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Electron spin resonance in a two-dimensional Fermi liquid with spin-orbit coupling
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Electron spin resonance (ESR) is usually viewed as a single-particle phenomenon protected from the effect of
many-body correlations. We show that this is not the case in a two-dimensional Fermi liquid (FL) with spin-orbit
coupling (SOC). Depending on whether the in-plane magnetic field is below or above some critical value, ESR
in such a system probes up to three chiral-spin collective modes, augmented by the spin mode in the presence of
the field, or the Silin-Leggett mode. All the modes are affected by both SOC and FL renormalizations. We argue
that ESR can be used as a probe not only for SOC but also for many-body physics.
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I. INTRODUCTION

Electron spin resonance (ESR) spectroscopy is an invalu-
able tool for studying dynamics of electron spins [1-3].
In a single-particle picture, ESR can be understood either
classically, as resonant absorption of electromagnetic (EM)
energy by a classical magnetic moment precessing about the
magnetic field, or quantum mechanically, as absorption of
photons with frequency equal to the Zeeman splitting. The
absorption rate w of an incident EM wave (with frequency 2
and amplitudes of the electric and magnetic fields E*™ and
Bem, correspondingly) is given by the Kubo formula [4—6]

w=23 [ EMET + Q@B B, (D)

L

where oi/j(Q) is the real part of the conductivity and X{;(Q) is
the imaginary part of the spin sugceptibility.

If the static magnetic field (B) is in the plane of a two-
dimensional electron gas (2DEG) and there is no spin-orbit
coupling (SOC), the only resonant feature is due to a pole
in the second term of Eq. (1) at the Larmor frequency. This
is a conventional (or direct) ESR. However, because the spin
susceptibility is proportional to 1/c?, where ¢ is the speed
of light, the direct ESR signal is very weak. SOC of Rashba
[7,8] and/or Dresselhaus [9,10] types changes the situation
drastically by producing an effective magnetic field, which
acts on the spin of an electron with given momentum p and
is proportional to |p|. The driving electric field (either from
a dc current or EM wave) gives rise to a flow of electrons
with a nonzero drift momentum; hence the electron system as
a whole experiences an effective magnetic field due to SOC.
The magnitude of bare SOC is strongly enhanced by virtual
interband transitions [11]; as a result, the electric component
of an EM field couples to electron spins much stronger than the
magnetic one. This is an electric dipole spin resonance (EDSR)
[12-15], which gives rise to a range of spectacular phenomena,
e.g., a strong enllancement of microwave absorption in a
geometry when E°™ is in the plane of a 2DEG [16] and a
shift of the resonance frequency by a dc current [3,5].

In this article, we discuss the effect of the electron-
electron interaction on the ESR signal. In the Fermi-liquid
(FL) language, ESR in the absence of SOC is an excita-
tion of the Silin-Leggett (spin-flip) collective mode [17,18];
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cf. Fig. 1(a). Although the very existence of this dispersive
mode is due to many-body correlations, its end point at
q = 0—the Larmor frequency—is protected from renormal-
izations by these correlations and given by the bare Zeeman
energy [19]. In addition, there is a continuum of spin-flip
single-particle excitations [shaded region in Fig. 1(a)], whose
end point corresponds to the renormalized Zeeman energy.
Although the absorption rate should, in principal, contain the
contributions from both the collective mode and continuum,
the latter does not contribute to ESR because its spectral
weight vanishes at ¢ = 0. These two main features of the
ESR signal—no many-body renormalization of the resonance
frequency and no contribution from the continuum—are due
to conservation of the total spin (S‘ ) projection onto B.

The situation changes drastically in the presence of SOC,
which breaks conservation of S-B and thus gives rise
to fundamentally new features in the excitation spectrum
discussed in this article. (Modification of the ESR spectrum
due to both SOC and electron-electron interaction in the
quantum Hall regime was considered in Ref. [20] within
the Hartree-Fock theory.) Depending on whether the ratio
of the Zeeman energy to spin-orbit splitting is larger than,
comparable with, or smaller than unity, one can define the
regimes of “high,” “moderate,” and “weak” magnetic fields.
We show that the ESR frequency in the high-field regime
is affected both by SOC and many-body correlations and
scales nonlinearly with B [see Fig. 1(b)]. The deviation from
linearity can be used to extract the amplitudes of both SOC
and electron-electron correlations. In addition to the resonance
peak, the ESR signal now also shows a broad feature due
to the continuum of spin-flip excitations. In the presence of
SOC, the resonance itself is entirely a many-body effect; in
the absence of interactions, the signal comes entirely from the
continuum [21]. The conventional ESR regime is reached in the
limit of B — oo. As the field gets weaker, the ESR frequency
scales down and finally vanishes at a critical field B,, where
the spin-split energy levels become degenerate [see insets in
Fig. 1(b)] and the gap in the continuum closes. The region
around B, defines the moderate-field range. For B < B, the
resonance appears again and two more modes split off the
continuum as the field passes through the critical values, B,
and B.,. At B — 0, the three modes evolve into chiral-spin
resonances—collective oscillations of magnetization in the
absence of the magnetic field [4,22,23]. In the most general
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FIG. 1. (a) The Silin-Leggett mode (red) and continuum of spin-flip excitations (shaded, blue) for a Fermi liquid in the magnetic field.
Az and Ay are the bare and renormalized Zeeman energies, correspondingly. (b) Schematically: the frequencies of the collective modes and
continuum boundaries as a function of B for a Fermi liquid with Rashba spin-orbit coupling in the magnetic field. The gap in the continuum
closes at the critical field B,., where the spin-split bands become degenerate. For B < B,, there are three chiral-spin modes, 2, 3. For B > B,
there is one mode with a renormalized Larmor frequency, ;. Insets: spin-split Fermi surfaces. (c) RPA diagrams for the spin susceptibility.

(d) Evolution of polarizations of the collective modes with B.

case of both Rashba and Dresselhaus SOC present, all three
chiral-spin modes are ESR-active.

In the prior literature, the discussion of the effect of SOC
on ESR was largely limited to two aspects: D’yakonov-Perel’
damping [24] of the signal [25,26] and coupling of electron
spins to the electric field via the EDSR mechanism. We show
in this article that the effect of SOC is much richer than the
two aspects mentioned above. To the best of our knowledge,
all the experiments thus far have been performed in the high-
field limit, where the effect of SOC is quantitative rather than
qualitative. We propose to study ESR in moderate and weak-
field regimes, where the SOC-induced changes are qualitative.

II. MODEL AND FORMALISM

We study a two-dimensional (2D) electron system with both
Rashba and Dresselhaus types of SOC (RSOC and DSOC,
correspondingly) and in the presence of an in-plane magnetic
field. We adopt the form of Dresselhaus SOC appropriate for
a GaAs [001] quantum well and choose the x; and x; axes to
be along the [110] and [110] directions, correspondingly. The
single-particle part of the Hamiltonian then reads [27]

-

2
0 = z—60 + a(b1ka — 62k1)
2m

o

~ N 8MUB
+ﬂ(01k2+02k1)—730137 ()

where m is the band mass, pp is the Bohr magneton, 623
are the Pauli matrices, 6¢ is the 2 x 2 identity matrix, and
o (B) is the Rashba (Dresselhaus) coupling constant. For
simplicity, we chose the magnetic field to be along one of
the two high-symmetry directions, i.e., B || £1. This restriction
will be relaxed in Sec. IIT C.

The many-body part of the Hamiltonian, Hmt, depends only
on the electron posmons x. Consequently, [Hmt,x] =0 and
the velocity operator b= iHo + Hlm,x] = i[Ho,x ]retalns its
free-electron form:

5 kl N A k2 A IS
v= <—00 — (o — B)62,— 6 + (a + ﬂ)01)~ 3
m m

The gradient (k;/m and k,/m) terms in v give rise to the
Drude part of the conductivity, while the spin-dependent terms
give rise to its B-dependent part, 0B, Wthh determlnes the
EDSR signal. In the Voigt geometry (E em | B L Bem) the first
(EDSR) term in the absorption rate [Eq. (1)] contains the com-
ponent (o)1, which is related to the spin susceptibility via

2

(glfm( — B 1o )

(ophu =

while the second (ESR) term contains x5, 35 for B [| %23
Equation (4) also holds in the presence of the electron-electron
interaction. The ratio of the EDSR amplitude to the ESR one is
given by e*(a — B)?/u3Q2,, where Q. is the resonance fre-
quency. For the chiral-spin modes, Qs ~ | — B|kr and the
ratio of the amplitudes is of the order of (A r/xc)? ~ 108-10°,
where Ap is the Fermi wavelength and x¢ = A/m.c is the
Compton length (m, is the free electron mass) [4]. For the Silin-
Leggett mode, Qs = gupB = 21 and the EDSR/ESR ratio
is (Ap/Ac)? % (Asoc/ 21)?, where Agoc is the characteristic
spin-orbit splitting and €2, is the Larmor frequency.

In this work, we assume that the EDSR part of the signal
dominates the ESR one, so that the absorption rate in Eq. (1) is
determined by (o)1 to very high accuracy. We also assume
that both the spin-orbit splitting and Zeeman energy are much
smaller than the Fermi energy. In this case, the corresponding
terms in the Hamiltonian can be treated as corrections to
the conventional, SU(2)-invariant FL, and the complications
encountered in generalizing the FL theory for arbitrarily large
spin-dependent terms [28,29] do not arise. The ESR signal
is completely characterized by the spin susceptibility. At
g = 0, the spin and charge sectors of the theory decouple
because of charge conservation [23], and x;;(£2) can be found
within the usual random-phase approximation (RPA), in which
the Green’s functions include the B-dependent shifts of the
chemical potential [see Fig. 1(c)]. For an s-wave interaction
(U = const), the Matsubara form of x;; is given by the matrix
product [23]

-1

2
(81tn) n?,(szm)[ugﬁ()(w)} G

4

Xij(Qm) = - .

J'J
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where T1%(Q,) = [ Tr[&,GKa,(’}“Q] with i,j € {1 2,3},

0 = (i2,,0): K = (iwp,k); and k=T, |4 (271)2 Fur-
thermore, G Kl =(iw+ n)dy — Hg, where H/ differs from
H, in that the Zeeman energy is replaced by its renormalized
value (see Appendix A): gugB — gupB/(1 —u), whereu =
vypU is the dimensionless coupling constant and v, p = m/2x
is the density of states in 2D. For weak SOC, i.e., for |«],
|B| < vp with vp being the Fermi velocity in the absence of
SOC, the system is characterized by four energy scales:

~ Ay
Az =gupB;Az = 1 , (6)

AR = 20[]([:; AD = Zﬂkp;
where kr = mvp. We choose the Zeeman energies to be
positive, while the signs of Ag and A, are arbitrary.

We note in passing that RPA for the case of an s-wave
interaction gives the same results as the kinetic equation for
a FL with a Landau function that contains only the zeroth
angular harmonic in the spin channel (see Appendix D).

III. THE ESR SPECTRUM: MANY-BODY DESCRIPTION

A. ESR without spin-orbit coupling

We start by revisiting the well-known case of a FL. without
SOC in the magnetic field [« = 8 = 0in Eq. (2)]. In this case,
H?_,(Qm) =0 (j € {1,2,3}) because the projection of spin on
the direction of B is conserved. For the rest of the components
we obtain, upon analytic continuation (i$2,, — € +i0™),
N9,(Q) = N%(RQ) = 2vpA% /(22 —AY) and N%(RQ) =
—1%(Q) = —2iv,pQA, /(Q2 A2). The collective mode
corresponds to a pole of Eq. (5), when det[1 + %H?j(Q)] =0
or 1 4+ 419, = +4%iT13,. The only solution of this equation
outside the spin- ﬂlp contlnuum is the Larmor frequency:
Q. = Az(1 —u) = A. On the other hand, Xi/j’.(Q) vanishes
at the continuum (2 = A ), and thus the continuum does not
contribute to ESR.

B. ESR with Rashba spin-orbit coupling

This case is realized by setting B = 0 in Eq. (2). After
including the self-energy correction to the Zeeman term [30]
(see Appendix A), the dispersions of the spin-split bands be-
come & = k?/2m + 1V Qak)? + (A2)? — 2A7(2ak) sin by,
where 6; is the angle between k and the x; axis. Although

the spin projection onto B is not conserved anymore, some
off- diagonal components of HO still vanish. Indeed, since

B*™ x B =0 for Bem Il B || X1, the only two pseudovectors
in the system are B°™ and B themselves. The magnetization
induced by Bem is also a pseudovector and thus can only be
parallel to B, which implies that 1'[1 =0 for j =2,3. The

nonzero components of I1° are given by (see Appendix B)

W21 - f)
4A%

A2 1 w?
n%,(Q) = —2v [—Z + (1 - —)(1 - —)}
2 PLrw? f 4A2

Y (Q) = —2vp

3
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2
M%) = —2vap | 1+ —os
33 sz

0 iQf1 1 A2 0
H23(Q) = 2U2DA_Z|:§<1 — ?) + fW2:| = _H32(Q)s (7)

where f =,/1—4A%A%2/W*and W? = A2 + A2 — Q2 —

i0*sgn€. The formulas above reduce to the known limits [23]
when Agp — 0 and Az — 0, respectively.

The subband energies vary around the Fermi surface,
reaching the maximum and minimum values of |A, + |Ag]],
correspondingly. As a result, the continuum of spin-flip
excitations occupies a finite interval of frequencies |A; —
|Ag|] < 2 < Az +|Ag|, where all T1°’s in Eq. (7) have
nonzero imaginary parts. This is in contrast to the case of
a = 0, where the continuum has zero spectral weight [see
Fig. 1(a)]. The gap in the continuum closes at a special field
B, such that Az(B.) = |Ag| and the spin-split bands become
degenerate [Fig. 1(b)].

The collective modes correspond to the poles of Eq. (5)
outside the continuum. The eigenmode equation splits into
two:

U
L+ S M@ =0, (8a)

U U U? 2
[1 + 3ngz(sz)} [1 + 3ngg(sz)} = ‘T[“33(Q)] . (8b)
For B > B, Eq. (8a) has no solutions while Eq. (8b) has
a unique solution (see Appendix C), which is the Larmor

frequency, €2}, renormalized both by SOC and electron-
electron interaction [cf. inset in Fig. 2(a)]. At the highest fields

(Az > |Agl/w),
eeaay]
u AZ

When B is just slightly above B, i.., Az ~ |Ag| but still
Az > |Ag|, we get

Q) ~ Az[l

~ 2(1=3) (A, — |Ag])?
sz(Az—lARD[l— i 5 i) (A 12D ]
2(1 - 4)°(1 — u)? A7

10)

In the limit of u < 1, we have an additional regime defined by
Ap € Az < Ag/u, where
2A
w2z } . (1)

QF ~ |AZ|[1—
L 2|Agl

For B < B., Eq. (8a) has one solution, 2 = €, which
corresponds to_oscillations of the x; component of the
magnetization M, while Eq. (8b) has two solutions, Q2 = €2,
and 2 = Q3, which correspond to coupled oscillations of the
components M, and M3. The ©2; and €2, modes run into the
continuum atfields B, and B,,, correspondingly [cf. Fig. 1(b)].
The three modes are plotted in Fig. 2(a) for a range of fields
below B.. As the field is lowered further, these three solutions
evolve into the spin-chiral resonances [4,22]. At B = 0, l'[g3

in Eq. (8b) vanishes by time-reversal symmetry, while l'[?1
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FIG. 2. (a) Chiral-spin modes as a function of the Zeeman energy, Az, in units of the Rashba spin splitting, Az (on a semilogarithmic
scale). Inset: renormalized Larmor mode (€27 ) at higher fields. (b) Imaginary part of the susceptibility in the weak-field limit (Ag/Az = 20).
(c) Same as in the high-field limit. The dashed line marks the bare Larmor frequency (€2,). The continuum is seen as a broad hump to the
right of the resonance. In panels (a)—(c), the dimensionless interaction is u = 0.3. (d) Evolution of the ESR signal with u. Here Ag/Az = 0.5.
Damping of I' = 0.01 A¢ was added to the Green’s functions to mimic the effect of disorder in all plots.

and ng become equa] by the Cuoy symmetry. In this limit, Figure 2(d) depicts the evolution of the ESR signal with
Q= = |ArlVT —u/2 and 3 = |Ag|v/T — u [23]. increasing u. In the presence of SOC, a sharp mode occurs only

In the absence of DSOC, absorption is determined entirely ~ due to many-body interaction, as it pushes the mode away from
by x4, [cf. Eq. (4)]. Since the €, mode is decoupled from  the continuum. This is in contrast to the case without SOC,

the €2, and Q3 modes, it is ESR-silent. The magnetic field where the mode exists even without interaction. Both the peak
couples the €, and 3 modes, both of which show up in ESR. and broad hump due to the continuum have been observed in
For B > B,, there is only one ESR-active mode, whereas for ~ Ref. [38], although the detailed shape of the hump is yet to be
B < B, there can be one or two active modes, depending explained.

of whether B is smaller or larger than B,,. In addition to a As .the magnetic. ﬁ?ld increases fro'm zero to values
sharp peak(s), there is also a broad feature corresponding to ~ €xceeding Be, polarization of the collective modes changes
absorption by the continuum of spin-flip excitations. qualitatively [cf. Fig. 1(d)]. At B =0, the susceptibility is
0.85} .
2
0.75f
g E;
S G
0.65f
0.55} 05
. . 0.09 . 0.3 0
0.02 0.06 0.1 0.14 0.18 5 10 15
Az/Ap Ap/AR

FIG. 3. Left: Collective modes in the presence of the magnetic field, and both Rashba and Dresselhaus spin-orbit coupling. 8/a = —0.25.
Below the field at which the gap in the continuum closes, there are two chiral-spin modes; above this field there is only one precessing mode.
All the modes in this case are elliptically polarized. Inset: zoom of the high-field region. Right: Collective modes in the presence of Rashba and
Dresselhaus spin-orbit coupling but in the absence of the magnetic field. There are three modes on either side of the gap closing point. The entire
structure of the collective mode is symmetric under « — B. All three modes are linearly polarized. Inset: zoom of the region |Ap| <K |Ag|.
u = 0.3 in both plots.
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TABLE I. SOC parameters for some common quantum wells. Mn doping in Cd,_,Mn, Te provides an additional field to the 2DEG due to
the localized moments on Mn. The range in g for this material is controlled by Mn doping.

Material n (10" em=2)  |gfactor] o (meV A) Ag = % (T) B(meVA) Ap= % (T)  References
SiGe/Si/SiGe 1-7 2 0.055 7.5-19.9 x 1073 [36]
Mg, Zn;_,0/ZnO 2.1 1.94 0.7 0.15 [37]
Cd,_,Mn,Te 35 1.6-5 33 0.34-1.1 46 047-15 [38]
GaAs/AlGaAs 2.3 0.445 3.1 2.89 0.55 0.51 [39]
GaAs/AlGaAs 5.8 0.27 1.5 3.7 1.4 34 [40]
GaAs/AlGaAs 1.4-7 0.4 5 4.0-9.1 4 3.2-7.2 [41]
InAs 21 7.8-8.7 67 9.7-10.8 3.5 0.5-0.6 [42,43]
InAs 11-20 8 60 6.8-9.2 [44]
Inl_xGaxAS/Inlﬂ,AlyAS 17-24 4 65-92 21.6-25.9 [45]

diagonal, which means that the different components of the
magnetization oscillate independently and are thus linearly
polarized. For 0 < B < B, the M| component is still linearly
polarized, while coupled oscillations of the M, and Mj
components can be decomposed into two elliptically polarized
modes. For B > B, there is only one elliptically polarized
mode which evolves into a circularly polarized Silin-Leggett
mode for B > B..

C. ESR with both Rashba and Dresselhaus spin-orbit coupling

Adding DSOC to RSOC lowers the symmetry from Cy,, to
C»,. As a result, the doubly degenerate spin-chiral resonance
splits into two already at B = 0. Other than that, DSOC does
not change the situation qualitatively, as long as B is along
the high-symmetry axis [as in Eq. (2)]: one of the three modes
is still ESR-silent, so the signal consists of up to two lines.
If B is along a generic in-plane direction [which means that
61 B, in Eq. (2) changes to 61 B; + 6, B;], all modes become
ESR-active, and the signal consists of up to three lines. This
case can only be tackled by a numerical treatment of the general
equations presented in Appendix B. Figure 3 (left) shows
collective modes of a system with both RSOC and DSOC
and with the field oriented at 45° to the x; axis, such that
By = B, = B. The RSOC and DSOC couplings are chosen in
such a way that there are only two collective modes at B = 0.

D. ESR with Rashba and Dresselhaus spin-orbit
couplings in zero field

For completeness, we also discuss the chiral-spin reso-
nances in the zero-field limit but in the presence of both Rashba
and Dresselhaus couplings. (The case when only one type of
SOC is present has been thoroughly analyzed in the prior
literature; see Refs. [4,22,23].) In the absence of field, the
time-reversal symmetry is intact and thus collective modes
can only be linearly polarized. Figure 3 (right) shows the
collective modes as a function of the Dresselhaus coupling
(parametrized as Ap = 28kp). Although the evolution of the
spectrum with the ratio Ap /Ay is qualitatively similar to the
evolution with Az /Ag in the B # 0 case (in terms of closing
and reopening the gap in the continuum), there are crucial
differences between these two cases, namely, (1) the B =0
spectrum is symmetric about the zero-gap point, whereas it
is asymmetric in the B # 0O case; (2) the modes are linearly

polarized in the B = 0, whereas they are elliptically polarized
in the B # 0. These results for the B = 0 case can be derived
analytically; see Appendix B 2.

IV. CONCLUSIONS

We presented a many-body theory of the ESR/EDSR effects
in the presence of SOC of both Rashba and Dresselhaus types.
The combined effect of the electron-electron and spin-orbit
interactions leads to a splitting of the resonance into up to
three lines, which should be observable in an experiment.
These multiple resonances are the optical (massive) collective
modes of a Fermi liquid subject to both external and spin-
orbit magnetic fields. We have also shown that the Silin-
Leggett mode is affected by the electron-electron interaction
in the presence of SOC; this effect must be accounted for
when extracting the g factors and SOC parameters from the
precession measurements [33-35].

The best platform for observing the effects predicted
in this paper are the semiconductor heterostructures in the
regime when the SOC energy splitting is comparable to the
Zeeman splitting due to an in-plane magnetic field. In Table I,
we provide a summary of relevant material parameters for
some of the conventional heterostructures. The Rashba and
Dresselhaus SOC energy scales are presented in units of Teslas
to give an idea of the strength of the field required to probe the
multiple-resonance regime of the spectrum. Recent advances
in microwave technology [46] have greatly broadened the
range of frequencies thus making ESR a promising tool for
the detection of the chiral-spin modes.
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APPENDIX A: SINGLE-PARTICLE HAMILTONIAN:
EIGENSTATES AND SELF-ENERGY CORRECTION

In this Appendix, we derive the form of the self-energy that
enters the Green’s functions in the calculation of the polariza-
tion tensor. It is convenient to start with the Hamiltonian in

J
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Eq. (2) which can be rewritten as

-

2

Ho = 2—&0 + Azk(sin ¢y 81 — cos ¢i62). (A1)
m

The parameters A; and ¢ are defined by the following

relations:

22k = /Qak)? + 2Bk)2 — 8aBk2 cos 20, + (g5 B)? — 4(gps B)a + Pk sinby,

sin ¢k =

o
cos ¢ =

where 6y is the azimuthal angle k with respect to the x| axis.
The eigenvalues and eigenvectors are given by

k2
+
- 1 1
|k, x) = 3 \Fiet ) (A4D)

To account for renormalization of the Zeeman energy and
spin-orbit parameters entering the Green’s function, one needs
to find the momentum- and frequency-independent part of the
self-energy, 3. For an s-wave interaction (U = const), S can
be found in the self-consistent Born approximation as

$ = —U/ Gr. Ge=(CY" -%£)". (@3
K

where [CA}(}(]" = (iwy, + n)bo — Ho. By construction, 3 does
not depend on K and thus can be written as

= E a;6;,
i=1..3

(A6)

where the coefficients a; are to be determined. Note that
we dropped the coefficient gy as it would only result in
a shift of the chemical potential. Solving the algebraic

. . B
matrix equation, we get a; = —- 2288 (where u = 2Y), and

1-u 2 - 2m
a> = a3 = 0. This amounts to changing guzB — &22 or

Ay — Ay. Since a; = az = 0, the spin-orbit parameters are
not renormalized. This is a special feature of the s-wave
interaction approximation.

The Green’s function (with the self-energy correction) is
then explicitly written as

. a1 _ R
GK=Zg§(Q,, Qr=§[50+r(51 sin ¢ — 6 cos @)1,
rt

(A7)

where g = 1/(iw, — ég) and 5% is the electron dispersion
which contains the renormalized Zeeman energy: A; — Ay.

(A2)

APPENDIX B: COLLECTIVE MODES WITHIN THE
RANDOM-PHASE APPROXIMATION

1. General case

In this Appendix, we provide some details of the calcu-
lation of the spin-charge polarization tensor I'I?j, which is
needed to find the collective modes within the random-phase
approximation (RPA). This is a challenging task in the most
general case, when the magnetic field and both Rashba and
Dresselhaus types of spin-orbit coupling (RSOC and DSOC,
correspondingly) are present. However, in the limit when both
the magnetic field and SOC are weak, i.e., when the Zeeman
energy and spin-orbit splitting of the energy bands are small
compared to the Fermi energy, one can confine the momentum
integration to the vicinity of the Fermi surface and carry out
some of the steps analytically.

We choose the magnetic field to be along an arbitrary in-
plane direction. Consequently, the Zeeman term in Eq. (2)
is replaced by —(gup/2)(61 By + 62B>). The corresponding
changes in the eigenvalues and eigenvectors can readily be
traced down; we will refrain from giving explicit forms here.
Linearizing the dispersion near the Fermi energy as 82: —u=
& + Ay, where Ay, = 2Xj—¢, o,kF is the SOC splitting at the
point d; on the Fermi surface, we arrive at two types of integrals
[here, kr is the Fermi momentum in the absence of both the
magnetic field and SOC and Q stands for the 2 + 1 bosonic
momentum with the zero spatial part: Q = (i€2,,,0)]:

1 d +o- - ot
5 §(8k8k+o T 8x8k+0)

1 nF(8,;+)—nF(8,€)
=—/d§ — ++ =)

2 iQ +el — e
Agk (Bl)
TR+ A
and
- d + - oot — L B2
2/ é(gKgK.;.Q gKgK+Q) Q%-i-l\(%k (B2)

A general form of A; is obtained from Eq. (A1) by adding
the second component of the magnetic field, which amounts

to replacing sing; by %2 sin6 — % and cos ¢, by
k

A
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(a — B)cos Oy /A; + gupBa/(2Ah;k) in Eq. (A2). Using these
relations, we get

do, A}
0 _ Tk 70 2
HMQM—-2WD/2nQi+Aéwsm,
do, A
0 _ k 1
M°,(Q0) = —v2p f Sy
5, (R,) = T (),
Ao, QLnlAg
0 _ m A0k
IT55(£2,,) = 2v2p / T —Q;Zn n Aék COS Py,
M8, () = —T1(Q), (B3)
do, A2
0 _ k Ok )
15,(82,,) = —2v2p - —len n Aék sin” ¢y,
do, Qu.Ag .
M94(2) = 2vap | — % sin g,

2m Q2+ Agk
M,(2) = —T15(),

doy A,

(@) = -2 [ Sl
m Gk

J

9,(Q) = F(Q) + F(Q),
5,(Q) = Fi(Q) — F2(Q),
M%(Q) = 2F(Q),

QZ
where Fi(Q2) = —vw|:l + —2:|
Wh

2ARAD

A2 A2
Fy(Q) = —szM[l

2
(e (83— a3)
Tw\ Y T T
D R D
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For Fig. 3, we considered the magnetic field to be at 45° to
the x; axis, i.e., By = B, = B. Solutions of the eigenmode
equation det[1 + (U/ Z)f[O] = 0 are shown in the left panel of
Fig. 3. In general, there are no qualitative differences compared
to the case of only RSOC and the magnetic field: for B < B,
there are two or three modes depending on the ratio «/8,
whereas for B > B, thereis only one mode. Fora /8 = —0.25,
as chosen in the left panel of Fig. 3, there are only two
modes.

2. Collective modes in zero field

Here, we present details of the derivation of collective
modes in the absence of B but in the presence of both
RSOC and DSOC. In this case, the spin-flip continuum
occupies the energy interval |Ag — Ap| < Q2 < Ar + Ap,
where Ap = 28kp (for definiteness we choose Ag p > 0).
The collective modes are well defined as they occur below
the lower boundary of the continuum. The susceptibility is
still a diagonal matrix so that its 11, 22, and 33 sectors
are all decoupled. The nonzero elements of I1° are (in real
frequencies)

(B4)

and le) = \/[Qz — (Ag + Ap)?I[Q22 — (Ag — Ap)?]. The diagonal form of I1° suggests that all the modes are linearly polarized.
The eigenmode equation, det(1 + UTI°/2) = 0, leads to the following three equations:

1+ UF(©2)=0, (BS)
AR F Ap)? Ag £ Ap)?r — Q2
1:i:u( R F Ap) - (Ag D) _o. (B6)
4ARrAD (Agr F Ap)* — @2
Solving those, we get the frequencies of the collective modes:
QF = (Ag — AD)2[1 — Z—f’},i € (1,2); where
Zi
2ARA 2ARA Ag + Ap)? 4ARA :
7 = %,Q:l—%,f}:l,fz:(le D)2<_ R Dz)’ (B7)
u(Ag — Ap) u(Ag + Ap) (Agr — Ap) u(Ar + Ap)

AL+A

Q= (Ag— Ap)*| 1 —

1 —2u 23

These solutions are plotted in Fig. 3 (right) as a function
of increasing DSOC. It follows from Eq. (B7) that €
and 23 graze the continuum up to the gap-closing point,
where Ar = Ap, whereas €2, hits the continuum at a point

2
2 1+ 5+ (14 < u >%AR——ADV
9 Z3 =

1—u ZARAD

(

where f, =0, which is below the gap-closing point. The
solution is symmetric under Az <> Ap and, as a result, there
are three collective modes on each side of the gap-closing
point.
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APPENDIX C: EIGENMODE EQUATIONS FOR THE CASE
WHEN BOTH RASHBA SPIN-ORBIT COUPLING AND
MAGNETIC FIELD ARE PRESENT

In this Appendix, we analyze some properties of the
eignemode equations for the case when RSOC and magnetic
field are present.

1. Proving the absence of the collective mode
in the 11 sector for B > B,

The frequency of the collective mode in the 11 sector
(corresponding to oscillations of magnetization along the x;
axis, i.e., along the static magnetic field) is determined from
Eq. (8a): 1 + £ T19,(R) = 0. Here, we prove that this equation
has no solutions for B > B.. Explicitly, this equation reads

1 1 — HW?
_ = %, (C1)
u 4AZ
where
f=1-4A3A2 /W4 (C2)
and
W2 =A%+ A% — Q> —i0tsgnQ. (C3)

Using the standard inequality of arithmetic and geometric
means, we find that f is always real and <1, if we restrict
ourselves to the region below the continuum boundaries,
ie., for Q@ <|Az; — Ag|. This implies that the right-hand
side (RHS) of Eq. (C1) is smaller than 2 A2 , which on its

turn can be immediately seen to be less than 5 for A"' <1,
i.e, for B > B,. Therefore, we have 0 < RHS < 1/2, while
the left-hand side is larger than 1 within the paramag-
netic phase (u < 1). Thus there is no solution of Eq. (C1)
for B > B..

2. Collective modes in the 22 and 33 sectors

We now analyze Eq. (8b), which gives the collective modes
in the 22 and 33 sectors, in the various limits and derive
the results presented in Egs. (9)—(11). Equation (8b) can be
rewritten as

1 1
—=X+—17, (C4)
u 1—u
where
AL 11 A%
Xsz2_1(7_1><3_5_2z>’ ©
Y—Q_z[&_l<l_1>] (C6)
TALL w2 4\ f '

To proceed further, we introduce the dimensionless quantities
w= Q/AZ and r = |AR|/AZ. We look for a solution of the
form w? = (1 — r)*> — §, where § is a new variable confined
to 0 <8 < (1—r)% In these notations, W?/AZ =2r +§
and fW? = /5/4r + 8. The quantities X and Y can be
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rewritten as
1 3 — 2 (a — b)2
ab 8 ab

e
y:[i—l(“ “}[(1—)2 5],
a

)

€N

ab 8

where a = +/8 and b = +/4r + 4. Its easy to see that in the
limit » — 0,a — b and § = u(2 — u). This makes Qz/A2 =
(1 —u)?> or Q = Az, which is the bare Larmor frequency.
In the opposite limit of r — oo, we find two roots: § = ru
and § = r?u/2. These give Q% = A%(1 —u) or A%(1 —u/2),
which are the frequencies of the two spin-chiral modes in the
absence of the magnetic field.

Equation (9) corresponds to the strong-field limit and is
derived assuming that r < u < 1. We skip this derivation
as it is a brute force expansion in 72, which is lengthy but
completely straightforward.

In the moderate-field limit, where r ~ 1, we relabel r =
I — e with 0 < ¢ <« 1 and look for a solution in the region
8 < &2.In this limit, the quantities X and Y reduce to

X — 1 n 3¢?
=5+
2 45 (C8)
&
45
This yields
YUl - 3u/4)?
e’ u( u/4) (9)

T A — w2l —u2?

which reproduces Eq. (10).

In the weak-coupling case (u < 1), one can identify
one more interval: u < r < 1. There, we find that § =
u®(1 — r)*/r. This makes the frequency Q> ~ A,(1 — r)[1 —
”72 @], which reproduces Eq. (11).

APPENDIX D: COLLECTIVE MODES FROM THE
QUANTUM KINETIC EQUATION

The quantum kinetic equation for a Fermi liquid (FL)
subject to a spatially uniform external field and in the
collisionless regime reads

O st ig) o1
i = [8&7.07],
91 koM
where
~ 3:]; . 5’ /B N
88; = + | Tr [F,;,;,(Sn]z] (D2)
v
. .. . . _ a*k _
is a variation of the quasiparticle energy, f,; =[Gy =

-

vwfdsf2 Fp=F'@©—-60) -0
part of an SU(2)-invariant Landau_ 1nteract10n function, 6 and
¢’ are the angle subtended by k and K, correspondingly,
and 5; parametrizes the spin-orbit and Zeeman terms of
the Hamiltonian. For RSOC, 3,; = Ag(sinf,— cos 0,0); for
purely Zeeman coupling, 3',; = (—A 7,0,0); etc. The electron
distribution function can be written as

o' is the antisymmetric

k O'al’l()
2 9e PO

iy = (D3)
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where n is the equilibrium distribution function in the absence
of both SOC and magnetic field, and 87 is the nonequilibrium
part. The nonequilibrium part of the magnetization is given by
M=-°L2 _Tr[&éﬁ,;]. (D4)
The nonequilibrium part of the distribution function can be ex-
panded either over standard or rotated Pauli matrices [4]. In the
first way, 87y = N(O) o 3”0 such that M; = gupgvap fe N;(0),

withi € (1,2,3) and fe = dOk/(2rr). The kinetic equation
reads

N@©) = —N®) x 3, —f FU“6 — 0)N@®') x 5. (D5)
;

where sy = 5,; at k = kp. The time dependence of N is
not explicitly specified. Equation (D5) can be solved by
decomposing N and F¢ into angular harmonics. Note that
M; is given by the zeroth harmonic of N;.

As a demonstration, we solve Eq. (D5) for the case of
RSOC in the s-wave approximation for F¢( —0') = Fy.
Equation (D5) is then simplified to

N@®) = —N(©®) x 55 — FSM x 5. (D6)
Note that 55 - N(6) = 0 suggesting that 5, - N(9) = constant,
which can be set to zero. Integrating Eq. (D6) over 6 and
noticing that [, 5, = 0 for RSOC, we get
M= _/Kr(e) X 3. (D7)
0

Differentiating Eq. (D7) over time again and using Eq. (D6)

for N(0) with 55 - N(0) = 0, we obtain

M= (14 F)ALM + /59(59 M. (D)
%

This yields

.. F¢ .
M, = —(1 + —O)AiMl,z, My = —(1+ F{)AxMs,

2
(DY)
which coincides with the ¢ = 0 limit of the hydrodynamic
equations derived in Ref. [22].

J

N1(©) + A.[N>(8) sin — N3(6) cos 0] —

ARN>(0) =
Na(8) — AN (0)sin6 + AgN(0) =

PHYSICAL REVIEW B 93, 045134 (2016)

For the field-only case, when §p = (=A4,0,0) is isotropic
in the momentum space, we obtain the familiar Bloch equation
by integrating Eq. (D5) over the angle [47]

M= (14 F{)A;M x % = gugM x B. (D10)

Equivalence of the RPA and FL approaches
in the s-wave approximation

The results discussed thus far were presented in with a
different choice of basis [4,22] and reproduced in Ref. [23]
within the RPA approximation. We now wish to reproduce
the RPA result for the case of RSOC in the presence of
the magnetic field using the quantum kinetic equation. It is
convenient to work in the basis introduced by Ref. [4]. In this
basis we write

. . dng
on = Ni(G)ri—,
ae

T = 63, T» = cos06| + sinbb,, T3 = sin0F| — cos 665.
(D11)
Expanding N;(0) into angular harmonics as
N;(6) = Z N cosmf + N sinm6, (D12)

m

and using Eq. (D4), we obtain for the magnetization compo-
nents

M, = g.U«B(Nz(l) + 1\73(1)),
M2 = gl,LB(N(]) - N:gl)),
M; = gupN{".

(D13)

The case of RSOC only can be solved exactly for an arbitrary
form of the Landau interaction function in the spin channel,
F%(6 — 0"), because equations for harmonics of N decouple
in this case [4]. However, harmonics do not decouple in the
presence of the field for an arbitrary Landau function, and thus
an exact solution is not possible. To proceed further, we adopt
the s-wave approximation, F§ (0 — 6) = Fy. In this case, the
kinetic equation [Eq. (D1)] can be written as

F[Ar(M,sinf 4+ M, cos0) — A, M,],

F(A,sin — Ag)Ms, (D14)

N3+ A,Ni(0)cos® = —F A, cos O M,

where F = F§ /gupvap. After a Fourier transform in time, we obtain for those harmonics of N that are relevant for magnetization

- WHAZ+AR)] -

[[Q{W( — f)+ 282} My — 2A.{(Q° + W? /)M3}],

[2A2A% f + WA(f — D]} M

o__ -
Ny = 2W2A. f
N = oo [2WPAR = D = (WA = D+ 2R285 )],
Z—7R
M= L a - ppAiay
8AZA2 f )

+2iQ(1 — H{W?A, —2A, AR} M5,
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F - " s
N) = ey [{2W2A2(0 — £)+ [2A2A% + WH(f — D]} M2 + 2iW? QA (f — DM3],
z
. F -
N} = ———[2A2A% + WH(f — DMy, D15
3 SAEA%[ AR (f = DM, (D15)

where f and W are given by Egs. (C2) and (C3), correspondingly. Combining the left-hand sides of the equations above into

components of M, we obtain the eigenmode equation

1— 58 m9() 0
0 1 — 5L 119,(%2)
0 B 2:1),) ng(Q)

0 M,
Fa
g @ || M2 ] =0 (D16)
- i) 7

where l'I?j(Q) are the same as in Eq. (7). These are the same eigenmode equations as given by RPA, det[1 + %H] =0, upon

replacing F§ — —vopU.
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