up to 160 Hz
for the Q-switch laser and near 1 Hz for the TEA laser. The
radiation power was controlled by a room-temperature photon
drag [39,40] and mercury cadmium telluride detectors. The
radiation was focused on a spot of 0.5 mm diameter, which is
much smaller than the sample sizes in the x and y directions
(8 and 7 mm, respectively). The spatial beam distribution has
an almost Gaussian profile, measured by a pyroelectric camera
[41,42]. The photocurrent was measured by means of a storage
oscilloscope.

The upper end face of the sample was illuminated by a laser
beam under incidence angle θ0, which is defined as the angle
between the wave vector of the incident radiation q0 and the z

axis. The angle θ0 shown in Fig. 1 is positive. The incidence
plane (xz) contains the crystallographic axis x, which is the
twofold rotation axis C ′

2. The laser radiation was linearly
polarized. By applying a Fresnel λ/4 rhomb we modified the
radiation polarization from linear to elliptical. The circular
polarization of the light at the Fresnel rhomb output P 0

circ was
varied from −1 (left-handed circular polarization σ−) to +1
(right-handed σ+) according to P 0

circ = sin 2ϕ, where ϕ is the
azimuth of the Fresnel rhomb.
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FIG. 2. (a) The transverse photocurrent dependence on the
Fresnel rhomb rotation angle. J circ

y ∝ sin 2ϕ and J lin
y represent the

circular and linear photocurrents, respectively. (b) The dependence
of the circular photocurrent on the incidence angle at the Fresnel
rhomb azimuth ϕ = 45◦.
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Figure 2(a) shows the typical dependence of the transverse
photocurrent Jy normalized to the laser power P on the Fresnel
rhomb azimuth under oblique incidence of the laser beam
(at θ0 = −15◦). The photocurrent at each azimuthal angle
ϕ depends linearly on the laser power P . The experimental
data are well described by the following phenomenological
expression:

Jy = C sin 2ϕ + L1 sin 4ϕ + L2, (4)

where the first term is proportional to P 0
circ and corresponds

to the “circular” photocurrent J circ
y which we are interested

in. Two other terms represent the “linear” photocurrent J lin
y

which appears under elliptically polarized excitation. The
linear photocurrent is insensitive to the radiation helicity. The
photocurrent has a substantial part dependent on the light
helicity. Figure 2(a) shows that the photocurrent has opposite
directions at excitation by right-handed (σ+) and left-handed
(σ−) polarized light.

In order to extract the current sensitive to the light helicity,
J circ

y = C sin 2ϕ, we perform analysis of the ϕ dependencies of
the transverse photocurrent Jy at various incidence angles. This
allows us to reveal the dependence of the circular photocurrent
amplitude C on θ0. It is presented in Fig. 2(b). One can see
that the circular photocurrent is mainly an odd function of θ0

with an admixture of a small even contribution.
According to the phenomenological arguments in Sec. II,

the CPDE current is an odd function of the incidence angle.
Therefore we continued our analysis studying the odd in θ0

part of J circ
y . It is defined as follows:

Jodd(θ0) = C(θ0) − C(−θ0)

2
.

The dependence of Jodd on the incidence angle is plotted in
Fig. 3. We note that the helicity-dependent current exceeds by
two orders of magnitude the current detected in quantum-well
structures [26,27]. We performed the same measurements
and analysis at three other photon energies. The obtained
dependence of |Jodd| on the photon energy is shown in the
inset in Fig. 3.
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FIG. 3. Symbols: the circular photocurrent odd in the incidence
angle θ0. The line is a fit by j (θ0) given by Eq. (10). The inset shows
the dependence of |Jodd|/P on the photon energy at θ0 = 10◦.

In order to verify that the odd in θ0 photocurent Jodd is
caused by the CPDE, it is necessary to derive the dependence
of CPDE on the incidence angle and to compare it with
the experimental data. However, it is not a trivial problem
because tellurium is a birefringent crystal. It is characterized
by two substantially different components of the dielectric
susceptibility tensor, ε⊥ = 23 and ε‖ = 36 for light polarized
perpendicular and parallel to the optical axis z, respectively. At
an oblique incidence (see Fig. 1), the light beam splits inside
the medium into ordinary (o) and extraordinary (e) beams.
The z components of the vectors cq/ω for these beams are
respectively given by

no =
√

ε⊥ − sin2 θ0, ne =
√

ε⊥ − ε⊥
ε‖

sin2 θ0. (5)

Therefore the dependence of CPDE current on θ0 is a
complicated function, in contrast to the case of quantum-well
structures, and deriving this dependence is an independent
problem.

The transverse CPDE current equation (3) can be equiva-
lently presented as

j circ
y = T qxi(ExE

∗
y − EyE

∗
x ). (6)

Since the ordinary and extraordinary beams propagate with
different velocities, the CPDE current [equation (6)] oscillates
in space along the propagation direction like other helicity-
dependent photocurrents in birefringent crystals [43]. The
period of these space oscillations is given by

d(θ0) = λ

no − ne

, (7)

where λ = 2πc/ω is the wavelength in vacuum. The current
density dependence on the coordinate z inside the sample is
the following:

j circ
y (z) = T qx cos

[
2πz

d(θ0)

]
P 0

circTps(θ0)E2
0 , (8)

where E0 is the radiation amplitude in vacuum and the
transmission coefficient is given by (see the Appendix)

Tps(θ0) = 4ne cos2 θ0

(cos θ0 + no)(ε⊥ cos θ0 + ne)
. (9)

As a result, the CPDE current density in a sample of thickness
L depends on θ0 as follows:

1

L

∫ L

0
dz j circ

y (z)

≡ j (θ0) = T
ω

c
P 0

circE
2
0Tps(θ0) sin θ0

sin [2πL/d(θ0)]

2πL/d(θ0)
.

(10)

The absolute value of the experimentally detected pho-
tocurrent |Jodd(θ0)| is proportional to the average current
density given by Eq. (10). The fit of the experimental data
by the function j (θ0) is shown by a solid line in Fig. 3.
One can see good agreement between the theory and the
experimental data. Note the importance of birefringence in our
experiment: although the angular dependence Tps(θ0) sin θ0 is
almost linear in the studied range |θ0| < 20◦, the function j (θ0)
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has a maximum at θ0 ≈ 13◦ and tends to zero at θ0 ≈ 20◦, in
agreement with experimental data. This is a clear signature of
the birefringence making the period d(θ0) comparable to the
sample thickness at moderate incidence angles.

The above analysis of the photocurrent dependencies on the
laser power, polarization state, and incidence angle confirms
the observation of CPDE.

IV. MICROSCOPIC THEORY

Now we develop a microscopic theory of CPDE in
tellurium. We derive the photon energy dependence of the
CPDE current and compare it with the experimental data.

The effective Hamiltonian of holes in the tellurium valence
band has the form [44]

H (k) = Ak2
z + Bk2

⊥ + βσzkz + �σx, (11)

where k is a hole wave vector and σz, σx are the Pauli matrices.
The valence band is split at k > 0 on two subbands with the
dispersions

E1,2(k) = Ak2
z + Bk2

⊥ ∓
√

�2 + β2k2
z , (12)

which are plotted in Fig. 4.
We calculate the CPDE constant T in Eqs. (3) and (6) for

both intrasubband and intersubband absorption in the tellurium
valence band.

A. Drude-like absorption

At low frequencies �ω � �, where � is the temperature
in energy units, light absorption is caused by intraband

CPDE current

1

2

FIG. 4. Top: The valence-band diagram of tellurium in the hole
representation. A red arrow denotes optical intrasubband transition
at low frequency, green arrows indicate a transition of the same type
with an intermediate state in the excited subband accompanied by
intersubband scattering (dashed arrow), and a blue arrow shows the
direct intersubband optical transition. Bottom: Frequency dependen-
cies of the CPDE current absolute value in three frequency ranges
corresponding to the transitions indicated in the top panel.

transitions. The CPDE current at Drude-like absorption is
found by solving the Boltzmann kinetic equation. In order
to get the CPDE photocurrent, we take into account both the
coordinate dependence of the distribution function and the
Lorentz force caused by the magnetic field B of the light
wave. In the relaxation-time approximation, the Boltzmann
equation for the distribution function f dependent on the hole
wave vector k, coordinate r , and time t has the form

∂f

∂t
+ vk · ∂f

∂ r
+ e

�
E · ∂f

∂k
+ e

�c
(vk × B) · ∂f

∂k
= −f − f̄

τ
.

(13)

Here the overbar denotes averaging over directions of k, τ is the
momentum relaxation time, and vk = �

−1∂εk/∂k is the hole
velocity, with εk ≡ E1(k) being the hole energy dispersion in
the ground valence subband. The photocurrent density is given
by

j = 2e
∑

k

vk〈f (k,r,t)〉, (14)

where the factor 2 accounts for two tellurium valleys and
angular brackets indicate averaging over both the space
coordinate and time.

Solving the Boltzmann equation by iterations in the second
order in E and in the first order in the space gradient at B = 0,
we find the first part of the CPDE current. Taking into account
both E and B in the first orders but ignoring the coordinate
dependence, we get the second part [8,29]. As a result, we
obtain the CPDE current density in the form

j circ,Drude
y = qxi(ExE

∗
y − EyE

∗
x )

× 2e3
∑

k

dτ

dεk

τ 2(−df0/dεk)

[1 + (ωτ )2]2
v2

⊥

(
v2

⊥
2

− ε⊥
ε‖

v2
z

)
.

(15)

Here f0(εk) is the Boltzmann distribution function, and v2
⊥ =

v2
x + v2

y . Deriving this expression, we have taken into account
the relation divD = 0, which yields

ε‖qzEz + ε⊥q⊥ · E⊥ = 0. (16)

B. Intersubband transitions

At photon energy larger than the intersubband gap, �ω >

2�, light absorption is caused by direct optical transitions.
The CPDE current can be calculated in this case by quantum-
mechanical methods. The analysis shows that the CPDE cur-
rent is a sum of two terms. The first, the ballistic contribution,
arises from accounting for an additional scattering process
side by side with the optical transition [24]. The second
contribution, called the shift photocurrent, is caused by shifts
of carriers in real space occurring at photon absorption [12].
We estimate the value of the CPDE current calculating the
shift contribution.

The shift photocurrent density at direct optical transitions
is given by

j inter = −2e
∑

k

2π

�
δ[E2(k + q) − E1(k) − �ω]

×{f0[E1(k)] − f0[E2(k + q)]} Im(V ∗
21∇kV21), (17)
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where V21 is a matrix element of the operator of direct optical
transitions accounting for the photon wave vector q. The wave-
function envelopes are eigenvectors of the Hamiltonian (11):
�1 = (C1,C2), �2 = (C2,−C1), where C1,2 = √

(1 ± η)/2,
η = βkz/

√
�2 + β2k2

z [44]. The direct optical transitions at
q = 0 are allowed only in the polarization E ‖ z. However,
by accounting for the photon momentum, the polarization
E⊥ ⊥ z also interacts with the carriers:

V21 = ieβ�

�ω

(
Ez√

�2 + β2k2
z

− Bqz

E⊥ · k⊥
�2 + β2k2

z

)
. (18)

It follows from this equation that the coordinate shifts of holes
in the y direction proportional to the light helicity are present
at q �= 0 [45]:

�y ∼ − Im(V ∗
21∂V21/∂ky)

|V21|2 ∼ Pcirc
Bq√

�2 + β2k2
z

. (19)

A calculation using Eq. (17) accounting for relation (16)
leads to the CPDE current in the form

j circ,inter
y = −qxi(ExE

∗
y − EyE

∗
x )

8πpe3B|β|�2
√

Aε⊥
J�5ω4

√
�ε‖

× (1 − e−�ω/�)

×
exp

{− A
4β2�

[(�ω)2 − (2�)2] + �ω−2�
2�

}
√

(�ω)2 − (2�)2
.

(20)

Here p is the hole concentration, and

J=
∫ ∞

0
dy exp

(
− y2 − �

�

)
cosh

⎛
⎝

√
�2 + β2�

A
y2

�

⎞
⎠. (21)

C. Intrasubband transitions via the excited subband

At photon energy smaller than but comparable to the gap
between the valence subbands, �ω � 2�, optical absorption
is caused by two-step transitions with an intermediate state in
the excited subband (see Fig. 4). The shift current density in
this case is given by [46]

j intra = −2e
∑
k,k′

2π

�
δ[E1(k) − E1(k′) − �ω]

×{f0[E1(k)] − f0[E1(k′)]}

× Im[W ∗(∇k + ∇k′)W ]

[E1(k) + �ω − E2(k + q)]2
, (22)

with W being a product:

W = U 12
k′,k+qV21. (23)

Here V21 is a matrix element of direct optical transitions (18)
introduced in the previous section, and U 12

k′,k+q is the matrix
element of intersubband scattering from state (2,k + q) to
state (1,k′), shown by the dashed line in Fig. 4. We assume the
scattering to be elastic. Here we account only for the resonant
term in the two-step transition matrix element which exceeds
the other nonresonant one, at �ω ≈ 2�.

Since the wave-function envelopes are independent of k⊥,
the scattering amplitude U 12

k′,k+q can depend on only the
difference k′

⊥ − k⊥. Hence, calculating the y photocurrent
component, we should differentiate in W only the optical
matrix element V21. It is given by Eq. (18); therefore the
elementary shifts coincide with those at direct intersubband
transitions. Introducing the scattering time τ̃ according to

1

τ̃
=

∑
k′

2π

�

∣∣U 12
k′,k

∣∣2
δ[E1(k) − E1(k′) − �ω] (24)

and neglecting a dependence of τ̃ on k and ω, we obtain the
photocurrent in the form

j circ,intra
y = −qxi(ExE

∗
y − EyE

∗
x )

p e3B|β|√Aε⊥
4J�2(�ω)2τ̃

√
�ε‖

× (1 − e−�ω/�)

×
∫ ∞

0
dx

exp
[−A�2

β2�
x2 + �

�
(
√

1 + x2 − 1)
]

(
√

1 + x2 − �ω/2�)2(1 + x2)3/2
.

(25)

Here J is introduced in Eq. (21).
The calculated CPDE current dependence on the light

polarization at Drude-like, inter- and intrasubband optical
transitions, Eqs. (15), (20), and (25), is in agreement with
the phenomenological theory, Eqs. (3) and (6).

V. DISCUSSION

The developed theory of CPDE allows us to describe all
experimental findings. In particular, both phenomenological
and microscopic theories yield the experimentally observed
dependence on the incidence angle [see Eq. (10) and the fit in
Fig. 3]. However, although Fig. 2(b) demonstrates that the
circular photocurrent is mainly an odd function of θ0, an
admixture of a small even contribution is present. In ideal
tellurium, an even in θ0 transverse photocurrent is forbidden
by symmetry, and its presence in the studied sample is caused
by some asymmetry in the xy plane. Indeed, the cross section
of the grown single crystal does not represent a regular
hexagon. The adjacent sides of the hexagonal cross section
had different lengths, namely, 5 and 3 mm (see Fig. 1). This
asymmetry appears in the process of growth: at the stretching
of samples, an inhomogeneous distribution of the diameter is
introduced due to pulsations of a heater. The nonideal samples
have point symmetry group C1. In this case, the even in θ0

helicity-dependent currents are allowed due to both CPDE and
the circular photogalvanic effect. A polarization-independent
contribution to the transverse photocurrent [the term L2 in
Eq. (4)] is also caused by the above-mentioned asymmetry.
Nevertheless, the dominating odd in θ0 contribution is well
described by the developed theory, which confirms observation
of the CPDE.

Due to birefringence of tellurium (see Sec. III), the light
circularly polarized in vacuum became elliptically polarized
inside the sample. The presence of linear polarization can
lead to additional photogalvanic currents caused by both the
linear photon drag and the linear photogalvanic effects. The
corresponding odd in θ0 contribution behaves as ∝ P 0

circθ
3
0 at
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small incidence angles. Our estimate shows that it does not
exceed 20% of the CPDE contribution [Eq. (3)].

The CPDE current is an even function of the constant
β (see Sec. IV). This result contrasts with the photocurrent
caused by the circular photogalvanic effect, which is linear in
β. The reason is that CPDE is insensitive to the presence of a
space inversion center and therefore is the same in levorotatory
tellurium and dextrorotatory tellurium, which are different by
the sign of constant β.

Microscopic theory also describes the measured photon
energy dependence presented in the inset in Fig. 3. The
frequency dependencies of the transverse CPDE photocurrent
for all three types of transitions considered above are shown
in Fig. 4. At �ω � � < 2�, the frequency dependence is
given by Eq. (15). This equation demonstrates that CPDE
is present due to the energy dependence of the momentum
relaxation time. Besides, it is also necessary to account for a
uniaxiality of tellurium because CPDE is forbidden in systems
with cubic symmetry. It follows from Eq. (15) that CPDE in
tellurium exists due to anisotropy of the energy spectrum and
the dielectric tensor. At ωτ � 1, the CPDE current increases
linearly with frequency, j circ,Drude

y ∝ ω. At ωτ � 1 but still
�ω � �, the current decreases as j circ,Drude

y ∝ ω−3. Both these
asymptotes coincide with the high-frequency behavior of the
CPDE current in graphene [8].

Near the direct absorption edge, �ω = 2�, the CPDE
current has a singularity corresponding to the transitions from
the states with kz = 0. It follows from Eq. (20) that above the
direct absorption edge, �ω → 2� + 0, the coefficient T in the
phenomenological equation (6) has a square-root singularity:

Tinter = −pe3B|β|√Aπε⊥
4J��5/2

√
�ε‖

1 − e−2�/�

√
�ω − 2�

. (26)

This singularity is a one-dimensional optical density of states
which arises at direct optical transitions between the valence
subbands. This van Hove singularity is not integrated because
of equal energy dependencies on the perpendicular wave vector
k⊥ in both valence subbands.

Below the direct absorption edge, the singularity at �ω →
2� − 0 follows from the contribution to the integral equation
(25) from x = 0, which yields

Tintra = −πp e3B|β|√Aε⊥
16J�5/2τ̃

√
�ε‖

1 − e−2�/�

(2� − �ω)3/2
. (27)

We see that the singularity is stronger at intraband transitions
than at interband transitions by a factor ∼�/(|2� − �ω|τ̃ ) �
1.

Experimental data demonstrate a decrease in the CPDE
current |Jodd| with photon energy (see the inset in Fig. 3).
Theoretically, we obtain a decrease in the current with
frequency at direct intersubband transitions (for �ω > 2�),
as illustrated in Fig. 4. This explains qualitatively the spectral
behavior of the CPDE current observed in experiment. The
energy gap 2� in tellurium is about 126 meV [47], which
is slightly larger than the two lowest photon energies used
in the experiment. However, the photocurrent can be caused
by direct optical transitions at all wavelengths because the
energy gap may be reduced by deformations of the studied
sample. We have estimated the CPDE current at intersubband

transitions with the help of Eqs. (10) and (26). For tellurium
at room temperature with A = 3.71 × 10−15 eV cm2, B =
3.57 × 10−15 eV cm2, β = 2.5 × 10−8 eV cm, and 2� =
126 meV [47], we obtain j/I ≈ 50 nA/W at �ω = 130 meV
and θ0 = 10◦ (I is the light intensity). This is the same order of
magnitude as that of the experimental data (see Fig. 3). Slightly
smaller values of the current (∼10 nA/W) are detected in the
experiment because not all current generated in the laser spot
area reaches the contacts. Part of the current is closed in the
nonilluminated part of the sample.

VI. CONCLUSION

In conclusion, the helicity-dependent photocurrent trans-
verse to the light incidence plane was detected in bulk tel-
lurium. The above analysis of the polarization state, incidence
angle, and photon energy dependencies of the photocurrent
confirms the observation of the CPDE. The CPDE current
is shown to be an odd function of the incidence angle.
The phenomenological model of CPDE was developed based
on symmetry arguments accounting for birefringence of
tellurium. Microscopic theory for both inter- and intrasubband
optical transitions was elaborated. The CPDE current was es-
timated by calculation of the shift contribution. The resonance
in the CPDE current frequency dependence at the threshold of
the intersubband transitions was demonstrated theoretically.
Theory yielded the same photon energy dependence and
values of the circular photocurrent as in the experiment. Due
to the high sensitivity of CPDE, tellurium can be used for
helicity-dependent photodetectors. This opens the way for
all-electric detection of a light polarization state. Finally, we
note that the CPDE current can be excited together with spin
currents in topological insulators based on tellurides, and its
study can be helpful for understanding their symmetry and
kinetic properties.
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APPENDIX : TRANSMISSION COEFFICIENT TO A
UNIAXIAL MEDIUM

The amplitude of the ordinary beam E ‖ y at the boundary
with vacuum (z = 0) is given by the Fresnel transmission
coefficient for s-polarized light:

Ey(z = 0) = 2 cos θ0

cos θ0 + no

E0y. (A1)

Here E0 is the radiation amplitude in vacuum.
Under incidence of p-polarized light, the extraordinary

beam is excited. From the Maxwell boundary conditions we
obtain the amplitude of the transmitted wave at z = 0. For its
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x component we have

Ex(z = 0) = 2ne

ne + ε⊥ cos θ0
E0x. (A2)

As a result, we have for bilinear combinations

ExEy = 4ne cos θ0

(cos θ0 + no)(ε⊥ cos θ0 + ne)
E0xE0y. (A3)

Since the circular polarization degree in vacuum P 0
circ is

defined via

i
(
E0xE

∗
0y − E0

0yE
∗
0x

) = P 0
circE

2
0 cos θ0, (A4)

the same combination for the transmitted light at the boundary
with vacuum has the form

i(ExE
∗
y − EyE

∗
x )|z=0 = TpsP

0
circE

2
0 , (A5)

with Tps given by Eq. (9).
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