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Recently, first principle-based predictions of lattice thermal conductivity κ from perturbation theory have
achieved significant success. However, it only includes three-phonon scattering due to the assumption that four-
phonon and higher-order processes are generally unimportant. Also, directly evaluating the scattering rates of four-
phonon and higher-order processes has been a long-standing challenge. In this work, however, we have developed a
formalism to explicitly determine quantum mechanical scattering probability matrices for four-phonon scattering
in the full Brillouin zone, and by mitigating the computational challenge we have directly calculated four-phonon
scattering rates. We find that four-phonon scattering rates are comparable to three-phonon scattering rates at
medium and high temperatures, and they increase quadratically with temperature. As a consequence, κ of
Lennard-Jones argon is reduced by more than 60% at 80 K when four-phonon scattering is included. Also, in less
anharmonic materials—diamond, silicon, and germanium—κ is still reduced considerably at high temperature
by four-phonon scattering by using the classical Tersoff potentials. Also, the thermal conductivity of optical
phonons is dominated by the fourth- and higher-orders phonon scattering even at low temperature.

DOI: 10.1103/PhysRevB.93.045202

I. INTRODUCTION

Thermal transport in semiconductors and dielectrics is
determined by phonon scattering processes. Intrinsic phonon-
phonon scattering includes three-phonon, four-phonon, and
higher-order phonon processes. The scattering rate τ−1,
reciprocal of phonon relaxation time τ , is essential in pre-
dicting lattice thermal conductivity κ based on the Boltzmann
transport equation (BTE) [1,2]

κz = 1

V

∑
λ

v2
z,λcλτλ, (1)

where V is the volume, λ ≡ (k,j ) specifies a phonon mode
with wave vector k and dispersion branch j , vz is phonon
group velocity projection along the transport z direction, and
cλ is phonon specific heat per mode. Starting from the third-
order anharmonic Hamiltonian and the Fermi’s golden rule
(FGR), Maradudin et al. [3,4] proposed an anharmonic lattice
dynamics (ALD) method to predict intrinsic three-phonon
scattering rates in solids. Debernardi et al. [5] performed the
ALD calculation based on density functional theory (DFT) to
obtain τλ. Recently significant advances have been achieved
by Broido et al. by combining ALD and BTE to predict κ

[2]. The ALD method based on first-principles force constants
or classical interatomic potentials have since been extensively
used [6–9]. A recent review on this topic can be found in
Ref. [10]. However, the current ALD method is limited to
evaluating three-phonon scattering rates and does not capture
four- and higher-order scatterings due to the challenge, and
hence its accuracy is limited to relatively low temperatures,
typically far from the melting point. For example, at 1000 K
the lattice thermal conductivity of Si predicted by only
considering three-phonon scattering is ∼41 W/m K [8],
which is considerably higher than the experimental value
∼30 W/m K [11].

*ruan@purdue.edu

Although the study of four-phonon scattering has a long
history, it was limited to the qualitative interpretation of the
experimental data [12,13]. Recently, Lindsay et al. examined
the phase space for the four-phonon scattering processes [14].
Turney et al. have discussed the higher-order anharmonicity
of the interatomic potential in argon, by comparing the
three-phonon scattering rates obtained by the ALD method
to the total phonon scattering rates obtained by molecular
dynamics (MD) and normal mode analysis (NMA) [6]. Sapna
and Singh [15] estimated the four-phonon scattering rates
in carbon nanotubes using an analytical model involving
approximations such as the Callaway model, the Debye model,
etc. Although NMA can predict the total scattering rates,
it cannot separate three-phonon and higher-order phonon
processes and does not provide scattering probability of each
individual scattering process [10]. Therefore, a direct and
rigorous calculation of four-phonon scattering rates in the ALD
framework is of great significance for a better understanding
of phonon transport and a more accurate prediction of κ .

In this work we derive an ALD formalism for four-phonon
scattering by extending the derivation of Maradudin et al.
[3]. Bulk argon, a strongly anharmonic material, is used as a
benchmark material to demonstrate the approach and the im-
portance of four-phonon scattering in thermal transport. This is
followed by the study of three less anharmonic materials—bulk
diamond, silicon, and germanium. The accuracy of our calcu-
lations are demonstrated by the agreement of the scattering
rates and lattice thermal conductivities between ALD (with
four-phonon scattering included) and MD. Comparison is also
made to experiment when appropriate. An agreement between
our prediction and experimental results is also presented.

II. DERIVATION OF FOUR-PHONON SCATTERING RATE

The Hamiltonian of crystals can be written as the sum-
mation of the harmonic and anharmonic parts based on
perturbation theory [3,16]

Ĥ = Ĥ0 + Ĥ3 + Ĥ4 + · · · , (2)
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FIG. 1. The sketches of four-phonon scattering processes. (a)–(c)
The splitting, redistribution, and combination processes, respectively.
Each category contains N processes (R = 0) and U processes (R �=
0).

where the harmonic part Ĥ0, first-order perturbation Ĥ3, and
second-order perturbation Ĥ4 are [3]

Ĥ0 =
∑

λ

�ωλ(a†
λaλ + 1/2), (3)

Ĥ3 =
∑
λλ1λ2

H
(3)
λλ1λ2

(
a
†
−λ + aλ

)(
a
†
−λ1

+ aλ1

)(
a
†
−λ2

+ aλ2

)
, (4)

Ĥ4 =
∑

λλ1λ2λ3

H
(4)
λλ1λ2λ3

(
a
†
−λ + aλ

)(
a
†
−λ1

+ aλ1

)

× (
a
†
−λ2

+ aλ2

)(
a
†
−λ3

+ aλ3

)
, (5)

respectively. Here a
†
λ and aλ are the creation and an-

nihilation operators with a
†
λ|nλ〉 = √

nλ + 1|nλ + 1〉 and

aλ|nλ〉 = √
nλ|nλ − 1〉, respectively. ωλ is the angular fre-

quency of the phonon mode λ. The expressions for H
(3)
λλ1λ2

and H
(4)
λλ1λ2λ3

given in Ref. [3] are

H
(3)
λλ1λ2

= �
3/2

23/2 × 6N1/2
�k+k1+k2,R

V
(3)
λλ1λ2√

ωλωλ1ωλ2

, (6)

H
(4)
λλ1λ2λ3

= �
2

22 × 24N
�k+k1+k2+k3,R

V
(4)
λλ1λ2λ3√

ωλωλ1ωλ2ωλ3

, (7)

V
(3)
λλ1λ2

=
∑

b,l1b1,l2b2

∑
αα1α2

�
αα1α2
0b,l1b1,l2b2

eλ
αbe

λ1
α1b1

e
λ2
α2b2√

m̄bm̄b1m̄b2

eik1·rl1 eik2·rl2 ,

(8)

V
(4)
λλ1λ2λ3

=
∑

b,l1b1,l2b2,l3b3

∑
αα1α2α3

�
αα1α2α3
0b,l1b1,l2b2,l3b3

× eλ
αbe

λ1
α1b1

e
λ2
α2b2

e
λ3
α3b3√

m̄bm̄b1m̄b2m̄b3

eik1·rl1 eik2·rl2 eik3·rl3 , (9)

where N is the total number of k points. R is a reciprocal lattice
vector. The Kronecker deltas �k+k1+k2,R and �k+k1+k2+k3,R
describe the momentum selection rule and have the property
that �m,n = 1 (if m = n), or 0 (if m �= n). l, b, and α label the
indexes of the unit cells, basis atoms, and (x,y,z) directions,
respectively. �

αα1α2
0b,l1b1,l2b2

and �
αα1α2α3
0b,l1b1,l2b2,l3b3

are the third- and
fourth-order force constants, respectively. e is the phonon
eigenvector. m̄b is the average atomic mass at the lattice site b.

Considering a three-phonon process λ → λ1 + λ2, for
example, the initial state is |i〉 = |nλ + 1,nλ1 ,nλ2〉 and the
final state is |f 〉 = |nλ,nλ1 + 1,nλ2 + 1〉. Based on FGR, the
transition probability from |i〉 to |f 〉 is proportional to

2π

�
|〈f |Ĥ3|i〉|2δ(Ei − Ef ) ∼ ∣∣√nλ

√
1 + nλ1

√
1 + nλ2

∣∣2∣∣H (3)
λλ1λ2

∣∣2 ∼ nλ

(
1 + nλ1

)(
1 + nλ2

)∣∣H (3)
λλ1λ2

∣∣2
. (10)

Similarly the transition probability of the process λ ← λ1 + λ2 is proportional to

2π

�
|〈i|Ĥ3|f 〉|2δ(Ei − Ef ) ∼ ∣∣√1 + nλ

√
nλ1

√
nλ2

∣∣2∣∣H (3)
λλ1λ2

∣∣2 ∼ (1 + nλ)nλ1nλ2

∣∣H (3)
λλ1λ2

∣∣2
. (11)

The time rate of the occupation number change of the mode λ due to three-phonon [3,10,16–18] and four-phonon scattering
(Fig. 1) can be written as

∂nλ

∂t

∣∣∣∣
s

= −
∑
λ1λ2

{
1

2

[
nλ

(
1 + nλ1

)(
1 + nλ2

) − (1 + nλ)nλ1nλ2

]
L− + [

nλnλ1

(
1 + nλ2

) − (1 + nλ)
(
1 + nλ1

)
nλ2

]
L+

}

−
∑

λ1λ2λ3

{
1

6

[
nλ

(
1 + nλ1

)(
1 + nλ2

)(
1 + nλ3

) − (1 + nλ)nλ1nλ2nλ3

]
L−− + 1

2

[
nλnλ1

(
1 + nλ2

)(
1 + nλ3

)

− (1 + nλ)
(
1 + nλ1

)
nλ2nλ3

]
L+− + 1

2

[
nλnλ1nλ2

(
1 + nλ3

) − (1 + nλ)
(
1 + nλ1

)(
1 + nλ2

)
nλ3

]
L++

}
. (12)

The first summation on the right-hand side represents the
three-phonon scattering rate of the mode λ, with the first
term accounting for the splitting process λ → λ1 + λ2 and the
second the combination process λ + λ1 → λ2. The physical
meaning of the first term is the difference between the transi-
tion rates of λ → λ1 + λ2 and λ ← λ1 + λ2, and thus indicates
the decay rate of nλ due to the splitting process. Similarly, the

second term illustrates the transition rate difference between
λ + λ1 → λ2 and λ + λ1 ← λ2, indicating the decay rate of nλ

due to the combination process.L± contains the information of
the intrinsic transition probability and the transition selection
rules for energy and momentum, ωλ ± ωλ1 − ωλ2 = 0 and
k ± k1 − k2 = R, with R = 0 implying the normal (N )
process and R �= 0 the Umklapp (U ) process. The second

045202-2



QUANTUM MECHANICAL PREDICTION OF FOUR-PHONON . . . PHYSICAL REVIEW B 93, 045202 (2016)

summation accounts for the four-phonon scattering of the
mode λ, with the first parentheses representing the process
λ → λ1 + λ2 + λ3, the second the process λ + λ1 → λ2 + λ3,
and the third λ + λ1 + λ2 → λ3. Similarly, L±± accounts for
the transition probabilities and the selection rules ωλ ± ωλ1 ±
ωλ2 − ωλ3 = 0 and k ± k1 ± k2 − k3 = R. The minus sign
before each scattering term indicates that the perturbation n′

λ

to the equilibrium Bose-Einstein distribution n0
λ is decreasing

with time, i.e., the phonon distribution tends to recover its
equilibrium state, due to the scattering. The factors 1/6 and
1/2 in Eq. (12) account for the sixfold count and double count
in the summation, respectively.

In the single mode relaxation time approximation (SMRTA)
[10,18], the mode λ is suddenly stimulated to an excited state

and has the occupation number

nλ = n0
λ + n′

λ, (13)

while other modes stay in equilibrium, i.e.,

nλ1 = n0
λ1

, (14)

nλ2 = n0
λ2

, (15)

nλ3 = n0
λ3

. (16)

By substituting Eqs. (13)–(16) into Eq. (12) and using the fact
that

λ → λ1 + λ2 : n0
λ

(
1 + n0

λ1

)(
1 + n0

λ2

) − (
1 + n0

λ

)
n0

λ1
n0

λ2
= 0, (17)

λ + λ1 → λ2 : n0
λn

0
λ1

(
1 + n0

λ2

) − (
1 + n0

λ

)(
1 + n0

λ1

)
n0

λ2
= 0, (18)

λ → λ1 + λ2 + λ3 : n0
λ

(
1 + n0

λ1

)(
1 + n0

λ2

)(
1 + n0

λ3

) − (
1 + n0

λ

)
n0

λ1
n0

λ2
n0

λ3
= 0, (19)

λ + λ1 → λ2 + λ3 : n0
λn

0
λ1

(
1 + n0

λ2

)(
1 + n0

λ3

) − (
1 + n0

λ

)(
1 + n0

λ1

)
n0

λ2
n0

λ3
= 0, (20)

λ + λ1 + λ2 → λ3 : n0
λn

0
λ1

n0
λ2

(
1 + n0

λ3

) − (
1 + n0

λ

)(
1 + n0

λ1

)(
1 + n0

λ2

)
n0

λ3
= 0, (21)

and the fact

λ → λ1 + λ2 :
(
1 + n0

λ1

)(
1 + n0

λ2

) − n0
λ1

n0
λ2

= n0
λ1

n0
λ2

n0
λ

= 1 + n0
λ1

+ n0
λ2

, (22)

λ + λ1 → λ2 : n0
λ1

(
1 + n0

λ2

) − (
1 + n0

λ1

)
n0

λ2
=

(
1 + n0

λ1

)
n0

λ2

n0
λ

= n0
λ1

− n0
λ2

, (23)

λ → λ1 + λ2 + λ3 :
(
1 + n0

λ1

)(
1 + n0

λ2

)(
1 + n0

λ3

) − n0
λ1

n0
λ2

n0
λ3

= n0
λ1

n0
λ2

n0
λ3

n0
λ

, (24)

λ + λ1 → λ2 + λ3 : n0
λ1

(
1 + n0

λ2

)(
1 + n0

λ3

) − (
1 + n0

λ1

)
n0

λ2
n0

λ3
=

(
1 + n0

λ1

)
n0

λ2
n0

λ3

n0
λ

, (25)

λ + λ1 + λ2 → λ3 : n0
λ1

n0
λ2

(
1 + n0

λ3

) − (
1 + n0

λ1

)(
1 + n0

λ2

)
n0

λ3
=

(
1 + n0

λ1

)(
1 + n0

λ2

)
n0

λ3

n0
λ

, (26)

Eq. (12) is reduced to

∂n′
λ

∂t

∣∣∣∣
s

= −n′
λ

∑
λ1λ2

{
1

2

(
1 + n0

λ1
+ n0

λ2

)
L− + (

n0
λ1

− n0
λ2

)
L+

}

− n′
λ

∑
λ1λ2λ3

{
1

6

n0
λ1

n0
λ2

n0
λ3

n0
λ

L−− + 1

2

(
1 + n0

λ1

)
n0

λ2
n0

λ3

n0
λ

L+− + 1

2

(
1 + n0

λ1

)(
1 + n0

λ2

)
n0

λ3

n0
λ

L++

}

= −n′
λ

(
τ−1

3,λ + τ−1
4,λ

)
, (27)

where τ−1
3,λ and τ−1

4,λ are

τ−1
3,λ =

∑
λ1λ2

{
1

2

(
1 + n0

λ1
+ n0

λ2

)
L− + (

n0
λ1

− n0
λ2

)
L+

}
, (28)

τ−1
4,λ =

∑
λ1λ2λ3

{
1

6

n0
λ1

n0
λ2

n0
λ3

n0
λ

L−− + 1

2

(
1 + n0

λ1

)
n0

λ2
n0

λ3

n0
λ

L+− + 1

2

(
1 + n0

λ1

)(
1 + n0

λ2

)
n0

λ3

n0
λ

L++

}
. (29)

Thus, the scattering rate based on the SMRTA is

τ−1
λ = τ−1

3,λ + τ−1
4,λ . (30)
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The exact solution to BTE beyond the SMRTA including
four-phonon scattering is quite complicated and thus will be
presented in our subsequent work. Since the focus of this paper
is on the importance of four-phonon scattering compared to the
three-phonon scattering, the SMRTA is enough to demonstrate
the features.

Equations (17)–(26) are derived based on the energy
conservation law. For example, Eqs. (17) and (22) are
derived by substituting the ω of the Bose-Einstein distribution
e�ω/kBT = 1 + 1/n0

λ into the energy conservation (selection
rule) ωλ = ωλ1 + ωλ2 , giving the relation 1 + 1/n0

λ = (1 +
1/n0

λ1
)(1 + 1/n0

λ2
).

The expressions for L± and L±± are given by FGR,

L± = 18 ∗ 2
2π

�

∣∣H (3)
λλ1λ2

∣∣2
δ(Ei − Ef ) (31)

= π�

4N
|V (3)

± |2�±
δ
(
ωλ ± ωλ1 − ωλ2

)
ωλωλ1ωλ2

, (32)

L±± = 96 ∗ 2
2π

�

∣∣H (4)
λλ1λ2λ3

∣∣2
δ(Ei − Ef ) (33)

= π�

4N

�

2N
|V (4)

±±|2�±±
δ
(
ωλ ± ωλ1 ± ωλ2 − ωλ3

)
ωλωλ1ωλ2ωλ3

, (34)

where V
(3)
± and V

(4)
±± are

V
(3)
± =

∑
b,l1b1,l2b2

∑
αα1α2

�
αα1α2
0b,l1b1,l2b2

eλ
αbe

±λ1
α1b1

e
−λ2
α2b2√

m̄bm̄b1m̄b2

e±ik1·rl1 e−ik2·rl2 ,

(35)

V
(4)
±± =

∑
b,l1b1,l2b2,l3b3

∑
αα1α2α3

�
αα1α2α3
0b,l1b1,l2b2,l3b3

× eλ
αbe

±λ1
α1b1

e
±λ2
α2b2

e
−λ3
α3b3√

m̄bm̄b1m̄b2m̄b3

e±ik1·rl1 e±ik2·rl2 e−ik3·rl3 . (36)

In Eq. (31), the factor 18 accounts for the topologically
equivalent pairing schemes that were explained in Ref. [3].
Analogously, the factor 96 in Eq. (33) comes from the fact that
in Fig. 5 of Ref. [3] the phonon λ can pair with any of the four
phonons at the lower vertex, and the kj ′ can pair with any four
at the upper vertex, while the three remaining phonons at lower
vertex can pair with the three remaining phonons at the upper
vertex in six ways. In both Eqs. (31) and (33), the factor 2 in
front of 2π

�
accounts for the difference between scattering rate

and self-energy linewidth. The delta function δ(E) is replaced
by δ(ω)/�. The Kronecker deltas �± and �±± are short for
�k±k1−k2,R and �k±k1±k2−k3,R, respectively.

III. MITIGATE THE COMPUTATIONAL COST

We use the central difference method to obtain the second-,
third-, and fourth-order IFCs as listed below:

�α1α2
at1,at2

= 1

(2�)2

−1,1∑
s1,s2

s1s2E
(
rα1
at1

+ s1�,rα2
at2

+ s2�
)
, (37)

�
α1α2α3
at1,at2,at3 = 1

(2�)3

−1,1∑
s1,s2,s3

s1s2s3E
(
rα1
at1

+ s1�,rα2
at2

+ s2�,r
α3
at3 + s3�

)
, (38)

�
α1α2α3α4
at1,at2,at3,at4 = 1

(2�)4

−1,1∑
s1,s2,s3,s4

s1s2s3s4E
(
rα1
at1

+ s1�,rα2
at2

+ s2�,r
α3
at3 + s3�,rα4

at4
+ s4�

)
. (39)

Here rα
at represents the α component of the equilibrium

position of the atom at . � is a small displacement. E is the
energy. In the central difference method, the energy derivatives
at the position r are obtained by the finite differences between
E(rα + �) and E(rα − �) (α = x,y,z), and thus s1 et al.
take the two values “+1” and “−1” representing the plus and
minus signs, respectively. The calculation of the mth-order
IFC requires the energies of (6Nnb)m atomic configurations.

The computational cost and the memory requirement of
fourth-order ALD calculations by Eqs. (34) and (36) are
9NNcn

2
b times of those of third order by Eqs. (32) and (35),

where nb and Nc are the total number of basis atoms in a
primitive cell and the total number of primitive cells in the
domain, respectively. To obtain the phonon scattering rate, the
computational cost needs to be reduced. In first-principles-
based three-phonon scattering calculations, the most time
consuming part is to obtain the IFCs, and symmetries were
typically employed to reduce the computational cost [19,20].
In contrast, in our classical potential-based four-phonon
scattering calculation, the biggest challenge is the scattering
matrices calculation rather than the IFCs calculation since
the phase space allows 103–104 orders larger amount of
four-phonon processes than three-phonon processes for the
k meshes studied in this work. Therefore, the essential works
are (1) to reduce the number of IFCs, which directly affects the
computational cost of each scattering matrix element of V

(3)
±

and V
(4)
±±, and (2) to reduce the dimensions of V

(3)
± and V

(4)
±± by

excluding in advance the mode combinations that do not satisfy
the momentum and energy selection rules. In the calculation of
IFCs, even if every pair of atoms is within the potential cutoff
radius, the force constant is not necessary to be counted. For
example, typically the value of a 3-IFC or 4-IFC does not
depend on the choice of the small atomic displacement �, if
the value of a IFC is found to be near 0 and strongly depend on
the displacement � (e.g., the value may vary by orders near 0
when � changes by 2 times, and it does not converge no matter
what value the � is), this IFC is considered to be negligible
compared to numerical accuracy. By testing sufficient cases
and finding out the conditions that have such infinitesimal
IFCs, one can exclude the atomic combinations that satisfy
such conditions in advance. To validate the accuracy of the
calculation after employing these optimizations, we have
compared the results of three-phonon scattering rates before
and after employing these optimizations. No difference was
found within the recorded precision for the three-phonon
scattering rates, indicating that those optimizations do not
sacrifice the calculation accuracy. These optimizations may
not be significant for three-phonon scattering calculations
since the total computation cost is relatively low, however,
they are essential for making the four-phonon calculations
practical. Even after these optimizations, the V±± matrices for
four-phonon process may still largely exceed the maximum
memory of computers. By separating the calculation into
several steps and writing/reading the data to/from files, this
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problem can be solved. Last but not least, to predict thermal
conductivity, only the phonon scattering rates in the irreducible
BZ are needed to be calculated.

For argon, the Lennard-Jones potential [21] with a cutoff
radius of 8.5 Å is used to describe the interatomic interaction.
The scattering rates are calculated on the mesh of 16 × 16 × 8
k points in the Brillouin zone. For diamond, Si, and Ge, the
Tersoff potential [22] and a 16 × 16 × 16 k mesh are used.
The details of normal mode analysis and Green-Kubo method
based on molecular dynamics are described in Appendix.

IV. RESULTS

A. Benchmark on Lennard-Jones argon: Large four-phonon
scattering rates

Taking bulk argon as a benchmark material, which has
been extensively studied [6,10,23,24], we have calculated the
spectral scattering rates τ−1

3,λ and τ−1
4,λ as shown in Figs. 2

and 3. Interestingly we found that τ−1
4,λ is comparable to τ−1

3,λ at
mid and high temperatures. To benchmark the accuracy of the
calculation, we carried out MD simulations and frequency-
domain NMA to probe the linewidth τ−1

NMA,λ of the phonon
spectral energy density, which includes the total scattering

FIG. 2. (a) The Brillouin zone for face-centered-cubic structures
(Ar, diamond, Si, and Ge). (b) Dispersion relation of Ar from � to X.
(c) τ−1

3,λ and τ−1
4,λ of the TA branch with respect to the reduced wave

vector (�-X) in argon at 20, 50, and 80 K, which are represented by
different colors. (d) τ−1

3,λ + τ−1
4,λ is compared to the linewidth τ−1

NMA,λ

predicted in frequency-domain NMA based on MD.

FIG. 3. Phonon scattering rates and thermal conductivity of
argon. (a) The τ−1

3,λ and τ−1
4,λ of the LA branch as a function of

the reduced wave vector k∗ from � to X in argon at 20, 50, and
80 K. (b) The summation of τ−1

3,λ and τ−1
4,λ is compared to the

linewidth τ−1
NMA,λ predicted in frequency-domain NMA based on

MD simulations. (c) The relative importance of the four-phonon
scattering rates τ−1

4,λ/τ−1
3,λ for the LA branch at 20, 50, and 80 K.

(d) The temperature dependencies of τ−1
3,λ ∼ T and τ−1

4,λ ∼ T 2 for
the two modes k∗ = (0.5,0,0) and k∗ = (0.625,0,0). (e) The κ

values of argon predicted from τ−1
3,λ , τ−1

3,λ + τ−1
4,λ , and τ−1

NMA,λ as a
function of temperature, with the inset showing the ratio of κ3+4/κ3.
κNMA(Q) and κNMA(C) represent that the specific heat cλ in Eq. (1) is
calculated by the quantum (Bose-Einstein) and classical (Boltzmann)
phonon distributions, respectively. The phonon dispersion used in the
calculation of κNMA is from lattice dynamics (LD) calculation, to be
consistent with the κ3 and κ3+4 calculations.

rates of all orders. It can be seen that τ−1
3,λ + τ−1

4,λ agrees well
with τ−1

NMA,λ for both the TA and LA branches throughout the
frequency and temperature range as shown in Figs. 2(d) and
3(b). In addition, the values of τ−1

3,λ and τ−1
NMA,λ agree well

with those predicted by Turney et al. [6] using ALD and the
time-domain NMA, respectively.

The reason why τ−1
4,λ is comparable to τ−1

3,λ is that although
each four-phonon process is in a higher order and thus has a
much lower scattering probability, the momentum and energy
selection rules allow a much greater number of four-phonon
processes. For instance, each phonon mode participates in
∼103–104 three-phonon processes while ∼107 four-phonon
processes for argon in a 16 × 16 × 8 k mesh. In Fig. 3(c)
we show the relative importance of four-phonon scattering
τ−1

4,λ/τ−1
3,λ with respect to the reduced wave vector. The mid-

frequency LA phonons have the highest τ−1
4,λ , since all three

types of four-phonon processes in Fig. 1 are allowed to happen.
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FIG. 4. The τ−1
3,λ (blue) and τ−1

4,λ (red) of all the resolvable modes (excluding the � point) from � to X as a function of temperature in
diamond, Si, and Ge. Each subfigure contains 32 curves. The 16 blue curves are τ−1

3,λ for eight longitudinal and eight transverse modes with the
reduced wave vectors of k∗ = (ζ/8,0,0), where ζ is an integer from 1 to 8. The 16 red curves are τ−1

4,λ for these same modes. In (b) we show
the logarithmic plots corresponding to plot (a) to demonstrate the power-law dependence of τ−1

4,λ on temperature.

Another important note is that at high temperatures τ−1
3,λ

increases linearly, whereas τ−1
4,λ quadratically with increasing

temperature [12], as shown in Fig. 3(d). These temperature
dependencies result from Eqs. (28) and (29), which roughly
indicate τ−1

3,λ ∼ n0 and τ−1
4,λ ∼ (n0)2, leading to τ−1

3,λ ∼ T and
τ−1

4,λ ∼ T 2 since n0 is proportional to T at high temperatures.
The importance of four-phonon scattering in lattice thermal

conductivity is studied by calculating κ3, κ3+4, and κNMA

based on τ−1
3,λ , τ−1

3,λ + τ−1
4,λ , and τ−1

NMA,λ, respectively. For less
computational cost, we use the isotropic assumption by taking
the phonon modes in the �-X direction to calculate the thermal
conductivity. Equation (1) is converted to the continuous form
[10] κz = 1

(2π)3

∑
j

∫
cλv

2
λ,zτλdk = 4π

3
1

(2π)3

∑
j

∫
cλv

2
λτλk

2dk

by taking the facts that
∑

k = V
(2π)3

∫
dk = V

(2π)3

∫
4πk2dk and

that the integration of |vλ,z|2 gives v2
λ/3. As shown in Fig. 3(e),

κ3+4 and κNMA agree well with each other as well as those by
Turney et al. [6]. In contrast, κ3 is considerably overpredicted
especially at high temperatures. For a clearer insight we plot
the ratio of κ3+4/κ3 as a function of temperature in the inset.
Four-phonon scattering reduces κ of argon by 35%–65% at
temperatures of 20–80 K. The results clearly demonstrate the
importance of four-phonon scattering in thermal transport in
a strongly anharmonic material or at high temperature. We
note that κNMA is based on MD simulations which follow the
classical (Boltzmann) distribution, while ALD calculations are
based on quantum (Bose-Einstein) phonon distribution. Thus,
the agreement between κ3+4 and κNMA is better at higher

temperatures where quantum physics is closer to classical
physics. For low temperatures we did not attempt to replace
the Bose-Einstein distribution in the ALD formula with the
Boltzmann distribution in order to compare with the MD
results, since this approach is not exact (see Sec. V A for
details).

B. Significant four-phonon scattering rates in diamond, Si,
and Ge at high temperatures

The importance of four-phonon scattering in less anhar-
monic materials—diamond, silicon, and germanium—is stud-
ied. As shown in Fig. 4 the general temperature dependencies
of τ−1

3,λ ∼ T and τ−1
4,λ ∼ T 2 have been observed for both

acoustic and optical phonons in all these materials. In Fig. 5 we
choose T = 300 and 1000 K to show the relative importance of
four-phonon scattering τ−1

4,λ/τ−1
3,λ as a function of the reduced

wave vector from � to X. At room temperature, τ−1
4,λ/τ−1

3,λ

for acoustic branches is roughly below 0.1, confirming less
anharmonicities in these three materials than in argon. As
T rises to 1000 K, τ−1

4,λ/τ−1
3,λ increases to 0.1–1 for most

acoustic phonons in silicon and germanium, indicating that
four-phonon scattering becomes comparable to three-phonon
scattering. In comparison with the same lattice structure,
diamond has the strongest bonding strength and the least
anharmonicity while germanium has the softest bonds and
the most anharmonicity. In Figs. 4 and 5 it is clearly seen that
four-phonon scattering is more important for more strongly
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FIG. 5. The ratio τ−1
4,λ/τ−1

3,λ with respect to the reduced wave vector
(�-X) for the TA (blue square), LA (blue circle), TO (red square), and
LO (red circle) branches at 300 and 1000 K in (a) and (b) diamond,
(c) and (d) silicon, and (e) and (f) germanium. The green dashed lines
at τ−1

4,λ/τ−1
3,λ = 10% help to guide the eye.

anharmonic materials and higher temperatures. In contrast
to acoustic phonons, optical phonons typically have much
higher four-phonon scattering rates which are comparable
to three-phonon scattering rates even at low temperatures.
The accuracy of the results has been demonstrated by the
general agreement between τ−1

3,λ + τ−1
4,λ and τ−1

NMA,λ. In Fig. 6
we compare τ−1

3,λ + τ−1
4,λ to τ−1

NMA,λ in Ge at high temperatures
of 800 and 1200 K. Reasonable agreement is found for the
acoustic phonons considering the uncertainty of MD simu-
lations. If four-phonon scattering is excluded, no agreement
can be achieved. One interesting finding is that τ−1

3,λ + τ−1
4,λ

of optical phonons is typically lower than τ−1
NMA,λ, indicating

a possibility of high five-phonon scattering rates of optical
phonons.

The lattice thermal conductivities of diamond, silicon,
and germanium are shown in Fig. 7. κ3 and κ3+4 match
well with each other at low temperatures, indicating that
four-phonon scattering is negligible. At room temperature,
κ3+4 is lower than κ3 by 1%, 8%, and 15% for diamond,
silicon, and germanium, respectively, as shown in the inset.
As the temperature increases to 1000 K, such discrepancy
grows to 15%, 25%, and 36%, respectively. The discrepancy
between a previously predicted κ3 of Si at 1000 K using
first principles [8] and the experimental value [11] is about
27%, which is consistent with our calculations. Such results
indicate that even in weakly anharmonic materials, four-

FIG. 6. The comparison between τ−1
3,λ + τ−1

4,λ (solid curves) and
τ−1

NMA,λ (dashed curves) in Ge as a function of the reduced wave
vector (�-X) at 800 K (blue) and 1200 K (red), for the TA, LA, LO,
and TO branches.

phonon scattering may play a critical role at high temperatures.
A good agreement between κ3+4 and κNMA as well as κGK(MD)

is found for silicon and germanium at high temperatures in
Fig. 7. The comparison in diamond is not done since diamond
has a high Debye temperature (∼2200 K), below which κ3+4

obtained from quantum mechanics is not comparable to κNMA

and κGK(MD) from classical MD. Since we use empirical
interatomic potentials which are approximations to the true
atomic interactions, the numbers presented here should be
understood with caution or on a semiquantitative basis.

FIG. 7. The lattice thermal conductivity κ values of diamond,
silicon, and germanium predicted from τ−1

3,λ , τ−1
3,λ + τ−1

4,λ , τ−1
NMA,λ, and

the GK method as a function of temperature, with the inset showing
the ratio κ3+4/κ3.
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FIG. 8. (a) Ar and (b) Si are taken as examples to show the percentage of U processes in three-phonon (solid curves) and four-phonon
(dashed curves) scattering. The wave vector is along �-X. The temperature is 10–80 K for argon, and 100–1200 K for Si. The temperatures
from low to high are represented by the colors from red to purple, and the corresponding curves are from bottom to top.

V. DISCUSSION

A. Issue in the Boltzmann distribution-based ALD formula

In Sec. II the ALD formulas are derived by using Bose-
Einstein distribution starting from Eq. (17). In the following
part we derive the ALD formula based on Boltzmann distribu-
tion, taking three-phonon scattering as an example. Equations
(17) and (22), or the relation λ → λ1 + λ2: 1 + 1

n0
λ

= (1 +
1

n0
λ1

)(1 + 1
n0

λ2

) become

λ → λ1 + λ2 :
1

n0
λ

= 1

n0
λ1

+ 1

n0
λ2

. (40)

Equations (18) and (23), or the relation λ + λ1 → λ2: (1 +
1
n0

λ

)(1 + 1
n0

λ1

) = 1 + 1
n0

λ2

become

λ + λ1 → λ2 :
1

n0
λ

+ 1

n0
λ1

= 1

n0
λ2

. (41)

By substituting Eqs. (13)–(16) into Eq. (12) by using the
relations in Eqs. (40) and (41), we obtain

∂n′
λ

∂t

∣∣∣∣
s

= −
∑
λ1λ2

{
1

2

[(
1 + n0

λ1
+ n0

λ2

)
n′

λ + n0
λ

]
L−

+ [(
n0

λ1
− n0

λ2

)
n′

λ − n0
λ2

]
L+

}
. (42)

This equation is found to contain two additional constant terms
+n0

λ and −n0
λ2

in the brackets, compared to Eq. (27) based
on the Bose-Einstein distribution. The constant terms lead
the decay of the perturbation n′

λ to be not exponential, and
thus the exact relaxation time cannot be well defined, unless
the two terms can be neglected or can cancel off with each
other during the summation over λ1,λ2. However, we have
found that they are not negligible. Also, the cancellation is
not guaranteed. For example, if λ is an optical phonon near
� point, the right-hand side of Eq. (42) only contains the first
half (the splitting process).

Therefore, it is not an exact approach to directly em-
ploy Boltzmann occupation number in the Bose-Einstein
distribution-based ALD formula to capture the classical effect.
The Boltzmann distribution-based ALD formula cannot well
define the phonon relaxation time.

B. Role of normal process

For some materials an appropriate handling of U and
N processes is important for the prediction of κ [25]. For
example, when N processes dominate, the scattering does not
introduce thermal resistance directly, and an exact solution
to the linearized BTE is required beyond the SMRTA [2,25].
Such physics has been found to be important in three-phonon
scattering in graphene [26] where τ−1

U % is very low. In this
work, however, the SMRTA is still valid for the phonon
transport in argon, silicon, and germanium since τ−1

U %,
especially for acoustic phonons which dominate lattice thermal
conductivity, is not low for either three-phonon scattering [27]
or four-phonon scattering. The latter is found to have a τ−1

U %
that increases monotonically with increasing temperature and
wave vector, as shown in Fig. 8, where we show the percentage
τ−1
U % of the Umklapp scattering rates of the total scattering

rates for three-phonon processes τ−1
3,λ,U /τ−1

3,λ , and four-phonon
processes τ−1

4,λ,U /τ−1
4,λ . For both acoustic and optical phonons,

τ−1
U % in three- and four-phonon scattering increases mono-

tonically with increasing temperature. For acoustic phonons,
three- and four-phonon processes have similar τ−1

U %; whereas
for optical branches, four-phonon scattering has much higher
τ−1
U % than three-phonon scattering.

C. Negligible three-phonon to the second order

We note that two three-phonon processes: λ1 + λ2 → λ′
and λ′ → λ3 + λ4 may be combined to give the three-phonon
scattering to the second order, which is another type of
fourth-order process [16], as shown in Fig. 9(b). Here λ′ is
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Intrinsic 4-phonon 3-phonon to the 2nd order 

(a) (b)

FIG. 9. The diagram examples for the comparison between (a) the
intrinsic four-phonon scattering and (b) the three-phonon scattering
to the second order.

an intermediate virtual state. The energy is conserved from the
initial state λ1 + λ2 to the final state λ3 + λ4, while the energy
is not necessarily conserved in the first step or in the second
step alone [16]. The energy denominators of three-phonon
scattering

〈i|Ĥ3|f 〉
|Ei − Ef | (43)

and four-phonon scattering

〈i|Ĥ4|f 〉
|Ei − Ef | (44)

vanish due to the energy conservation law Ei = Ef . Here
|i〉 and |f 〉 represent the initial and final states, respectively.
For example in three-phonon scattering λ1 + λ2 → λ3, |i〉
represents the state |nλ1 + 1,nλ2 + 1,nλ3〉, and |f 〉 represents
the state |nλ1 ,nλ2 ,nλ3 + 1〉. In contrast to Eqs. (43) and (44),
the transition matrix element in the combined three-phonon
process is

〈i|Ĥ3|vir〉〈vir|Ĥ3|f 〉
|Ei − Evir| . (45)

The discussion of the denominator in Eq. (45) can be divided
into two cases. In case 1 the energy is not conserved in the
first or the second step [16]. The energy denominators for
the transition are not small. Therefore, the transition rate is
considered to be not large as discussed in Ref. [28]. In case
2 the energy conservation condition for the first step is nearly
satisfied or satisfied. This process was named as “the resonance
in three-phonon scattering” and discussed by Carruthers [28].
In this case, although the scattering is in the same order with
the intrinsic four-phonon scattering, the number of scattering
events that satisfy the energy and momentum selection rule is
only 10−3–10−5 of that in the intrinsic four-phonon scattering
in our study. This is because the resonant three-phonon
scattering has a strong requirement that the intermediate state
has to be an existing phonon mode in the k mesh, while the
intrinsic four-phonon scattering has no such requirement. For
example, for Si with a 16 × 16 × 16 k mesh and the energy
conservation tolerant range as 1.24 meV (0.3 THz), the TA
mode at k∗ = (0.5,0,0) has 4.6 × 107 intrinsic four-phonon
events, and only 2.7 × 104 resonant three-phonon events. For
the TA mode at k∗ = (0.625,0,0), the number of intrinsic
four-phonon events is similarly about 4.6 × 107, while the
number of resonant three-phonon events is only 36. Therefore,
the overall three phonon to the second-order scattering rate is
negligible compared to the intrinsic four-phonon scattering and

thus is not considered in our work. Nevertheless, it is definitely
worth a quantitative study in the future.

VI. CONCLUSIONS

To conclude, a rigorous and direct method to calculate
four-phonon scattering rates τ−1

4,λ within the ALD framework
has been developed. We have obtained τ−1

4,λ by explicitly
determining quantum mechanical scattering probability ma-
trices for the full Brillouin zone. By investigating the bulk
argon, diamond, silicon, and germanium, we have found the
key features of four-phonon scattering: (1) τ−1

4,λ increases
quadratically with temperature, one order higher than τ−1

3,λ ,
(2) τ−1

4,λ is more important in more strongly anharmonic
bulk materials, (3) for optical phonons, the fourth- and
higher-order phonon scattering is much more important than
three-phonon scattering even at low temperature, such finding
could be also important in the studies of optical properties,
electron-phonon coupling, photovoltaics, etc. [29], (4) the
relative ratio of Umklapp scattering rate in the four-phonon
process is generally comparable or even larger than that in
the three-phonon process, and (5) the three phonon to the
second order is negligible compared to four-phonon process,
although they are in the same perturbation order. Particularly,
τ−1

4,λ can reduce the thermal conductivity of Si by ∼25% at
1000 K. Existing practice of ALD is limited to three-phonon
scattering so the accuracy is only guaranteed for relatively low
temperature. Now by including τ−1

4,λ with our approach, ALD
will be applicable for both low and high temperatures.
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APPENDIX: NORMAL MODE ANALYSIS
AND GREEN-KUBO METHOD BASED

ON MOLECULAR DYNAMICS

The linewidth τ−1
NMA,λ is obtained by performing the

following NMA [10,30–32] based on MD simulations:

q̇λ(t) =
3∑
α

nb∑
b

Nc∑
l

√
mb

Nc

u̇l,b
α (t)eλ∗

b,α exp
[
ik · rl

0

]
, (A1)

Eλ(ω) = |F[q̇λ(t)]|2 = Cλ(
ω − ωA

λ

)2 + (
τ−1

NMA,λ

)2
/4

. (A2)

Here u̇l,b
α (t) is the αth component of the time dependent

velocity of the bth basis atom in the lth unit cell, e is the phonon
eigenvector, and r0 is the equilibrium position. F denotes the
Fourier transformation. The spectral energy density Eλ(ω) of
the phonon mode λ is obtained by substituting u̇l,b

α (t) extracted
from MD trajectory into Eq. (A2), where Cλ is a constant for a
given λ. By fitting the spectral energy density as a Lorentzian
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function, the peak position ωA
λ and full linewidth τ−1

NMA,λ at
half maximum are obtained. Our former work [32] has shown
that Eqs. (A1) and (A2) are equivalent to another version
of frequency-domain NMA that does not include phonon
eigenvectors [33,34]

�(k,ω) =
3nb∑
j

Eλ(ω) = 1

4πt0

3∑
α

nb∑
b

mb

Nc

×
∣∣∣∣∣

Nc∑
l

∫ t0

0
u̇l,b

α (t) exp
(
ik · rl

0 − iωt
)
dt

∣∣∣∣∣
2

. (A3)

A full discussion about the methods of predicting phonon
relaxation time was given in Ref. [10]. The simulation
domains for those materials studied in our work are 8 × 8 × 8
conventional cells (2048 atoms for Ar, and 4096 atoms for Si
and Ge). Nine k points with the reduced wave vector being
k∗ = (ζ/8,0,0) are resolved from � to X in the BZ, where ζ

is an integer from 0 to 8.

In the Green-Kubo method [35], the thermal conductivity
is given by

κz = 1

kBT 2V

∫ ∞

0
〈Sz(t)Sz(0)〉dt, (A4)

where z denotes the transport direction, V is the simulation
domain volume, and Sz represents the heat current in the
z direction. The time step interval and total simulation time are
set as 0.5 fs and 5 ns, respectively. The autocorrelation length
is set as 500 ps, which is long enough to obtain converged
heat current autocorrelation functions (HCACF) for argon,
Si, and Ge since most phonon relaxation times are far below
500 ps at the temperatures studied. The NMA and the GK-MD
method are both based on equilibrium MD which has much less
size effect than nonequilibrium MD. Our GK-MD simulations
show that typically 8 × 8 × 8 cells are large enough to get a
converged thermal conductivity of those bulk materials at the
temperatures studied.
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