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We study the Rényi entanglement entropy and the Shannon mutual information for a class of spin-1/2 quantum
critical XXZ chains with random coupling constants which are partially correlated. In the XX case, distinctly
from the usual uncorrelated random case where the system is governed by an infinite-disorder fixed point, the
correlated-disorder chain is governed by finite-disorder fixed points. Surprisingly, we verify that, although the
system is not conformally invariant, the leading behavior of the Rényi entanglement entropies are similar to
those of the clean (no randomness) conformally invariant system. In addition, we compute the Shannon mutual
information among subsystems of our correlated-disorder quantum chain and verify the same leading behavior
as the n = 2 Rényi entanglement entropy. This result extends a recent conjecture concerning the same universal
behavior of these quantities for conformally invariant quantum chains. For the generic spin-1/2 quantum critical
XXZ case, the true asymptotic regime is identical to that in the uncorrelated disorder case. However, these
finite-disorder fixed points govern the low-energy physics up to a very long crossover length scale, and the
same results as in the XX case apply. Our results are based on exact numerical calculations and on a numerical
strong-disorder renormalization group.
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I. INTRODUCTION

The entanglement entropy has been proven as an important
tool to study and classify statistical mechanics and condensed
matter systems. For pure state systems, the most used measure
of the entanglement between two complementary regions A
and B is the so-called Rényi entanglement entropy

Sn(A,B) = 1

1 − n
ln Tr ρn

A, (1)

with ρA = TrB ρ being the reduced density matrix of subsys-
tem A. For n → 1, it recovers the von Neumann entanglement
entropy S1 = SvN = − Tr ρA ln ρA.

In the arena of one-dimensional conformally invariant
quantum systems, such measure allows us to identify the
various distinct universality classes of critical behavior [1,2]. It
is now understood that the ground state entanglement entropy
reads [3,4]

Sn(x,L) = c

6

(
1 + 1

n

)
ln f CFT

L (x) + κ1 + (−1)xκ2

[fL(x)])φ/n
+ · · · ,

(2)
where c is the universal central charge of the underlying
conformal field theory (CFT), L is the system size (here, we
consider periodic boundary conditions), 1 � x � L/2 is the
size of the subsystem A, f CFT

L (x) = L
π

sin (πx
L

) is the scaling
function (which equals the chord length), κ1,2 are nonuniversal
constants, and φ is related to the scaling dimension of the
energy operator. For n = 1 or for systems without a Fermi
surface, κ2 = 0.

However, there is no simple way of accessing the Rényi
entanglement entropy directly from experimental measure-
ments. It is then desirable to study other information measures
that can be, in principle, directly observed in experiments,
and, like Sn, enable us to determine the critical universality
class of the system. Recently, the Shannon mutual information
was proposed as one such information measure [5,6]. It is

defined as

I (A,B) = Sh(A) + Sh(B) − Sh(A ∪ B), (3)

where Sh(A) = −∑
m pm ln pm is the usual Shannon entropy,

with pm being the probability of finding the subsystem A
in a configuration m obtained from the normalized wave
function |ψA∪B〉 = ∑

m,n cm,n|φA〉m ⊗ |φB〉n, namely pm =∑
n |cm,n|2. In general the Shannon entropy is a basis-

dependent quantity. However, it was conjectured that I (A,B),
in some special bases, shares the same leading asymptotic
behavior as S2 given by Eq. (2). This result was verified
numerically for several quantum chains in distinct universality
classes.1

The entanglement properties of quantum critical random
(quenched disordered) systems are much less understood. All
our knowledge is related to random spin chains governed by
exotic infinite-randomness fixed point (IRFP) [8,9]. Since the
ground state of these fixed points can be understood as a col-
lection of nearly independent spin clusters arranged in a fractal
fashion, it can be easily shown that Sn ∼ γ ln f IRFP

L (x), with
γ = ln 2 being a universal n-independent constant [10–20]
in contrast to the clean system [see Eq. (2)]. This under-
standing stems exclusively from the analytical tool of the
strong-disorder renormalization-group (SDRG) method [21–
23] which can be used to compute Sn [10,14]. More recently,
the scaling function f IRFP

L (x) have been studied and shown to
differ from the chord length [17], namely

f IRFP
L (x) ≈ L

π

[
sin

(πx

L

)
− 0.153 sin3

(πx

L

)]
. (4)

The entanglement properties of quantum critical random
systems governed by conventional finite-disorder fixed points

1In the case of the quantum Ising chain, criticisms can be found in
Ref. [7].
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are much less known. A possible reason is due to the lack
of simple analytical and numerical tools for handling them.
Examples of such systems are frustrated spin ladders or
quantum spin chains with random ferro- and antiferromagnetic
interactions which are of great interest from the experimental
[24–26] and theoretical [27–30] points of view. However, even
though a strong-disorder renormalization-group description of
these systems is possible, unlike the infinite-disorder case, the
entanglement entropy Sn cannot be computed in a simple way.

Apparently, the only known system governed by a finite-
disorder fixed point whose entanglement properties were
studied, namely the von Neumann entropy S1, is the quantum
Ising chain with correlated disorder [31]. In this special case it
is understood that disorder correlation prevents the generation
of random mass, yielding thus a perturbatively irrelevant
disorder [32]. Further increase of the disorder strength, beyond
the perturbative limit, drives the system towards a line of
finite-disorder critical fixed points. Interestingly, along this
line, the ground state entanglement entropy increases.

In this paper we report an extensive study of Rényi
entanglement entropy Sn(x,L) and of the Shannon mutual
information I (x,L) for the critical XX spin chain (which is
equivalent to a doubled quantum Ising chain at criticality)
with correlated disorder. We show that Sn exhibts the same
leading finite-size scaling function f CFT

L as in (2) with a
different prefactor (effective central charge), in contrast to the
infinite-randomness case (4). In addition, our results indicate
that the Shannon mutual information I (x,L) shares the same
asymptotic behavior as S2, as conjectured for the conformally
invariant clean system. Furthermore, we show that these
features are not exclusive particularities of the noninteracting
XX model but are also present in the critical phase of the XXZ
spin-1/2 chain below a relatively large crossover length.

The remainder of this article is organized as follows. In
Sec. II we introduce the model and the numerical methods
used. In Sec. III we compute the dynamical critical exponent,
that indicates the presence of a line of finite-disorder fixed
points. The entanglement measures Sn and I are computed
in Sec. IV, and their dependence on the disorder strength
and anisotropy is analyzed in detail. Our SDRG study is
reported in Sec. V, where we derive the renormalization-group
procedure and explain its numerical implementation for very
large chains. Conclusions and final remarks are given in
Sec. VI. For completeness, in Appendices A and B we compute
the entanglement measures for random singlet states, and our
SDRG decimation rules, respectively.

II. THE MODEL AND METHODS

We are interested in the ground state entanglement prop-
erties of the XXZ spin-1/2 chain given by the Hamiltonian

H =
L∑

i=1

Ji

(
Sx

i Sx
i+1 + Sz

i S
z
i+1 + �Sz

i S
z
i+1

)
, (5)

where Si are spin-1/2 operators. The lattice size is L (even)
and we consider periodic boundary conditions SL+1 = S1.
The anisotropy � is site independent and we constrain our
analysis to −1 < � � 1, a region where the clean model

is critical and conformally invariant. Quenched disorder is
implemented via the coupling constants Ji , which are drawn
from the distributions

P (J ) = 1

D	I

(
	I

J

)1−1/D

, with 0 < J < 	I . (6)

Here, the disorder strength is parametrized by D and 	I sets
the energy scale. Correlation among the disorder variables is
implemented as follows. All odd-numbered coupling constants
are independent random variables drawn from Eq. (6). The
even-numbered couplings, however, are equal to the odd
one to their left, i.e., J2i = J2i−1. In this way, the sequence
of couplings in our random correlated spin chain reads
J1,J1,J3,J3, . . . ,JL−1,JL−1.

As shown in Ref. [32], for weak disorder D � Dc ≈ 0.3
and for the XX model (� = 0), the system is governed by the
clean critical point. For larger disorder values D > Dc, a line
of finite-disorder fixed points is accessed. This contrasts with
the uncorrelated case (Ji are independent random variables
∀i), where disorder is perturbatively relevant and drives the
system to a random singlet state described by a univer-
sal renormalization-group fixed point of infinite-randomness
nature [8].

The essence of this difference is the absence of a random
mass in the former case. For � = 0, the energy mass gap is
given by a function of the ratio between the products of even-
and odd-numbered couplings [33]: m ∼ ∑L/2

i=1 ln(J2i/J2i+1).
Therefore, it is reasonable to define mx = ln Jodd − ln Jeven

(where · · · means the average over a coarse-grained region x)
as a measure of the local distance from criticality, i.e., the local
mass. This is the argument used in Ref. [32] to ensure that the
effective action of the system does not contain a random mass
term. In the generic case � 
= 0, the dependence of mass gap
m on the random couplings Ji is not known. Presumably, it
depends on the anisotropy � and will not be given just by
a simple ratio among products of Ji . We then expect that the
disorder couples to the mass term, and therefore the true ground
state should be a random singlet just like in the uncorrelated
disorder case. As we will see below, however, the random
mass term seems to be quite small, and its effects are only
seen at very low energy scales (very large chains). Hence, the
physics of the quenched disordered quantum XXZ spin-1/2
chain without random mass can be studied in the preasymptotic
regime of smaller chains.

The model in Eq. (5) is studied via two complementary
methods: exact diagonalization (see Secs. III and IV) and
strong-disorder renormalization group (see Sec. V).

In the case � = 0, a map to free fermions enables us to
exactly diagonalize the system for quite large sizes. For � 
= 0,
we use the power method to evaluate the low-lying states up
to system sizes L = 22. Since the fixed points are of finite-
disorder nature, the statistical fluctuations are much weaker as
compared to those of the infinite-disorder fixed point. Then,
disorder averaging over N = 103 samples is sufficient for a
reasonable accuracy in most of the cases.

When we use the SDRG method, the anisotropy values
� = 0 and � 
= 0 can be treated on an equal footing and
chains of sizes L = 106 and 107 can be easily reached.
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FIG. 1. Finite-size gap �E for various system sizes L =
4,6,8, . . . ,22, for the cases of disorder strength D = 0.5 (blue
squares) and 2.0 (black circles) and anisotropy � = 0.5. The lines
are the best linear fits, and the corresponding estimated values of z

are also shown.

III. THE DYNAMICAL CRITICAL EXPONENT

In this section we compute the dynamical critical exponent
z obtained from the leading behavior of the finite-size energy
gap

�E ∼ L−z, (7)

which is plotted in Fig. 1 for the anisotropy � = 1/2 and the
disorder strengths D = 0.5 and 2. The continuous lines in the
figure are the best fits for z.

It is important to remark that there is no crossover length
ξ , in contrast with the uncorrelated disorder case. In the latter
case, the true infinite-randomness fixed point is reached only
when L exceeds a disorder-dependent crossover length ξ .
Below this length, the clean fixed point governs the system.
Differently from Fig. 1, we would get a dynamical critical
exponent z = 1 for L � ξ that crosses over to z → ∞ for L �
ξ . This crossover phenomena is observed in many quantities
for the case of uncorrelated disorder [14,34]. However, in the
case of correlated disorder, such crossover behavior is absent.

The critical exponent z is plotted in Fig. 2 for various
disorder strengths D and anisotropies �. As can be noticed,
for D < Dc(�) the exponent z is approximately given by the
clean theory value zclean = 1. We also verified that other critical
exponents for D < Dc are equal to the clean ones, i.e., for
D < Dc the system is in the same universality class as the clean
model. Interestingly, Dc(�) ≈ 0.3 seems to be � independent.
We believe that this is indeed the case.

As can be guessed from Figs. 1 and 2, due to the available
small system sizes, finite-size corrections to the scaling of
Eq. (7) are not negligible. We expect �E ∼ L−z(1 + AL−ω),
where the constants A and the exponent ω (which were not
calculated) take care of the leading correction to scaling. In
order to better see them, we plot in Fig. 3 the exponent z

for the anisotropy � = 0, since bigger lattice sizes can be
reached. The results for large chains (L = 215) are reproduced
from Ref. [32] and the finite-size effects are negligible. The
inset shows the finite-size gaps for many system sizes up to
L = 103. For disorder strength D = 2 and 3 it becomes clear
that corrections to scaling exist for smaller chains.
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FIG. 2. Dynamical exponent z as a function of the disorder
strength D for several anisotropy parameter �. The results were
obtained from the fit of the finite-size gap as in Fig. 1. The estimated
error bars are of the order of the symbol sizes and the lines are guides
to the eyes.

Notice that, for � � 0, our results strongly suggest that
z is � independent (see Fig. 2). For � < 0, we see a small
dependence. However, due to the strong finite-size effects, we
cannot exclude the possibility of z also being � independent
for those negative values.

As we shall see in Secs. IV and V, the entanglement proper-
ties and the SDRG analysis also suggest this � independence.

IV. THE RÉNYI ENTANGLEMENT ENTROPIES AND
THE SHANNON MUTUAL INFORMATION

In this section we numerically compute the Rényi entan-
glement entropy Sn(x,L) and the Shannon mutual information
I (x,L) of subsystems of size x of an L-site XXZ quantum
chain. We restrict ourselves to the density matrix formed by
the ground state eigenfunction.

0 0.3 0.6 0.9 1.2 1.5
Disorder strength D

0.5

0.75

1

1.25

1.5

1.75

2

D
yn

am
ic

al
 e

xp
on

en
t z

FIG. 3. Comparison of the dynamical critical exponent for the
� = 0 case computed by exact diagonalizations of small chains
(L< 22), of very large chains (L = 215), and via the SDRG method
(L= 106). Inset: The finite-size gap for different system sizes where
the corrections to scaling are clear. Error bars are about the same size
as symbols.
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FIG. 4. Entanglement measures for the correlated disordered
XXZ quantum spin chain with (a) anisotropy � = 0.5 and disorder
D = 2.5 and for (b) anisotropy � = 0 and disorder D = 2.0 for
several indices n and lattice sizes L. Entanglement is measured by
the Rényi entanglement entropy Sn (n = 1, 2, and 3) and by the
Shannon mutual information I . Data are averaged over 103 disorder
realizations and the lines are guides to the eyes.

We verify that for D < Dc these quantities show the same
asymptotic behavior as occurs in the clean model [see Eq. (2)].
This is not a surprise since, as discussed in Sec. III, they share
the same critical universality class.

Surprisingly, even for D > Dc the finite-size scaling be-
haviors of Sn(x,L) and I (x,L) are the same as in the clean
system. The difference is only in the prefactor “effective
central charge.”2 This is illustrated in Fig. 4, where we plot
Sn(x,L) for two values of anisotropies and disorder strengths:
� = 1/2 and D = 2.5 [panel (a)] and � = 0 and D = 2.0
[panel (b)]. Several values of n and length sizes L are shown
in the same plot. As can be clearly seen, apart from small
oscillations in Sn>1, all data seems to collapse in a single
universal curve. This means that Sn(x,L) and I (x,L) share the
same asymptotic finite-size scaling function as the conformally
invariant quantum chains [see Eq. (2)], although there is no
conformal invariance for those random systems.

2Strictly speaking, the central charge is only defined for systems in
which z = 1. Nevertheless, the effective central charge ceff , similarly
to what happens in conformally invariant quantum chains, measures
the effective size (∼xceff

) of the entangled Hilbert space of the reduced
subsystem of size x.

The straight solid line is the linear fit for 4 � x � L/2,
from which we extract the effective central charge c values:
1.32 and 1.40, for D = 2.5, � = 0.5 and D = 2.0, � = 0,
respectively.

Interestingly, the Shannon mutual information I in Fig. 4(a)
has the same asymptotic behavior of Sn=2.

The Shannon entropy Sh(x,L) and consequently the mutual
information I (x,L) are, in general, basis-dependent quantities
in contrast with the Rényi entanglement entropy which is
basis independent. In Fig. 4(a) we computed I (x,L) in the Sz

basis. Universal behavior for I (x,L) in conformally invariant
systems happens only when the ground state is expressed in
the so-called conformal basis that corresponds in the case of
the clean XXZ model to the Sz and Sx bases [6]. Although
we did not compute I (x,L) for our correlated random system
using the Sx basis, we do not expect any different behavior in
this basis.

It is worth mentioning that I (x,L) does not display the
oscillatory parity effect of S2(x,L), which implies they are
indeed different quantities with different subleading terms.

Finally, the fact that we have a straight line even for small
subsystem sizes is in contrast to the uncorrelated case, where
there is a crossover subsystem size ξ separating the behaviors
of the clean and disordered systems. This is in agreement with
the absence of a crossover length in the correlated disorder
case as seen in Sec. III.

In the remainder of this Section, we further explore two
other aspects of our numerical results: (i) the prefactor ceff

D (1 +
1/n)/6 and ceff

D /4 of the leading terms of Sn and I , respectively,
and (ii) the functional dependence of the scaling function with
the chord length L

π
sin πx

L
.

For spin chains governed by infinite-randomness fixed
points, it is easy to show that the Rényi entanglement entropy
Sn ∼ 1

3ceff
IRFP ln x for any n and 1 � x � L; i.e., the numerical

prefactor ceff
IRFP does not depend on n (see Appendix A). The

fact that our spin chains with correlated disorder do not follow
this prediction is another indication that the ground state is
not a collection of “random singlets.” As already discussed,
our numerical results indicate that the leading term has the
same dependence on n as conformally invariant systems. In
order to check the dependence of ceff

D with � we plot in Fig. 5
ceff
D as a function of D for various values of � and for the

lattice sizes L = 14, 16, 18, and 20. The data are averaged
over 103 disorder realizations. Analogously to what happens
with the critical dynamical exponent z, the effective central
charge exhibits quite small variations with the anisotropy �.
Since we used only relatively small lattice sizes, and we notice
the strong statistical fluctuations (especially for higher D), it is
then plausible to expect that ceff

D does not depend on �, being
only a function of D.

The chord length is another hallmark of finite-size scaling
functions of conformally invariant systems. It is intriguing that
our numerical results are consistent with a scaling function that
is also the chord length f CFT

L (x) = L
π

sin (π
L
x). Since this may

inspire new analytical insights in those correlated disorder
systems, we are now going to verify this statement with higher
precision in the case of the Rényi entanglement entropy. We
are restricted to the � = 0 case since we can deal with quite
long chains, via a mapping to a free fermion system. In these
long chains, we neglect the subleading terms in Eq. (2). In
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FIG. 5. The effective central charge as a function of disorder
strength D obtained from the von Neumann entanglement entropy SvN

and from the Shannon mutual information I for various anisotropies
�. For � 
= 0, these values are effective ones due to the system
finite size. For extremely large systems, these values cross over to
ceff

IRFP = ln 2 (see Sec. V).

Fig. 6, we plot

L

π
f D

L (x) = exp

(
6

Sn(x,L) − Sn(L/2,L)

ceff
D (1 + 1/n)

)
(8)

as a function of πx
L

, for n = 1 and n = 2 and lattice size
L = 210. The data are averaged over 145 000 disorder real-
izations. We observe a clear agreement with the sine function
(continuous green line) sin ( πx

L
), implying the leading chord

length f CFT
L dependence for the finite-size scaling functions in

our correlated random systems.
In the inset, we zoom in on the region where the curves

most largely disagree. Close inspection indicates that the
tiny deviations from sin(πx/L) are due to the imprecision
(although small) of the effective central charge value ceff

D =
1.207(5). This may be attributed to the systematic error
induced by the nonleading terms in Eq. (2). We also tried to fit
the data using other trial functions compatible with the sym-
metry of Sn, namely, f1 = sin(πx/L) + A sin3(πx/L) and
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FIG. 6. The scaling function f D
L (x) measured by using the Rényi

entropies S1 and S2 [see Eq. (8)] for chains of anisotropy � = 0 and
lattice size L = 210 averaged over 145 000 samples.

f2 = sin(πx/L) + B sin(3πx/L). The best fit gives (A,B) =
(−1.2, − 1.1) × 10−3 and (−1.5, − 1.3) × 10−3 for n = 1
and 2, respectively, which can be taken as zero within our
numerical accuracy. Thus, the chord length is likely the scaling
function of Sn.

Moreover, as usually happens in conformally invariant
systems, we would like to verify if this same scaling function
f CFT

L also gives the leading behavior for other quantities
such as the average transversal spin-spin correlation function
Czz(x,L) = 〈Sz

i S
z
i+x〉.

In order to show this, we recall that, to leading order,

Czz(x,L) = −[Lg(x/L)]−ηz ,

for x odd. For x even, Czz = 0. Here, g(z) is a positive periodic
function of unity period and g(z + 1/2) = g(1/2 − z); and ηz

is the leading decay exponent. Indeed, for the clean system, it
is well known [35] that

Czz(x,L) = −(
πf CFT

L (x)
)−2

,

i.e., the decay exponent ηz = 2 and the periodic function is
a simple sine. The same universal exponent ηz = 2 happens
in the uncorrelated disorder case [14] Czz ∼ −1/(12x2) for
1 � x � L. Unfortunately, the function g(z) is unknown in
this case.

We plot in Fig. 7 Czz(x,L) × (f CFT
L (x))

2
as a function

of sin πx
L

, for several values of the disorder strength D

and for lattice sizes L = 200, 400, 800, and 1600. The fact
that this combination saturates to a constant for x � xmin(L)
indicates that the chord length, for all the considered values
of D, is the finite-size scaling function for our correlated
disorder case. For x � xmin(L), finite-size corrections to
scaling are expected [notice xmin(L → ∞) → 0 ]. This is in
contrast with the uncorrelated disorder case, as shown (for

0 0.2 0.4 0.6 0.8 1
sin(πx/L)

0.08
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0.12

0.14

-C
zz

(x
,L

) *
 (

f  C
FT

 
L  

  (
x)

)2

D=1.0
D=0.2

D=0.5
D=1.0

D=1.5

D=2.0

(uncorrelated)

FIG. 7. The transversal spin-spin correlation function for various
disorder strengths D = 0.2, 0.5, 1.0, 1.5, and 2.0 (as indicated) and
lattice sizes L = 200 (green), 400 (blue), 800 (red), and 1600 (black).
For comparison, we also plot Czz for the clean system (dashed
line) and for the system with uncorrelated disorder with D = 1.0
(bottommost curves). Notice the stronger fluctuations in this latter
case. The dotted-dashed line is the fitting curve for the uncorrelated
case in the region sin(πx/L) > 1/2 (see text). In all cases, the data
are averaged over 106 different disorder configurations, except for
L = 1600 where the number of samples used is 50 000. Error bars
are not shown for clarity but are of the order of the data fluctuations.
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comparison) in Fig. 7. It is clear in this case that the chord
length is not the finite-size scaling function. This is not a
surprise since it is already known that the finite-size scaling
function of the entanglement entropies Sn is not a simple sine
[17]. Furthermore, we also verified that the scaling function
appearing in Sn found in Ref. [17] is not the scaling function
appearing in Czz. Namely, a fitting for the periodic function
g(z) in the asymptotic region sin(πz) > 1/2 and for L = 800
is given by

g(z) = 1

π

4∑
n=1

A2n−1 sin((2n − 1)πz),

with A1 = 1.038, A3 = 0.040, A5 = −0.007, and A7 =
−0.003, with similar results for L = 1600.

The fact that the chord length f CFT
L is the scaling function

for both the entropies and the correlation function in our
correlated disorder case is an additional resemblance to
the long-distance behavior of conformally invariant systems.
Actually, for D < Dc, even the prefactor of the correlation
seems to be the same as the one of the clean system (see the
dashed line in Fig. 7 and compare with the case D = 0.2 <

Dc).
Finally, we comment on the remarkable similarity between

the Shannon mutual information and the Rényi entanglement
entropy S2 as shown in Fig. 4(a). As recently conjectured, the
Shannon mutual information behaves like S2 in the long-length
limit 1 � x � L for clean conformally invariant systems
[5–7]. It is remarkable that the same similarity is present in our
random spin chain. Evidently, one would also like to compare
with the mutual information of spin chains governed by
infinite-randomness fixed points. Although I is not computed
in the literature, this is a simple task which we accomplish in
Appendix A. It turns out that I (x,L) = Sn(x,L) for random
singlet states (and for any n), which trivially agrees with the
conjecture.

In summary, our numerical results indicate that the ground
states of quantum chains governed by this line of fixed points
have entanglement properties which are similar to those of
conformally invariant ground states. This is an unexpected
result which certainly deserves further attention in order to
understand the complete generality of the results derived from
conformally invariant systems.

V. STRONG-DISORDER RENORMALIZATION GROUP

In this section we provide a strong-disorder
renormalization-group (SDRG) treatment of our correlated
disorder spin chain in Eq. (5). The main purpose is
to understand the role of the anisotropy in our line of
finite-disorder fixed points. As shown below, this gives us
support to the conjecture that the anisotropy is an irrelevant
parameter in the region −1 < � � 1. In addition, this
treatment also sheds some light on the nature of the ground
state wave function of our system.

The SDRG method [21–23] gives us an appropriate machin-
ery for studying infinite-randomness fixed points. It gives us an
asymptotically exact description of the low-energy eigenlevels
of the system [36]. In addition, it has also been used to describe
systems governed by finite-disorder fixed points, giving us

plausible results [27–29]. Up to now, a precise comparison of
the SDRG results derived in this latter case with exact results
is still lacking. In the present section, we are going to present
such a comparison for our correlated random system.

The main idea of the SDRG method is to integrate out local
high-energy degrees of freedom, renormalizing the remaining
ones via perturbation theory. In this way the low-energy
physics is accessed, provided that the perturbative procedure
becomes more accurate along the renormalization-group flow.

Here, our purpose is to study the perfectly correlated case
of Eq. (5). However, because new operators arise along the RG
flow, it is more convenient to expand the parameter space and
consider the more general Hamiltonian

H =
∑

i

Hi =
∑

i

Ji

(
Sx

i Sx
i+1 + S

y

i S
y

i+1 + �iS
z
i S

z
i+1

)
. (9)

There are two differences from Eq. (5): (i) the anisotropy �i

is now a random variable, and not fixed as before, and is
correlated with the coupling constants Ji as we are going to
explain below. (ii) The coupling constants Ji are not perfectly
correlated (as J1,J1,J3,J3, . . . ).

The local energy scale is εi = Ji(1 + �i)/2 which is the
local gap of Hi . As the SDRG method is an energy-based
method, what is relevant is the correlation among the random
scales εi . For this reason, we quantify the correlation among
the random scales of the system via the quantity

α = αeven,odd + αodd,even, (10)

where αeven,odd = (〈ε2iε2i+1〉 − εoddεeven)/σoddσeven, εx = εx is
the disorder average over x = even,odd sites, and σ 2

x =
ε2

x − εx
2 is the variance. Likewise αodd,even = (〈ε2i−1ε2i〉 −

εoddεeven)/σoddσeven measures the correlation between the odd-
numbered sites and their rightmost neighbors. Notice that for
uncorrelated disorder α = 0, whereas α = 1 for the case of
perfectly correlated disorder, as in Eq. (5).

It is instructive to review the SDRG procedure applied to
the uncorrelated case α = 0 in the region −1 < �i � 1 [8].
One searches for the greatest local energy scale 	 = max{εi},
say 	 = ε3, and then treats H2 + H4 as a perturbation to
H3. As a result, spins S3 and S4 become locked in a singlet
and the neighboring spins S2 and S5 experience an effec-
tive interaction given by H̃2 = J̃2(Sx

2 Sx
5 + S

y

2 S
y

5 + �̃2S
z
2S

z
5),

where the renormalized couplings are J̃2 = J2J4
J3(1+�3) and �̃2 =

1
2�2�4(1 + �3) [see Fig. 8(a)]. Within this procedure [8], it
was shown that the fixed point is of infinite-disorder type, i.e.,
σε/ε → ∞ when 	 → 0 (which provides a posteriori justifi-
cation of the perturbative procedure), and that the anisotropy
always renormalizes to zero (except for the isotropic case
�i = 1). This conclusion is valid whenever − 1

2 < �i < 1.
For −1 < �i < − 1

2 , the same conclusion applies only if
the bare disorder of the system is sufficiently strong. For
|�i | > 1, the long-range order of the system is not changed
by disorder, i.e., the system keeps its ferromagnetic (for
�i < −1) or antiferromagnetic (for �i > 1) Ising character.
The entanglement properties are thus similar to that of the
clean system in which a finite correlation length exists, i.e., it
obeys the usual area law.

Clearly, this SDRG procedure cannot be applied for
correlated disorder α 
= 0 because the assumption that
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FIG. 8. Decimation procedure for (a) uncorrelated and (b) correlated disorder.

	 = ε3 � ε2,4 fails. This can be circumvented by choosing
a larger spin cluster that also includes all the possible strong
local couplings. Because the correlations in Eq. (5) are short
ranged, such a cluster will be composed of three spins. For
instance if 	 = ε3, then spins S3 and S4 belong to that triad
of spins. In order to decide if the third spin is either S2 or S5,

we look for max{ε2,ε4}. In fact, a more precise measure of the
local energy scale εi is the mass gap of Hi + Hi+1. Thus, we
redefine the SDRG cutoff energy scale to 	 = max{εi}. This
identifies the strongly correlated spin triad. Once the energy
cutoff is found, say 	 = ε3, the next step is to treat H2 + H5 as
a perturbation to H3 + H4. Since the ground state of H3 + H4

is a doublet it can be recast as an effective spin-1/2 degree
of freedom. Thus, projecting H2 + H5 onto this doublet is
equivalent to replacing spins S3, S4, and S5 by an effective spin
S̃5, which is connected to S2 and S6 via effective couplings as
depicted in Fig. 8(b) (see details in Appendix B).

Notice the fundamental difference between these two
approaches. For uncorrelated disorder, the ground state is
always a random singlet state regardless of the details of the
random variables. For correlated disorder, on the other hand,
the effective spin S̃5 has strong correlations with the original
spins S3, S4, and S5 if ε3 ≈ ε4. Therefore, this correlation
can be transmitted away to the rest of the chain when S̃5 is
decimated out in a later stage of the SDRG flow. In the end,
correlations among the original spins can be greatly enhanced
and the ground state can be fundamentally different from the
random singlet state. This is indeed the case as shown below.

Unfortunately, the effective couplings J̃i and �̃i cannot be
worked out analytically in an easy way (see Appendix B). We
have implemented the SDRG decimation procedure numeri-
cally. However, before presenting our numerical results, it is
instructive to consider some limiting cases of interest which
can shed some light about the renormalized system.

Let us first consider the case of perfectly correlated disorder
J4 = J3 and �4 = �3 [which is exactly the one we are
interested in Eq. (5)]. Projecting H2 + H5 onto the ground
state of H3 + H4 yields an effective Hamiltonian as depicted
in Fig. 8(b) with

J̃i = 2Ji√
8 + �2

3

and �̃i =
⎛
⎝�3 +

√
8 + �2

3

4

⎞
⎠�i. (11)

Two aspects of the renormalized couplings are noteworthy.
(i) Even if the bare system has perfectly correlated disorder
as in Eq. (5) (i.e., the couplings are J1J1J3J3J5J5 · · · ),
the renormalized system does not display such a feature:
J1J̃1J̃5J5 · · · . This is the reason why we have expanded

the parameter’s space of our original Hamiltonian. (ii) The
renormalized anisotropies are smaller than the original ones.
This suggests that, as for the uncorrelated disorder case, the
anisotropy renormalizes to zero. Naturally, both points (i) and
(ii) have been extensively tested as shown below.

Another case that can be studied exactly is the free-fermion
one �i = 0 (see Appendix A). Here, the �i remains zero along
the SDRG flow and the renormalized coupling constants in
Fig. 8(b) are

J̃2 = J2J4√
J 2

3 + J 2
4

and J̃5 = J3J5√
J 2

3 + J 2
4

. (12)

Again, the perfect correlations of the original chain
J1J1J3J3J5J5 · · · are lost after just the first decimation.

Finally, the third case in which the decimation rules can
be worked out analytically is the isotropic SU(2) one where
�i = 1. As in the free-fermion case, the anisotropy does not
change and is fixed at �̃i = 1. The effective coupling constants
are

J̃2 =
(

2J4 − J3 + γ

3γ

)
J2 and J̃5 =

(
2J3 − J4 + γ

3γ

)
J5,

(13)
with γ =

√
J 2

3 − J3J4 + J 2
4 . Again, as in the previous cases,

the perfect correlation is lost along the SDRG flow.
The lessons learned from this little digression (and con-

firmed by our numerical study below) are (i) the fixed points
are either �̃i = 0 or �̃i = 1 and (ii) perfect correlation on the
energy scales is lost during the SDRG flow. Lesson (ii) raises
an important question. If perfect correlation is lost, does the
system flow to a totally uncorrelated fixed point which would
be of infinite-randomness type? As shown below, this is indeed
the case except for the free-fermion case �i = 0.

We now report our numerical study of the SDRG method on
our random spin chains with correlated disorder Eq. (5). The
SDRG decimation procedure (as described above) is depicted
in Fig. 8(b). As the energy scale 	 is lowered, we keep track of
the renormalized values of the disorder correlation measure α̃

and the mean 〈�̃〉 anisotropy, together with its variance σ 2
�̃

, and
the length scale ξ = ρ−1 which is also the inverse of density
ρ = L/n	 (n	 being the number of spin clusters at the energy
scale 	). In all of our runs, the chain is decimated until the
system is reduced to 20 spin clusters.

We show in Fig. 9 that the anisotropy is an irrelevant
perturbation at the critical line −1 < � < 1, i.e., the low-
energy physics is governed by the free-fermion fixed point
�̃ = 0. In this figure, only a few disorder realizations are
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FIG. 9. The anisotropy along the SDRG flow for various disorder
parameters D and initial conditions �, for the case of perfectly
correlated disorder α = 1. In panel (a) the standard deviation σ�̃

is plotted as a function of the average 〈�̃〉, with the arrows indicating
the direction of the SDRG flow. In panel (b) 〈�̃〉 is plotted as a
function of the SDRG length scale ξ . The lines are guides to the eyes
and the data are averaged over only 10 disorder realizations of a large
lattice size of L = 106.

enough for a reasonable precision due to the very large lattice
size used.

The effective disorder correlations of our system are shown
in Fig. 10. We plot the correlation measure of the renormalized
disorder variables α̃ along the SDRG flow, as a function of the
length scale ξ . As can be seen, except for the case where
� = 0 and perfectly correlated disorder α = 1, the disorder
correlation of the renormalized coupling constants α̃ → 0 at
the final stages of the flow. This means that the true fixed
point is the one of the uncorrelated disorder case which is of
infinite-randomness type. Notice, however, that the correlation
does not vanish fast. In the RG language, this means a long
incursion of the flow near the fixed point of the system with
perfectly correlated disorder. As a consequence, the physics of
relatively small system sizes is governed by the finite-disorder
fixed point. This is compatible with the results we presented
in Secs. III and IV for the � 
= 0 cases.

How can we explain the different behaviors between the
cases � 
= 0 and � = 0? Actually, we have solid arguments
in favor of a vanishing random mass term only in the special
case α = 1 and � = 0 [32]. The results of Secs. III and IV,
derived for small lattice sizes L � 20, are compatible with a
similar vanishing random mass for � 
= 0. However, as the

0 2.5 5 7.5 10 12.5
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FIG. 10. Disorder correlation along the SDRG flow for various
disorder strengths D and anisotropies �. The correlation parameter α

is plotted as a function of the SDRG length scale ξ . Data are averaged
over 1000 disorder realizations of large chains of size 107. Lines are
guides to the eyes.

SDRG results reveal (see Fig. 10), there is a relatively large
crossover length above which random mass becomes relevant.

In order to test this interpretation, we investigate the system
dispersion relation by plotting the energy scale 	 as a function
of the length scale ξ . For conventional dynamics, a power-law
scaling 	 ∼ ξ−z is expected, compatible with a finite-disorder
fixed point (absence of random mass). On the other hand, for
an infinite-randomness fixed point (presence of random mass)
[8], an activated dynamical scaling takes place in which ln 	 ∼
−ξψ , with universal tunneling exponent ψ = 1

2 . Therefore, for
� 
= 0 (irrespective whether disorder is perfectly correlated or
not), or for � = 0 but α 
= 1 (disorder not perfectly correlated),
we expect a conventional power-law scaling in the earlier
stages of the SDRG flow, and activated dynamics after a
crossover. This is indeed the observed scenario as shown
in Fig. 11. Notice that, for small length scales, a power-law
scaling 	 ∼ ξ−z takes place. This regime is governed by the
“unstable” fixed point which has no random mass. In this
transient regime, the critical dynamical exponent does not
depend on the anisotropy �, in agreement with the results
obtained by exact diagonalization in Sec. III.

Interestingly, the SDRG method here presented can be
quantitatively compared with exact results. The dynamical
exponent z, obtained from the fits in Fig. 11, is plotted in
Fig. 3 together with the expected exact value. Two features are
noteworthy. (i) For weak disorder D < Dc the SDRG method
indicates a universal finite-disorder fixed point. Because the
corresponding zSDRG is less than zclean = 1, we interpret that
the correct fixed point is the one of the clean system. This
is a consequence of the delocalized modes (spinons) being
energetically favorable against the localized ones obtained by
the SDRG method; i.e., the delocalized modes are the true
low-energy modes. (ii) The dynamical critical exponent zSDRG

is quantitatively close to the exact one even for small z, say
z ≈ 1.5. Thus, even though the SDRG is only justifiable at
strong disorder (z � 1), it already gives relatively accurate
results even for moderate z. In addition, notice that the zSDRG

is always smaller than z. We interpret this in the following
manner. Let us suppose we could untangle the localized
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FIG. 11. The relation between the energy 	 and the length ξ

scales for the disorder strengths (a) D = 1 and (b) D = 3 and various
anisotropies � and correlation α. Dashed lines are the best fits for the
case � = 0 and α = 1 restricted to ln ξ � 7. Inset: The same as in
the main plot with the logarithmic value of the vertical axis. Dashed
lines are the corresponding theoretical slopes for infinite-randomness
physics.

and delocalized modes coming from the limits of weak and
strong disorder, respectively. Clearly, in the way the SDRG
method is formulated, only the localized modes are captured,
namely, resonances of a triad of strongly coupled spin clusters.
However, these are not the true modes of the system. There are
certain aspects of the delocalized theory that are not taken into
account. For instance, our spin-triad resonance may interact
with spinons. This interaction would further lower the energy
of the modes, which would correspond to a larger dynamical
exponent. Hence z is greater than or equal to zclean = 1 and
zSDRG.

Let us now briefly discuss on the possibility that the
observed finite random mass (in the case � 
= 0) is just an
artificial product of the inexactness of the SDRG method. One
could argue that our decimation procedure does not preserve
locally the disorder correlation, and therefore random mass is
introduced even for � = 0. This would imply that the nearly
perfect match between z and zSDRG is just a coincidence. The
important detail that must be kept in mind is that the random
mass is a coarse-grained concept, and hence the local constraint
J̃2i−1 = J̃2i is not necessary.
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FIG. 12. The scaling relation between energy 	 and length ξ for
the � = 0 chain with the even coupling constants spatially shifted
by an amount δ and disorder strengths (a) D = 0.1 and (b) D = 0.5.
Dashed lines are the fits for the unshifted case for ln ξ � 7.

We believe that indeed the absence of the random mass is
captured by the SDRG method even when it is not present in
the short length scale. This reasoning is based on the following
study. Instead of using the correlated chain in Eq. (5) where
the coupling constants at sites 2i − 1 and 2i are correlated
(· · · J1J1J3J3J5J5 · · · ), we shift the correlated couplings by
an integer δ > 2 such that the sequence of couplings is
now · · · J1J1+δJ3J3+δJ5J5+δ · · · . In this way, since Ji has no
correlation with Ji+δ for δ > 2, there is no cancellation of
the random mass term at sites i and i + 1. The absence of
random mass would be observed only at length scales ξ � δ,
where the condition

∏
J2i = ∏

J2i−1 becomes approximately
fulfilled. This is indeed what is verified in the energy-length
dispersion relation as shown in Fig. 12. For ξ < δ, the system
“sees” local random masses and the scaling is activated. Only
for ξ � δ does the true asymptotic regime take place where
the dynamical critical exponent is finite and equals the one
of the unshifted (δ = 0) chain. Even the correlation between
the effective coupling constants becomes finite, as plotted in
Fig. 13. For δ > 2, the correlation α is initially zero, and after
coarse-graining it builds up as in the δ = 0 case. For large δ,
the crossover from the activated to the power-law dynamical
scaling is very slow, taking over on a large range of length
scales ξ.
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FIG. 13. The correlation measure α̃ for the � = 0 chain with the
even coupling constants shifted by an amount δ and disorder strengths
(a) D = 0.1 and (b) D = 0.5.

Thus, it is plausible to conclude that our SDRG decimation
procedure does not introduce random masses in the � 
= 0
case, as happens for the � = 0 case.

Finally, in order to conclude this section, let us discuss on a
possible generalization of the c theorem [37], which states that
if RG flow between two conformally invariant fixed points a

and b is in the direction a → b, then the corresponding central
charges are such that ca � cb. In the earlier years of the study
of entanglement properties of random spin chains, the quest for
an effective c theorem fostered intense research [10,13,16,38].
It turned out that such generalization was proven impossible
for spin chains governed by infinite-randomness fixed points
since violations were observed [13,16]. It is worth asking if
such violation also happens in our correlated disordered case.

Probing the SDRG flow (as described in Sec. V) for the XX
model (�i = 0) described by the Hamiltonian (9), we conclude
that there is no violation of the c theorem. This conclusion
stems from the following reasoning. Consider the SDRG flow
in the D-α parameter space, where the disorder strength D is
defined in Eq. (6) and the correlation in the disorder variables
α is defined in Eq. (10). As shown in Fig. 10, any perturbation
away from the perfectly correlated disorder drives the flow
towards the uncorrelated disorder case. Thus, the line of finite-
disorder fixed points is unstable towards the infinite-disorder
fixed point along the α direction. As shown in Ref. [32] (see
also Fig. 2), weak disorder is perturbatively relevant in the
perfectly correlated case (α = 1), hence the RG flow goes

from the finite-disorder fixed points towards the clean fixed
point; i.e., the line of fixed points is unstable along the D

direction as well. Finally, it is well know that the clean fixed
point is unstable towards the infinite-disorder fixed point along
the D direction (as long as α 
= 1). As ceff

IFRP = ln 2 < cclean =
1 < ceff

D , we conclude that the SDRG flow is compatible with
an “effective” c theorem. At the line of finite-disorder fixed
points, one may inquire if there is any violation of this effective
theorem. Notice that there is no flow among these fixed points
since their basin of attractions is null.

VI. CONCLUSION AND DISCUSSIONS

We have studied the critical spin-1/2 XXZ chain with short-
range correlated disorder. Due to absence of the random mass,
this system has the interesting property of realizing a line of
finite-disoder fixed points tuned by the disorder strength. Such
mass absence is asserted by the local correlation J2i = J2i−1

in the free-fermion case � = 0. In the general case � 
= 0,
the random mass is present although its magnitude is quite
small. Thus, the line of fixed points governs the physics in
the intermediate-energy regime. Here, we did not consider the
question of whether it is possible to devise local correlations
among the disorder variables of the microscopic model in
Eq. (5) for � 
= 0 in order to ensure an effective theory free of
random mass.

As it is well known, the violation of the area law of the
entanglement entropy of critical systems happens for both
clean and disordered systems. The most studied disordered
chains are those with uncorrelated disorder, which realizes
infinite-randomness fixed points. In this case, differently from
the clean systems which are usually conformally invariant, the
n-Rényi entanglement entropies are independent of the index
n, being equal to the Shannon entanglement entropy.

In this paper, we performed an extensive study of the
entanglement properties of ground states of quantum chains
governed by finite-disorder fixed points. Surprisingly, we
obtained quite different results from those of infinite-disorder
fixed points. In contrast, the leading finite-size behaviors
show striking resemblances with those of the clean con-
formally invariant systems, even though the critical random
system under consideration is not conformally invariant.
These resemblances are (a) the same n dependence occurs
in the Rényi entanglement entropy Sn, (b) the same periodic
scaling function f CFT

L (x) = L
π

sin (πx
L

) is applicable for the
entanglement properties as well as for the spin-spin correlation
functions, and (c) the Shannon mutual information I (x) and
the Rényi entanglement entropy S2(x) share the same leading
behavior as conjectured for conformally invariant systems.

From the results in the literature up to now, the logarithmic
behavior of the entanglement entropies seems to be a general
feature of one-dimensional critical systems regardless of being
disordered or not. However, the periodic finite-size scaling
function f CFT

L (x) appearing in the argument of this logarithmic
dependence (also in the correlation functions) is normally
expected to be a signature of the underlying conformal field
theory governing the long-distance physics of the system.
Our results give us two possibilities: either this behavior is
a consequence of more general assumptions than conformal
invariance, or there is some emerging effective conformal
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symmetry in those correlated disordered systems which is not
obvious. This latter possibility is quite intriguing since the
dynamical critical exponent z > 1. Emerging symmetries in
critical random systems have been recently reported [39], but
are still poorly understood.

This paper also gives us the first extension of the conjecture
stating that S2(x) and I (x), in conformally invariant systems
and computed on certain special basis, share the same leading
asymptotic behavior for large systems and subsystem sizes.
It would be quite interesting to test this conjecture in other
disordered systems.
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APPENDIX A: ENTANGLEMENT IN RANDOM
SINGLET PHASES

For completeness, we derive the Shannon mutual informa-
tion and the Rényi entanglement entropy for the random singlet
state of the antiferromagnetic spin-1/2 chain.

It has been shown [12,14,18,19] that the random singlet
state is well approximated by a collection of singlet pairs,

|ψ〉 =
L/2⊗
i=1

|si〉 =
Na⊗
a=1

|sa〉
Nb⊗
b=1

|sb〉
Nab⊗

ab=1

|sab〉, (A1)

where |si〉 = 1√
2
(| + −〉 − | − +〉) is the singlet state of the

ith singlet pair. We divide these singlets into three categories:
those in which (a) both spins belong to region A, (b) both
spins belong to region B, and (ab) one of the spins belongs to
region A while the other one belongs to B. They are denoted
respectively by |sa〉, |sb〉 and |sab〉, and there are Na , Nb, and
Nab of each. The constraint is that Na + Nb + Nab = L/2.

The reduced density matrix ρA can be easily computed as

ρA =
⊗

a

|sa〉〈sa|
⊗
ab

1
2 (|+〉〈+| + |−〉〈−|). (A2)

Thus, the nonvanishing eigenvalues of ρA come from the ab
singlets. There are 2Nab degenerate eigenvalues equal to λi =
2−Nab , and therefore, the n-Rényi entanglement entropy is

Sn = ln
(∑

i λ
n
i

)
1 − n

= ln(2Nab−nNab )

1 − n
= Nab ln 2, (A3)

which does not depend on the index n.
The Shannon mutual information can be computed in a

similar way. Let us start with the Shannon entropy of the entire
system. The random-singlet state in Eq. (A1) has 2L/2 different
configurations, all of them occurring with the same probabil-
ity 2−L/2. Therefore Sh(A ∪ B) = −2L/2 × 2−L/2 ln 2−L/2 =
L
2 ln 2. Now, let us compute the Shannon entropy for subsystem
A. It is easy to see that all possible configurations will appear
with the same probability. Thus, our task is to compute
only the number of different configurations. Due to the Na

singlets inside region A, there will be a contribution of 2Na

configurations. Moreover, we have to take into account the
Nab singlets which are shared by both subsystems. Each such
pair has one spin in subsystem A which will appear with equal

probability in the |+〉 and |−〉 states. Thus, the total number
of configurations is 2Na+Nab . Likewise for the subsystem B,
the total number of configurations is 2Nb+Nab . We are now in
position to compute the Shannon mutual information:

I = Sh(A) + Sh(B) − Sh(A ∪ B) = Nab ln 2, (A4)

where we have used Na + Nb + Nab = L/2. Therefore, the
leading term of the Shannon mutual information equals the
leading term of the Rényi entanglement entropy for all n for
random-singlet states. Notice that this result does not depend
exactly on how the singlets are distributed on the chain. This
is important only to relate Nab with x. Moreover, this result
can be generalized to any spin S. One needs only to replace
ln 2 by ln 2S + 1.

Finally, we mention that the number of spin singlets
belonging to both subsystems A and B can be computed with
the methods in the literature [10,14]. Let x be the A subsystem
size. It is found that, for 1 � x � L, Nab = 1

3 ln x. With this,
one recovers the known result that Sn = 1

3cRS ln x, with the
universal prefactor cRS = ln 2.

APPENDIX B: THREE-SPIN SDRG

We wish to treat H ′ as a perturbation to H where

H = J3

(
S+

3 S−
4 + H.c.

2
+ �3S

z
3S

z
4

)

+ J4

(
S+

4 S−
5 + H.c.

2
+ �4S

z
4S

z
5

)
,

and

H ′ = J2

(
S+

2 S−
3 + H.c.

2
+ �2S

z
2S

z
3

)

+ J5

(
S+

5 S−
6 + H.c.

2
+ �5S

z
5S

z
6

)
.

We then need to diagonalize H . Due to conservation of the
total z magnetization Sz, the eigenvalue problem for this
Hamiltonian can be reduced by solving a single 3 × 3 matrix.
Two eigenvectors follow straightforwardly (corresponding
to Sz = ± 3

2 ): | + ++〉 and | − −−〉, being degenerate with
eigenenergy E4 = 1

4 (J3�3 + J4�4). There are three eigenvec-
tors obtained from the Sz = + 1

2 sector whose corresponding
matrix is

M = 1

2

⎛
⎝+J3�3−J4�4

2 J4 0
J4

−J3�3−J4�4
2 J3

0 J3
−J3�3+J4�4

2

⎞
⎠,

where the order | + +−〉, | + −+〉, and | − ++〉 was used.
The same result is obtained in the Sz = − 1

2 sector.
Since the system is antiferromagnetic (−1 < �2,3 �

1), the ground states are doubly degenerate and be-
long to the sectors Sz = ± 1

2 . The eigenvalues of M
are the roots of a cubic polynomial, which we denote
by E1,2,3 with E1 < E2,3,4. The degenerate ground states
are |+̃〉 = a1| + +−〉 + a2| + −+〉 + a3| − ++〉 and |−̃〉 =
−a1| − −+〉 − a2| − +−〉 − a3| + −−〉, with ai ∈ �. Once
the doublet is obtained, our task is to project H ′ onto the
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doublet |±̃〉; i.e., we need to project S3 and S5 onto the doublet
|±̃〉:

Sα
i →

(〈+̃∣∣Sα
i

∣∣+̃〉 〈+̃∣∣Sα
i

∣∣−̃〉
〈−̃∣∣Sα

i

∣∣+̃〉 〈−̃∣∣Sα
i

∣∣−̃〉
)

.

We then find that S+
3 → −2a1a2S̃

+
5 , S+

5 → −2a3a2S̃
+
5 , Sz

3 →
1
2 (a2

1 + a2
2 − a3

3)S̃z
5, Sz

5 → 1
2 (−a2

1 + a2
2 + a3

3)S̃z
5, where S̃+

5 =
(0 1
0 0) and S̃z

5 = 1
2 (1 0

0 −1). Thus, we arrive at the effective
Hamiltonian

H̃ ′ = J̃2

(
S+

2 S̃−
5 + H.c.

2
+ �̃2S

z
2S̃

z
5

)

+ J̃5

(
S̃+

5 S+
6 + H.c.

2
+ �̃5S̃

z
5S

z
6

)
, (B1)

with the renormalized couplings

J̃2 = −2a1a2J2, J̃5 = −2a2a3J5,

�̃2 = −a2
1 − a2

2 + a2
3

2a1a2
�2, �̃5 = a2

1 − a2
2 − a2

3

2a2a3
�5.

This decimation procedure is depicted in Fig. 8(b). Notice that
a global signal can be gauged out for all couplings since we
can choose a harmless global factor in |−̃〉.

Unfortunately, we could not solve the coefficients ai ana-
lytically for the ground state in the generic case. Nevertheless,
three important limiting cases can be worked out analytically:
(i) perfect correlation J4 = J3 and �4 = �3, (ii) free fermions
�i = 0, and (ii) isotropic Heisenberg �i = 1.

For the special case where J4 = J3 and �4 = �3,

the eigenvalues of M are E1,2 = − 1
4J3(�3 ±

√
8 + �2

3)
and E3 = 0, and the ground states are |+̃〉 =
J3| + +−〉 + 2E1| + −+〉 + J3| − ++〉 and |−̃〉 =
−J3| − −+〉 − 2E1| − +−〉 − J3| + −−〉 which can be

recast as an effective spin-1/2 degree of freedom (notice
〈+̃|Sz|+̃〉 = −〈−̃|Sz|−̃〉 = 1/2). The projected operators are
S+

3 = S+
5 → 2√

8+�2
3

S̃+
5 and Sz

3 = Sz
5 → (1 + �3√

8+�2
3

)S̃z
5, and,

consequently, the effective couplings are

J̃i = 2√
8 + �2

3

Ji and �̃i =
⎛
⎝�3 +

√
8 + �2

3

4

⎞
⎠�i.

In the free fermion case �i = 0, the eigenvalues of M

are E1,2 = ∓ 1
2

√
J 2

3 + J 2
4 and E3 = 0. Hence, the doublet

is |+̃〉 = J4| + +−〉 + 2E1| + −+〉 + J3| − ++〉 and |−̃〉 =
−J4| − −+〉 − 2E1| − +−〉 − J3| + −−〉, which yields the
projections S+

3 → J4√
J 2

3 +J 2
4

S̃+
5 and S+

5 → J3√
J 2

3 +J 2
4

S̃+
5 . We then

arrive at the effective Hamiltonian

H̃ ′ = J̃2

(
S+

2 S̃−
5 + H.c.

2

)
+ J̃5

(
S̃+

5 S+
6 + H.c.

2

)
,

with

J̃2 = J2J4√
J 2

3 + J 2
4

and J̃5 = J3J5√
J 2

3 + J 2
4

.

Finally, we consider the SU(2)-symmetric case �i = 1.
Here, the eigenenergies are E1,2 = − 1

4 (J3 + J4 ± 2γ )

(with γ =
√

J 2
3 − J3J4 + J 2

4 ) and E3 = E4 = 1
4 (J3 + J4)

and the corresponding ground state is |+̃〉 =
(−J3 + J4 + γ )| + +−〉 − (J4 + γ )| + −+〉 + J3| − ++〉.
Thus, the renormalized couplings are

J̃2 =
(

2J4 − J3 + γ

3γ

)
J2 and J̃5 =

(
2J3 − J4 + γ

3γ

)
J5.

As expected, �̃2,5 = �2,5 = 1 which preserves the SU(2)
symmetry.
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