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Spectral properties for a family of two-dimensional quantum antiferromagnets
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We study the spectral properties of a family of quantum antiferromagnets on two-dimensional (2D) lattices.
This family of models is obtained by a deformation of the well-studied 2D quantum antiferromagnetic model of
Affleck, Kennedy, Lieb, and Tasaki (AKLT); they are described by two-body, frustration-free Hamiltonians on a
three-colorable lattice of spins. Although the existence of a spectral gap in the 2D AKLT model remains an open
question, we rigorously prove the existence of a gap for a subset of this family of quantum antiferromagnets. Along
with providing progress for the gap problem in AKLT-type antiferromagnets in 2D, this result has implications
for the theory of quantum computation as it provides a family of two-body Hamiltonians for which the ground
state is a resource for universal quantum computation and for which a spectral gap is proven to exist.
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I. INTRODUCTION

Quantum antiferromagnetic spin lattice models possess a
rich structure and exhibit many properties of quantum phases
that lie beyond the standard Landau classification by symmetry
breaking. In one-dimensional (1D) chains, quantum antiferro-
magnetic models were the subject of Haldane’s conjecture:
that there is a gap in the energy spectrum of integer-spin anti-
ferromagnetic chains whereas half-odd-integer-spin chains are
gapless. The analytically solvable model of Affleck, Kennedy,
Lieb, and Tasaki (AKLT) for a one-dimensional spin-1 chain
possesses a spectral gap, a ground-state degeneracy determined
by the boundary conditions, and a nonlocal “stringlike” order
parameter [1–3]; this model now serves as the canonical
example of a one-dimensional spin chain possessing both
symmetry-protected topological order [4] and a valence bond
solid description. For higher-dimensional lattices, quantum
antiferromagnetic models are expected to possess a similarly
rich structure, but classifying these structures is a challenge,
including even the rigorous identification of a spectral gap in
natural generalizations of the AKLT state to two-dimensional
(2D) lattices.

Methods from the theory of quantum computation provide
a new approach to identifying and classifying the quantum
order present in antiferromagnetic spin lattice models [5].
In particular, it has been shown for 1D antiferromagnetic
spin chains that their unique type of quantum order can be
identified with an infinite localizable entanglement length
[6–9]. For the 2D AKLT model and variants on a number of
spin- 3

2 lattices and the spin-2 square lattice, an even stronger
result has been proven: that the ground state of such models
possesses an entanglement structure that allows for universal
quantum computation through local measurements alone
[10–13]. Quantum computation that proceeds by single-
particle measurements of a many-body entangled quan-
tum state is called measurement-based quantum computa-
tion (MBQC). The universality of the AKLT model for
measurement-based quantum computation was proven by
demonstrating that its ground states, on certain lattices, can be
converted through local operations into a class of entangled
states known as graph states, states that form the central
resource for the theory of measurement-based quantum com-

putation [14,15]. From the perspective of quantum computing,
there is keen interest in identifying and classifying the types
of quantum order in such spin lattices that enable quantum
computation in this sense [8,10,11,13,16–23].

In this paper, we show that methods from quantum
information theory, in particular the study of graph states and
AKLT states for quantum computation, can be used in proving
spectral properties of 2D antiferromagnetic spin models. In
particular, we consider a family of 2D antiferromagnetic spin
models obtained by a one-parameter deformation of the 2D
AKLT model. This model was introduced in a previous work
[24], wherein it was shown using numerical methods that there
is a region in parameter space where the ground state of such
models is universal for quantum computation. The deformation
to the AKLT model we consider is a modification of that of
Ref. [25]. In contrast to our case, however, the ground state
of the model in Ref. [25] tends to a Néel state (rather than a
graph state) as the deformation becomes large.

Here, we prove several rigorous results concerning the
spectral properties of our family of antiferromagnets, with a
focus on the key question of whether there exists a spectral gap
separating the ground state from the first excited state in the
thermodynamic limit. While the AKLT model on which the
model is based is not currently known to be gapped, we prove
that a subset of this family of models (not including the AKLT
point) is gapped provided the ground state is sufficiently close
to a graph state. Our work complements other studies that have
numerically (rather than analytically) investigated the gap in
other families of antiferromagnets based on the AKLT model
[26,27].

One implication of our results is that this family of models
has many of the desired properties for quantum computation,
in particular, that the Hamiltonian is two body and that there
exists a finite region in the parameter space that is both
computationally universal and gapped. Previous works have
presented 2D models, based on the AKLT model, that are
both gapped and universal for MBQC [19,20]. However, these
models do not possess the full 2D structure of the family
of models presented here. The model in [19] is unitarily
equivalent to a product of 1D chains, and the model in [20] can
be transformed via a unitary into decoupled regions of finite
size.
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The paper is structured as follows. In Sec. II, we define
the quantum spin lattice models that we investigate: the
AKLT model, the graph state model, and our family of 2D
quantum antiferromagnets. We then investigate the spectral
properties of these models in Sec. III, including a rigorous
proof of the existence of a spectral gap for a subset of these
2D quantum antiferromagnets. We summarize our results in
Sec. IV. Several technical results are relegated to Appendixes.

II. AKLT MODELS, GRAPH STATE MODELS,
AND A FAMILY OF 2D ANTIFERROMAGNETS

In this section, we define AKLT states and graph states in
terms of their parent Hamiltonians. We note that AKLT states
and graph states are special in that both are ground states
of frustration-free Hamiltonians (i.e., both AKLT states and
graph states are the simultaneous ground states of all individual
terms in their respective Hamiltonians). In addition, they are
describable as projected entangled-pair states (PEPS) [28] and
can be created from product states using constant-depth unitary
circuits.

We then define a class of 2D antiferromagnet models ob-
tained as deformed versions of the AKLT model, generalizing
the spin- 3

2 models originally presented in Ref. [24]. These
deformed AKLT models have ground states that interpolate
between an AKLT state and a graph state.

A. Parent Hamiltonians for AKLT and graph states

Here, we review parent Hamiltonians for graph states and
AKLT states. Alternative equivalent definitions of these states
in terms of tensor network states are detailed in Appendix A.

A parent Hamiltonian for a state |ψ〉 of N particles is a local
Hamiltonian H = ∑

i hi that has |ψ〉 as its unique lowest-
energy eigenstate. By local, we mean that each interaction
term hi acts nontrivially on at most k particles, where k is a
constant independent of N . The Hamiltonians that we consider
in this paper are also frustration free, meaning that the ground
state of H is the lowest eigenstate of each interaction term hi

individually. The minimum energy of each hi term may be set
to zero by adding a multiple of the identity, and by replacing
each hi with the projector onto its image we will not change
the ground space of the Hamiltonian nor any crucial spectral
properties such as the existence of a spectral gap. Therefore, for
simplicity, in this paper we need only consider frustration-free
Hamiltonians that are sums of projectors.

1. AKLT states

The standard AKLT parent Hamiltonian may be defined on
an arbitrary graph G = (V,E) as follows. At each vertex v of
the graph place a spin-Sv particle, where Sv = (dv − 1)/2 and
dv is the degree of vertex v ∈ V . The AKLT Hamiltonian is an
antiferromagnetic interaction Hamiltonian given by

HA :=
∑
〈i,j〉

P
Stot=Si+Sj

ij , (1)

where Si is the spin of particle i, and P
Stot=S
ij is the projection

onto the spin-S irreducible representation of particles i and j .
Defined in this way, HA has a unique zero-energy eigenstate,
which we call the AKLT state |AKLT〉. Furthermore, the AKLT

state is a zero eigenstate of each term in (1), implying that
the Hamiltonian is frustration free. We note that the terms
in this Hamiltonian do not commute with each other, and so
establishing the existence of a spectral gap for such models
is highly nontrivial. For two-dimensional lattices, it remains
an open question in general whether this AKLT Hamiltonian
possesses a spectral gap in the thermodynamic limit.

2. Graph states

A graph state, and its corresponding parent Hamiltonian,
may also be defined on an arbitrary graph G = (V,E). In
contrast to AKLT states, however, every particle in a graph
state is taken to have spin- 1

2 . (While we do not consider it here,
it is possible to generalize to higher spin [29].) Following the
original definitions [14,15], the graph state |G〉 corresponding
to a graph G is defined as the output of a simple quantum circuit

|G〉 =
(∏

e∈E

CZe

)(⊗
v∈V

|+〉v
)

, (2)

i.e., a qubit in the state |+〉 := 1√
2
(|0〉 + |1〉) is placed at each

vertex, and a controlled-Z gate CZ := exp(iπ |11〉〈11|) is
applied between every pair of vertices connected by an edge.

In contrast to AKLT states, graph states possess a par-
ticularly simple parent Hamiltonian for which the spectral
properties are much simpler. The graph state is the unique
ground state of the Hamiltonian

HC :=
N∑

i=1

1

2
(I − Ki), (3)

where Ki := Xi

∏
j∈ni

Zj are stabilizer generators, Xi and Zi

are Pauli X and Z matrices, respectively, acting on particle i,
and where the product is taken over all neighbors ni of particle
i. Note that the interaction terms { 1

2 (I − Ki) : i = 1, . . . ,N}
pairwise commute. So, unlike the AKLT Hamiltonian, this
cluster Hamiltonian is trivially diagonalizable and possesses a
unit spectral gap.

3. Relationship between AKLT and graph states

Motivated by physical considerations, one generally views
the Hamiltonian HA as being more realistic than HC , as
it involves only two-body interaction terms. The cluster
Hamiltonian HC involves many-body interactions. Even for
a one-dimensional chain (degree two), the interaction terms
Ki of HC each act nontrivially on three particles, and the
number of bodies in the interaction terms increases with the
degree of the graph. Despite these somewhat artificial features,
the cluster Hamiltonian HC has commuting terms and a unit
gap, and its simplicity makes it a useful tool for investigating
spectral properties of more general models.

Let G be three-colorable graph and let |AKLT〉 be the AKLT
state defined on this graph. AKLT states on three-colorable
graphs have the desirable property that they can be transformed
into graph states on the same graph using a set of single-particle
projectors [10]. We use this property to construct a continuous
family of Hamiltonians and their associated ground states that
interpolate between these AKLT states and the corresponding
graph states.

045129-2



SPECTRAL PROPERTIES FOR A FAMILY OF TWO- . . . PHYSICAL REVIEW B 93, 045129 (2016)

Define three operators

P c := |S〉c〈S| + | − S〉c〈−S| (4)

for c ∈ {x,y,z} where |±S〉c are spin-S states satisfying
Ŝc|±S〉c = ±S|±S〉c and Ŝc is the single-spin operator for
a spin-S particle along the c axis. In other words, the P c

operators are projections onto the two-dimensional subspace
spanned by |±S〉c.

Now, let {ci ∈ {x,y,z} : i = 1, . . . ,N} be a three-coloring
of G, i.e., cj �= ci if i and j are neighbors. For each particle
i in our system, we define P

ci

i with respect to Eq. (4), with
S taken to be the spin of particle i. We will call the image of
P

ci

i the logical space Hi
L of particle i and we will associate

the physical spin states |S〉c and | − S〉c with the logical qubit
states |0〉 and |1〉, respectively. Then, the projectors P

ci

i map
the AKLT state to a graph state in the sense that

N⊗
i=1

P
ci

i |AKLT〉 ∝ |G〉, (5)

where |G〉 is a graph state on the graph G, where qubit i is
encoded into the logical subspace Hi

L as above. This result
was originally derived in [10], and we provide an alternative
proof using tensor networks in Appendix B.

B. A family of two-body antiferromagnets

In this section, we will construct a family of deformed
AKLT-type antiferromagnet Hamiltonians, originally de-
scribed in Ref. [24] for the special case of spin- 3

2 models,
that interpolate between the physically motivated but more
complicated AKLT Hamiltonian HA and a simpler model with
a structure based on graph states. This Hamiltonian has the
appealing property that it has only two-body interactions.

For each site i, we define a one-parameter family of single-
particle operators Di(δ) acting on site i as

Di(δ) := (1 − δ)P ci

i + δI, (6)

where 0 � δ � 1. This operator satisfies Di(1) = I and
Di(0) = P

ci

i . Hence, the (unnormalized) state

|ψ(δ)〉 :=
N⊗

i=1

Di(δ)|AKLT〉 (7)

interpolates smoothly between |AKLT〉 at δ = 1 and |G〉 at δ =
0. If we restrict to the domain δ > 0, then Di(δ) is invertible.
Given that |AKLT〉 is the unique state annihilated by every
P

Stot=Si+Sj

ij , it follows that |ψ(δ)〉 is the unique state annihilated
by every deformed interaction term

[Di(δ)−1 ⊗ Dj (δ)−1]P
Stot=Si+Sj

ij [Di(δ)−1 ⊗ Dj (δ)−1]. (8)

We remark that these couplings take the form ABA where A

and B are positive operators, thus the couplings themselves
are positive. (It is not a simple unitary change of basis, which
would leave the spectrum of the Hamiltonian unchanged.) Note
that these couplings have an unbounded spectrum in the region
δ > 0 with some eigenvalues tending to infinity as δ → 0.

To ensure that the spectral properties of the family of models
is not obscured by the diverging spectral behavior of the
local couplings, we replace the interaction terms with a set

of projectors {Q(δ)ij : (i,j ) ∈ E} where Q(δ)ij is defined as
the projection onto the image of (8).

Thus, we define a family of two-body Hamiltonians

H (δ) =
∑
〈i,j〉

Q(δ)ij , (9)

which has |ψ(δ)〉 as a unique ground state. Given that the
operators Q(δ)ij are well defined for any δ > 0, and that
limδ→0 |ψ(δ)〉 = |G〉, we conclude that the ground state of
H (δ) can be made arbitrarily close (in terms of fidelity) to |G〉
by setting δ > 0 sufficiently small.

The interaction terms Q(δ)ij are defined for any δ > 0,
however, at δ = 0 the operators D(δ) become singular and
thus Eq. (8) is not defined. We may nevertheless define the
Hamiltonian at δ = 0 by taking the limit Q(0) := limδ→0 Q(δ)
and letting H (0) := ∑

〈i,j〉 Q(0)ij . This limit exists and can in
principle be computed by applying Gram-Schmidt orthogonal-
ization to the column span of Eq. (8) for nonzero δ, then taking
the limit as δ → 0. H (δ) is continuous and Q(δ) have the same
rank in the entire interval δ ∈ [0,1], however, we note that
the ground-state degeneracy of H (δ) increases drastically at
δ = 0. This behavior is studied in greater detail in the following
section. This essentially implies that the ground state of H (δ)
cannot be made exactly equal to a graph state by setting δ = 0,
despite the fact that it can be made arbitrarily close by setting
δ small and nonzero.

III. SPECTRAL PROPERTIES

The construction detailed in the previous section provides
us with a family of two-body, frustration-free antiferromag-
netic Hamiltonians H (δ) of Eq. (9) that interpolates between
a Hamiltonian possessing an AKLT state as its unique ground
state for δ = 1 and a Hamiltonian possessing a unique ground
state that is arbitrarily close to a graph state for δ → 0. Like the
AKLT Hamiltonian HA, neighboring interaction terms Q(δ)ij
do not commute, and analyzing spectral properties of H (δ) is
nontrivial. In this section, we study spectral properties of the
Hamiltonian H (δ) of Eq. (9) by making use of the spectral
properties of the simpler Hamiltonian HC of Eq. (3).

In particular, we will study the behavior of the spectral
gap separating the ground-state energy and the first excited
state. To be precise, for fixed integer N , we will define the gap
�N = E1 − E0 to be the difference between the smallest and
second smallest eigenvalues of the Hamiltonian with system
size N . Note that E0 = 0 due to our Hamiltonian being a
frustration-free sum of projectors. We say that a Hamiltonian
is gapped if there exists a constant � > 0 and integer M such
that �N > � for all N > M .

Proving that a model is gapped is hard in general [30].
Whether or not the AKLT Hamiltonain HA is gapped on two-
dimensional lattices remains an open question. The family
H (δ) of Hamiltonians contains the AKLT Hamiltonian H (1) =
HA, and thus proving that H (δ) is gapped for all δ > 0 is at
least as hard as proving a gap for HA. We use a range of
methods to study the spectral gap in the region where δ is
small and the ground state is close to a graph state.

Note that there are two key parameters determining the
size of the gap of H (δ): the parameter δ (which reflects the
closeness of the ground state to a graph state), and the system
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size N . First, we will consider the case where N is fixed and
δ is allowed to vary. We will show that the gap, as a function
of δ, approaches zero as δ approaches zero. In other words,
there is a tradeoff between the fidelity of the ground state with
a graph state, and the gap of the Hamiltonian.

While small δ implies small gap for finite-sized systems,
we will then show in Sec. III B that small δ also guarantees the
existence of a gap in the thermodynamic (infinite system size)
limit. In other words, we prove that for δ fixed and sufficiently
small, there exists a constant � independent of system size,
for which �N > � for all N .

A. Behavior of the gap as δ → 0 for finite lattices

Here, we will prove that, for fixed system size, there is a
tradeoff between the gap of the Hamiltonian and the fidelity
of the ground state with a graph state. We stated this result
previously in [24], although did not provide a rigorous proof.

The Hamiltonians we consider are not related simply to
the stabilizer Hamiltonian for a graph state (which is clearly
gapped). In fact, there is no point in the family where the
ground state is exactly a graph state. We show in this section
that for any finite-sized system the gap shrinks to zero in the
limit where the fidelity of the ground state with a graph state
tends to one. This result necessarily comes about because we
have restricted to two-body Hamiltonians for which certain
ground states (e.g., graph states) cannot be reached without
closing the gap.

We will first prove a result about a class of graph states
which we call nontrivial graph states. A graph state is
nontrivial if the graph G on which it is defined satisfies the
following two properties. First, the degree of each vertex of
G is at least two. Second, no two distinct vertices in G have
an identical set of neighbors. These properties are satisfied on
all 2D lattices considered in this paper. We have the following
lemma:

Lemma 1. Let |G〉 be a nontrivial graph state on a graph
of spin- 1

2 particles. Let A := {i,j} be any two sites and B

be its complement. Then, the reduced density operator ρA =
trB(|G〉〈G|) is 1

4I . Moreover, the only positive, two-body, spin-
1
2 Hamiltonian with |G〉 as a zero-energy eigenstate is the zero
Hamiltonian.

Proof. We will use the fact that the reduced density operator
ρA of a stabilizer state with stabilizer S is given by

ρA = 1

2|A|
∑
σ∈SA

σ, (10)

where SA ⊆ S is the set of stabilizer elements σ ∈ S which act
as the identity outside A. Equation (10) will hold for any set
of particles A, however, here we will set A to be an arbitrary
two-particle region {i,j}.

Any element in the stabilizer σ ∈ S can be expressed
uniquely as σ = ∏N

l=1 K
γl

l , where Kl are the graph state
stabilizer operators defined in Eq. (3) and γl ∈ {0,1} for each
l. It is clear that any σ ∈ S with γl = 1 for l /∈ A cannot be an
element of SA. This eliminates all but four possible stabilizer
elements from membership in SA: Ki , Kj , KiKj , and I . As
we have assumed that the degree of G is at least 2, Ki and Kj

must act nontrivially outside A, and thus Ki and Kj are not

contained in SA. Furthermore, from the assumption that i and
j do not have an identical set of neighbors outside A, it is clear
that KiKj is also not contained in SA. Therefore, SA = {I } and
from Eq. (10), ρA = 1

4I . Thus, any positive nonzero interaction
term acting on A will have positive, nonzero energy. Since this
holds for every pair of particles in the state, the only two-body
Hamiltonian with positive interaction terms and zero energy
will be the zero Hamiltonian. �

The above result holds for spin- 1
2 Hamiltonians, however,

it does not directly apply to our family of Hamiltonians, which
generally involve higher-dimensional particles. We will now
generalize to the case where each graph state qubit is encoded
in a two-dimensional subspace, called the logical space Hi

L,
of a higher-dimensional physical particle. We find that any
two-body, frustration-free Hamiltonian with such a graph state
in its ground space must act trivially on the logical space of
each particle.

Lemma 2. Consider a system of N particles ⊗N
i=1Hi , where

the dimension di = 2j + 1 of each spin-j system Hi is at least
2. Let |G〉 be a nontrivial graph state with N vertices defined
such that the ith qubit is encoded into a two-dimensional
subspace of the ith physical particle Hi

L ⊆ Hi . Let hij

be a positive, two-body operator acting on Hi ⊗ Hj and
satisfying hij |G〉 = 0. Then, hij is supported entirely on
(Hi

L ⊗ Hj

L)⊥, i.e., hij = P ⊥
L hijP

⊥
L where P ⊥

L is the projector
onto (Hi

L ⊗ Hj

L)⊥.
Proof. Let A = {i,j} be a two-particle region. Let PL be

the projection onto Hi
L ⊗ Hj

L. Using a decomposition of the
identity I = PL + P ⊥

L , we have

hij = PLhijPL + (P ⊥
L hijPL + H.c.) + P ⊥

L hijP
⊥
L . (11)

From hij |G〉 = 0 we have that PLhij |G〉 = 0 and P ⊥
L hij |G〉 =

0. From Lemma 1, we also have that the reduced density
operator on the region A satisfies ρA = 1

4PL. By rearranging
tr(PLhij |G〉〈G|hijPL) = 0 and tr(P ⊥

L hij |G〉〈G|hijP
⊥
L ) = 0,

we obtain ||PLhijPL||2 = 0 and ||P ⊥
L hijPL||2 = 0 where

||B||2 := √
tr(B,B) is the Frobenius norm. Hence, only the

last term in Eq. (11) is nonzero. �
This implies that any frustration-free, two-body Hamilto-

nian acting on qudits with a graph state as an exact ground state
has the undesirable property that the ground space contains
the entire logical space ⊗N

i=1Hi
L. Thus, the ground space of

the Hamiltonian is (at least) 2N -fold degenerate. From this it
follows trivially that our Hamiltonian H (δ) defined in Eq. (9)
acting on a system of fixed size N with a nontrivial graph state
|G〉 as an approximate ground state, has a gap that shrinks to
zero as δ tends to zero. We prove the result generically for any
two-body, frustration-free Hamiltonian with an approximate
graph state as a unique ground state.

Theorem 1. Let H (δ) = ∑
〈i,j〉 hij (δ) be a two-body,

frustration-free Hamiltonian acting on N qudits, defined on
the interval δ ∈ [0,1], where each term hij (δ) is a projector
that varies continuously in δ. Assume that for δ > 0, H (δ)
has a unique ground state |ψ(δ)〉 which has the property that
limδ→0 |ψ(δ)〉 = |G〉, where |G〉 is a nontrivial graph state with
N vertices (in the sense of Lemma 2). Then limδ→0 �N = 0.

Proof. By continuity, each h(0)ij has |G〉 as a zero
eigenstate. By Lemma 2, H (0) contains the 2N -dimensional
logical space ⊗N

i=1Hi
L in its ground space. The fact that H (δ)
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has a unique ground state while H (0) has a ground space that
is at least 2N dimensional, and the fact that H (δ) → H (0)
as δ → 0, implies a large number of zero-energy crossings at
δ = 0. The existence of ground-state energy crossings implies
limδ→0 �N = 0. �

We have thus shown for any finite-sized system that if H (δ)
is a two-body, frustration-free Hamiltonian with a ground
state that tends to a graph state as δ tends to zero, then the
gap of the Hamiltonian must also tend to zero as δ tends to
zero. We remark that if the bodiness of the Hamiltonian is
greater than two, this tradeoff is not necessarily observed. For
instance, it was shown in Ref. [24] that for three-body parent
Hamiltonians in one dimension, the fidelity can be improved
arbitrarily without decreasing the size of the gap.

B. Gap in the thermodynamic limit

We now prove that the Hamiltonian H (δ) is gapped in
the thermodynamic limit if δ > 0 is independent of N and
sufficiently small. This statement may seem at odds with the
result of the previous section, where we showed that the gap
of the finite-sized system tends to zero as δ goes to zero. The
two results can be reconciled by the fact that we are taking two
different limits: here we are considering the case where δ is
fixed and N tends to infinity, while in the previous section we
considered the case where N was fixed and δ tends to zero.

Our proof relies on properties of parent Hamiltonians for
injective tensor network states. Injectivity is a generic property
of tensor network states on a lattice [31], and is useful in
our proof as it implies the existence of a unique ground
state. To prove injectivity, we first perform a blocking and
construct a blocked parent Hamiltonian, for which we can
prove a spectral gap that is stable for small perturbations in δ

around zero. After defining tensor network states and blocked
parent Hamiltonians, we then prove that the class of two-body
antiferromagnetic Hamiltonians H (δ) is gapped on various
lattices for sufficiently small δ and provide lower bounds on
the size of the gapped region for trivalent lattices [i.e., the
largest δ for which we can prove H (δ) is gapped].

1. Tensor network states and PEPS

The projected entangled-pair state (PEPS) framework pro-
vides an efficient description of a class of multipartite quantum
states in arbitrary spatial dimensions. Here, we provide a
brief description of the PEPS framework, as it applies to our
problem; for further details, see Ref. [28].

A tensor is a multi-index array of complex numbers
Aα1,α2,...,αn

where each index αk has some finite dimension dk ,
which we call the bond dimension. Graphically, we represent
a tensor as in Fig. 1(a). In this graphical framework, when
two tensors are connected by an edge, their corresponding
indices are contracted. For the purposes of defining tensor
network states, we identify two distinct types of indices. The
first type are physical indices, denoted βi , associated with
an orthonormal basis {|βi〉,i = 1, . . . ,d} for each elementary
d-dimensional quantum system. The second type are virtual
indices, denoted using α indices, which are not associated
with physical degrees of freedom but are contracted internally
within the tensor network to allow for a nonproduct entangle-
ment structure. For clarity, in our tensor network diagrams we

Aβ1 Aβ2

Aβ3 Aβ4

Aβ5

α2

α1

α3

α5

α4

(a)

Bβ1,β2,β3,β4,β5

α2
α1

α3

α5

α4

(b)

FIG. 1. A connected region of tensors can be “blocked” to form
a single tensor by contracting all internal indices within the region.
(a) Tensors in a five-particle region. (b) Blocked tensor.

will not usually draw an edge for each physical index, instead
implying the existence of a physical index on a tensor with a
superscript β on the tensor label.

Consider a quantum state defined in the above basis
as |ψ〉 = ∑

β1,β2,...,βn
ψβ1,β2,...,βn |β1,β2, . . . ,βn〉. A projected

entangled-pair state (PEPS) is a state where ψβ1,β2,...,βn is
obtained by a contraction of a network of tensors, one tensor
for each physical index, as in Fig. 1(a). Graph states and
AKLT states are well-studied examples of PEPS. Appendix A
presents a specific standard choice of tensors for describing
graph states and AKLT states.

2. Blocking the Hamiltonian

When studying Hamiltonians that have PEPS as ground
states, it is often simpler to consider a Hamiltonian which
has the same ground state as the physical Hamiltonian, but
with interaction terms that act on a larger number of particles.
Such Hamiltonians, which we will call blocked Hamiltonians,
share many properties with the physical Hamiltonian, but are
often simpler to study because the spectrum of the local terms
can be chosen to be very simple. Here, we define a blocked
version HB(δ) of the parent Hamiltonian H (δ). This blocking
will assist in our proof of a gap for H (δ), as we will show that
proving a gap for H (δ) is equivalent to proving a gap for HB(δ)
for δ > 0. The blocked Hamiltonian will possess an injectivity
property that allows us to prove a gap. In addition, HB(δ) can
be rigorously proven to be gapped not only for δ = 0, but for
small δ > 0.

We define the blocked Hamiltonian HB (δ) as follows. Let G
be a graph, and consider the PEPS describing the state |ψ(δ)〉 of
Eq. (7) on this graph that interpolates between the graph state
|G〉 at δ = 0 and the AKLT state at δ = 1. Given a connected
region R ⊆ V of n vertices and r outgoing edges, we define
the block tensor Bβ1,β2,...,βn

α1,α2,...,αr
(R,δ) as the tensor obtained by

contracting all virtual indices of tensors within the region and
leaving outgoing virtual indices uncontracted, as illustrated in
Fig. 1(b). This blocking naturally defines a map from virtual
to physical degrees of freedom

B̂(R)(δ) =
∑

β1, . . . ,βn

α1, . . . ,αr

Bβ1,...,βn

α1,...,αr
(R,δ)|β1, . . . ,βn〉〈α1, . . . ,αr |.

(12)
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(a)

(b)

FIG. 2. The star lattice (a) and honeycomb lattice (b) with
injective regions circled. A region is injective if and only if each
particle has at most one outgoing edge (i.e., connected to a particle
outside the region). Furthermore, we say these lattices are coverable
as both can be decomposed as as a disjoint union of such regions.

We will say that a region R of particles is injective if the
associated map B̂(R)(δ) is injective. Generally, if the vertices
of a tensor network state |ψ〉 can be partitioned into M

disjoint connected regions V = ∪M
a=1Ra such that each set

Ra is injective, we say that the state |ψ〉 is injective.
In Appendix C, we show that a region R for the state |ψ(δ)〉

is injective if and only if each vertex i ∈ R has at most one
outgoing edge (i.e., an edge connected to a vertex not in R). We
will say that {Ra : a = 1, . . . ,M} is an injective covering of V

if Ra is injective for every a, Ra ∩ Rb = ∅ for any a �= b, and
∪M

a=1Ra = V . Examples of lattices with injective coverings are
illustrated in Fig. 2, with the injective region highlighted.

Let Ea,b ⊆ E be the set of edges in G that connect a
vertex in Ra to a vertex in Rb. Given a partitioning of the
graph into injective regions {Ra : a = 1, . . . ,M}, we define
a coarse-grained graph G′ = (V ′,E′) as follows. Each vertex
in V ′ corresponds to a region Ra , and two vertices in V ′,
corresponding to the regions Ra and Rb, are connected by an
edge in E′ if and only if Ea,b is nonempty.

Given the state |ψ(δ)〉 defined on a graph with a injective
covering, let B̂(a,b)(δ) be the injective block tensor for the
region Ra ∪ Rb, where Ra and Rb are neighboring injective
regions (where “neighboring” means that they are connected
in G′).

We define the blocked parent Hamiltonian for |ψ(δ)〉 as

HB(δ) :=
∑

〈a,b〉∈E′
�(a,b)(δ), (13)

where �(a,b)(δ) is the projector onto the orthogonal comple-
ment of the image of B̂(a,b)(δ), and the sum is taken over
all neighboring pairs of regions Ra and Rb. Note that this
Hamiltonian is not two body: each term �(a,b)(δ) will in
general act nontrivially on all particles in the region Ra ∪ Rb.
Given that the reduced density operator of |ψ(δ)〉 is supported
on the image of B̂(a,b)(δ), it is clear that |ψ(δ)〉 is a ground state
of HB(δ). As is shown in Ref. [31], the injectivity condition
further implies that |ψ(δ)〉 is the unique ground state of HB(δ).

We thus have two Hamiltonians, H (δ) and HB(δ), both pos-
sessing |ψ(δ)〉 as a unique ground state. The Hamiltonian H (δ)
is two body while HB(δ) is not. A crucial difference between
these two Hamiltonians is that HB(δ) is well defined at δ = 0

with a unique ground state exactly equal to the target graph
state |G〉. On the other hand, as we showed in Sec. III A, the
two-body Hamiltonian H (δ) has an exponentially degenerate
ground space at δ = 0. In the following section, we will use
the fact that HB(0) has a unique ground state and is gapped to
prove that H (δ) is gapped for sufficiently small δ.

3. Restrictions on interaction graph

We have imposed a number of constraints on the interaction
graph of the Hamiltonian, which we briefly summarize here.
First, we have restricted to three-colorable graphs, for which
the methods of Sec. II B can be used to project the AKLT state
locally to a graph state on the same graph. To prove a gap in
the thermodynamic limit, we will further require injectivity for
our blocked Hamiltonian. As described in the previous section,
we can ensure injectivity by imposing that our graphs have an
injective covering.

As we are primarily interested in lattices (rather than
arbitrary graphs) we will impose some further simplifications.
We require that there exists an injective covering for the graph
{Ra : a = 1, . . . ,M}, for which both the number of outgoing
edges r and the number of particles n in each Ra is a constant
independent of a and the system size N and that the block
tensor B̂(a)(δ) for each Ra are all identical up to a unitary
acting on the output for all δ � 0. It would vastly complicate
the proof if the injective covering varied with the system size
or if the spectral properties of the block tensor were different
for different regions.

We will call a graph satisfying all of the above properties
coverable. All trivalent Archimedian lattices are coverable: the
honeycomb (63), the square octagon (4,82), the cross (4,6,12),
and the star (3,122). However, the square lattice (which does
not have a injective covering) is not coverable. We will discuss
generalizations noncoverable lattices in Sec. III B 5.

4. Proof of gap

Here, we prove the following theorem regarding the
existence of a spectral gap for H (δ), which is the central result
of this section.

Theorem 2. Let H (δ) be the two-body Hamiltonian defined
in Eq. (9) on a coverable graph. Then, there exists δc > 0 such
that H (δ) is gapped for all δ in the open interval (0,δc).

The proof of Theorem 2 follows from three simple lemmas.
We will first show that the blocked Hamiltonian is gapped at
δ = 0.

Lemma 3. HB(0) is gapped.
Proof. We prove this lemma using the fact that |ψ(0)〉 =

|G〉, and by showing that this graph state can be locally
transformed to a product of Bell pairs via a product of unitaries
that act only within injective regions (and not between them).
Under this unitary map, the Hamiltonian can be seen to be
trivially diagonalizable, commuting, and thus gapped.

Let G be a coverable graph and consider its tensor descrip-
tion, provided in Appendix A 2. Let {Ra : a = 1, . . . ,M} be
an injective covering of G. Let Wa := ⊗

〈i,j〉∈Ea
(CZ ⊕ I )i,j

be a product of CZ gates acting on all pairs of neighboring
particles in the region Ra where each (CZ ⊕ I )i,j acts as CZ
on the logical subspaceHL

i ⊗ HL
j ⊆ Hi ⊗ H of particles i and

j and as the identity on the remainder of the space. Using the
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identity given in Eq. (A2) on the tensor description of B̂(a,b)(δ)
on two injective regions Ra and Rb, we see that the image of
[Wa ⊗ Wb]B̂(a,b)(0) becomes a simple tensor product. To be
precise, let R0 denote the interior of the region R, i.e., the set
of vertices in R that are not connected to vertices outside R,
and let ∂R := R\R0 denote the boundary of R. The image of
[Wa ⊗ Wb]B̂(a,b)(0) is

⎛
⎝ ⊗

i∈R0
a∪R0

b

|+〉i
⎞
⎠

⎛
⎝ ⊗

〈j,k〉∈Ea,b

|H 〉jk

⎞
⎠

⎛
⎝ ⊗

l∈∂(Ra∪Rb)

HL
l

⎞
⎠, (14)

where |H 〉jk ∈ HL
j ⊗ HL

k is a two-qubit graph state on
particles j and k and Ea,b was as previously defined as the
set of edges in G that connect region Ra to region Rb.

Let �(a,b)′ be the projector onto the space orthogonal to
the space defined by Eq. (14). The product form of Eq. (14)
immediately implies that the set of operators {�(a,b)′ : 〈a,b〉 ∈
E′} pairwise commute. It is also clear that the Hamiltonian
H ′ := ∑

〈a,b〉∈E′ �(a,b)′ has a trivial unique ground state
consisting of |H 〉 on all connected pairs of vertices that are
from separate regions, and |+〉 on the remaining vertices that
are only connected to other vertices within the same region.
Hence, H ′ is gapped. Finally, given that H ′ and HB(0) are
related by conjugation by

⊗M
a=1 Wa , we conclude that HB(0)

is also gapped. �
Having shown that HB(0) is gapped, we next show that

HB(δ) is gapped for a finite interval (0,δc). This result can be
seen to follow quite directly from stability results for canonical
parent Hamiltonians [32], but we provide a self-contained
proof of this fact in Appendix D based on methods used
previously in Refs. [33,34] for frustration-free Hamiltonians.
The idea of the proof is to show that a PEPS parent Hamiltonian
is gapped when its ground state is sufficiently close to an
isometric PEPS (as is the case when δ is sufficiently small).

Lemma 4. There exists δc > 0 such that HB(δ) is gapped
for all δ in the interval [0,δc).

Proof. See Appendix D. �
Thus, there is an open interval on which we can prove that

the blocked Hamiltonian HB(δ) is gapped. To complete the
proof of Theorem 2, we need only to show that if HB(δ) is
gapped for some δ > 0, then the two-body Hamiltonian H (δ)
is also gapped. Here, and for the rest of the paper, we will
use the convention that if A and B are Hermitian operators,
then A � B means that A − B is a positive operator (i.e., each
eigenvalue is real and greater than or equal to zero).

Lemma 5. For δ > 0, H (δ) is gapped if and only if HB(δ)
is gapped.

Proof. Let {Ra : a = 1, . . . ,M} be an injective covering of
G such that the degree of each coarse-grained vertex in V ′ (i.e.,
the number of outgoing edges of each Ra) is a constant r (the
existence of such a covering was an assumption of our graph).
We rewrite H (δ) by grouping interaction terms according to
the coarse-grained graph, as

H (δ) =
∑

〈a,b〉∈E′
h(δ)ab, (15)

where the grouped terms can be expressed in terms of this new
course graining as

h(δ)ab :=
∑

〈i,j〉∈Ea∪Eb

r−1Q(δ)ij +
∑

〈i,j〉∈Eab

Q(δ)ij , (16)

where Ea ⊆ E is the set of edges contained entirely in the
region Ra and, as before, Ea,b is the set of edges joining
vertices in Ra and Rb. It is straightforward to show that the
sum in Eq. (15) is equal to H (δ) as defined in Eq. (9).

Comparing h(δ)ab to the blocked interaction term �(a,b)(δ),
one finds that the kernel of a single term h(δ)ab is equal to the
kernel of the projector �(a,b)(δ). We will not provide a detailed
proof here; it is possible to verify following the inductive proof
in Ref. [25], Appendix A, where it was shown that the spin- 3

2
AKLT model (and deformed versions of it) has a unique ground
state. Because these operators have the same kernel, we have

λmin(δ)�(a,b)(δ) � h(δ)ab � λmax(δ)�(a,b)(δ), (17)

where λmin(δ) > 0 and λmax(δ) > 0 are, respectively, the small-
est and largest nonzero eigenvalues of h(δ)ab. Importantly,
λmin(δ) > 0 and λmax(δ) > 0 are independent of the system
size. From Eq. (17), it follows that λmin(δ)HB(δ) � H (δ).
Therefore, for any system size N , if HB(δ) has gap �(δ),
H (δ) will have a gap of at least λmin(δ)�(δ). Hence, for any
fixed δ > 0, H (δ) is gapped if HB(δ) is gapped. Likewise, as
λ−1

max(δ)H (δ) � H (δ)B , H (δ) being gapped implies HB(δ) is
gapped.

We remark that, while λmin(δ) > 0 for all δ > 0, taking
the limit gives limδ→0 λmin(δ) = 0. Thus, we cannot prove a
gap at δ = 0 (which is unsurprising, given that we showed
that the ground space becomes degenerate at this point in
Sec. III A). �

This completes the proof of Theorem 2 that, under certain
assumptions on the interaction graph, H (δ) is gapped for δ

sufficiently small.

5. Generalization to arbitrary lattices

In the proof of Theorem 2, we showed that the two-body
Hamiltonian H (δ) is gapped for sufficiently small δ > 0
provided the interaction graph is coverable (as described in
Sec. III B 3). Here, we will discuss obstacles to generalizing
this result to noncoverable graphs.

Consider, for example, the square lattice. The state |ψ(δ)〉
is the unique ground state of the two-body, spin-2 Hamiltonian
H (δ) for δ > 0 on this lattice, but is it gapped? The state |ψ(δ)〉
is not injective on this lattice, and thus Theorem 2 does not
apply to it directly. We can nevertheless follow the proof of
Theorem 2 and construct a parent Hamiltonian for every δ � 0
with |ψ(δ)〉 as a unique ground state.

First, we partition the particles into 2 × 2 squares {Ra :
a = 1, . . . ,M}. Let �(a,b,c,d)(δ) be a blocked interaction term
that acts on a 2 × 2 square of four such regions Ra , Rb, Rc,
and Rd , which is defined, as usual, as the projection onto
the orthogonal complement of the image of the block tensor
B̂(Ra∪Rb∪Rc∪Rd )(δ). One can show that the blocked Hamiltonian
HB(δ) := ∑

〈a,b,c,d〉 �(a,b,c,d)(δ), with sum taken over all such
squares, has |ψ(δ)〉 as a unique ground state for both δ = 0
and δ > 0. It is also possible to show that Lemma 3 holds
[i.e., HB(0) is gapped] and Lemma 5 holds [i.e., the two-body
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Hamiltonian H (δ) is gapped if and only if HB(δ) is gapped
for δ > 0]. The problem arises when we try to interpret HB(δ)
for δ > 0 as a small perturbation to the gapped Hamiltonian
HB(0), as is required to prove Lemma 4. One finds that there is
a discontinuity of the rank of the interaction terms �(a,b,c,d)(δ)
at δ = 0, specifically the rank is smaller at δ > 0 than at
δ = 0. This is in contrast to the injective case, where the
rank of the block tensor (and therefore also the interaction
terms) is constant for all δ � 0. As a result, the stability
arguments used to prove Lemma 4 and the proof methods
of Appendix D cannot be applied directly. Hence, it does not
seem as straightforward to prove a gap for noninjective lattices,
as for injective ones.

C. Gapped regions for trivalent lattices

Theorem 2 states that for the two-body Hamiltonian H (δ)
(defined on an appropriate lattice) there exists a δc > 0 such
that H (δ) is gapped for all δ on the open interval (0,δc). Here,
we will explicitly compute lower bounds on δc on various
trivalent lattices.

Let H (δ) be defined on a graph with an injective covering
{Ra : a = 1, . . . ,M}, where each injective region Ra has the
same number of outgoing edges r . Consider the operator
B(Ra )†(δ)B(Ra )(δ) and let γmin(δ) and γmax(δ) be its smallest
and largest eigenvalues, respectively. Note that the ratio
γmax(δ)/γmin(δ) is a measure of how far B(Ra )†(δ)B(Ra )(δ) is
from the identity. At δ = 0, this ratio achieves its minimum of
1 [i.e., B(Ra )†(0)B(Ra )(0) is the identity]. In Appendix D, we
show that H (δ) is gapped if γmax(δ)/γmin(δ) < μ0, where

μ0 = 1

2
+ 1

2

√
r + 1

r − 1
. (18)

Thus, our bound depends on the number of outgoing edges in
each injective region r .

Note that μ0 > 1 is greater than 1 for any r , and thus there
is always a region around δ = 0 for which this bound proves
that the Hamiltonian is gapped.

We can evaluate the operator B(Ra )†(δ)B(Ra )(δ) by contract-
ing a tensor network, illustrated in Fig. 3. For r = 3,4,5,6
we have μ−1

0 ≈ 0.828, 0.873, 0.899, 0.916, respectively,
corresponding respectively to δc ≈ 0.28, 0.13, 0.12, 0.08 and
the Hamiltonian H (δ) will be gapped for all δ ∈ (0,δc). Our
upper bound on the size of the gapped region decreases as a

A A AiY iY iY

A A AiY iY iY

D1(δ)2 D2(δ)2 D3(δ)2

FIG. 3. Expressing the operator B̂ (Ra )(δ)†B̂ (Ra )(δ) for the star
lattice (with r = 3) as a contraction of tensors. Where the indices
at the top represent the input and the indices at the bottom represent
the output. Physical indices in this figure are represented by red
edges. The Hamiltonian H (δ) is gapped when the eigenvalues of this
operator satisfy Eq. (18).

function of r , the number of outgoing edges in an injective
region.

IV. CONCLUSION

We have shown that methods from quantum information
theory, in particular from the study of graph states and AKLT
states for quantum computation, can be useful for proving
spectral properties of 2D antiferromagnetic spin models. In
particular, for a family of 2D antiferromagnetic spin models
obtained by a one-parameter deformation of the 2D AKLT
model defined here, we have proven that there exists a spectral
gap separating the ground state from the first excited state in
the thermodynamic limit for a range of parameter space of this
family.

An implication of our results is that this family of models
has many of the desired properties for quantum computation,
in particular, that there exists a finite region in the parameter
space that is both computationally universal and gapped. The
existence of a gap may allow for efficient methods to prepare
such resource states for quantum computation [35–37].

It would be desirable to prove that the gapped region extends
to δ = 1 for the class of lattices defined here, where H (δ=1)
is the AKLT Hamiltonian HA. This would settle the long-
standing conjecture regarding the existence of a spectral gap
for the spin- 3

2 2D AKLT model. While the region we prove to
be gapped unfortunately does not extend to δ = 1, there are
various ways by which proofs of a larger gapped region may
be sought. For instance, mixing properties of Markov chains
were used in Ref. [31] to show that the Ising PEPS parent
Hamiltonian is gapped up to the critical point. Other methods
from statistical physics, e.g., using “martingales” [38] may
also be used to improve our result.
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APPENDIX A: PEPS DEFINITIONS

In this Appendix, we will provide simple tensor-network
descriptions of AKLT states and graph states and for the
interpolating path between the two.

1. AKLT states as PEPS

An AKLT state may be defined on a graph G = (V,E)
as follows. At each vertex i of the graph place a spin-Si

particle, where Si = (di − 1)/2 and di is the degree of vertex
i ∈ V . A basis for the Hilbert space of each particle is given
by {|M〉 : M = Si,Si − 1, . . . ,−Si + 1,−Si}, corresponding
to the eigenstates of the z component of the spin operator Sz.
For each vertex i, let Aβi

α1,α2,...,αdi
be a tensor of Clebsch-Gordan

coefficients for a set of di spin- 1
2 particles coupling to total

spin-Si , where βi = M is the total spin along the z axis and
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FIG. 4. PEPS for an AKLT state (a) and a graph state (b) defined
on a particular graph of six vertices, where the A and C tensors are
defined in the text. Note that the colored tensors do not have a physical
index, and can be absorbed into their neighbors if desired.

αk is the component of the kth constituent spin- 1
2 along the z

axis. For example, if Si = 3
2 , Aβ

α1,α2,α3
will have the following

nonzero entries:

A
3
2
000 = A

− 3
2

111 = 1,

A
1
2
001 = A

1
2
010 = A

1
2
100 = 1/

√
3,

A
− 1

2
011 = A

− 1
2

110 = A
− 1

2
101 = 1/

√
3,

where 0 and 1 subscripts refer to the spin eigenstates mz = 1
2

and mz = − 1
2 , respectively.

Given the A tensors, the resulting tensor network for the
AKLT state is defined according to Fig. 4(a). An iY matrix is
placed on each edge connecting neighboring A tensors. This is
due to the fact that the bonds used to define the AKLT PEPS are
singlets 1/

√
2(1 ⊗ iY )(|00〉 + |11〉), rather than 1/

√
2(|00〉 +

|11〉), and give the AKLT state its antiferromagnetic character.
(Note that we do not need to specify which index of these
edge iY tensors is contracted with which neighboring tensor,
as swapping these indices only results in an overall ignorable
phase of −1.) Note that we may contract tensors without a
physical index (the iY tensors in this case) with their neighbors
such that each tensor has one physical index, thus satisfying
the usual definition of a PEPS.

2. Graph states as PEPS

Graph states may also be represented as simple tensor
networks. Let G = (V,E) be a graph defining a graph state,
according to Eq. (2), and let di be the degree of vertex i. At
each vertex i ∈ V place a spin- 1

2 particle and define a tensor
C with di virtual indices and for which there are only two
nonzero entries

C0
00...0 = C1

11...1 = 1 , (A1)

where the labels 0 and 1 for physical and virtual indices may
be regarded as labels for spin- 1

2 and -− 1
2 states, respectively.

Applying a CZ gate to the physical index of any two
disconnected C tensors is equivalent to adding an additional
virtual index to each C and contracting a Hadamard matrix
H = 1√

2
(X + Z) between them.

Graphically, this can be represented as

β ,β CZβ β
β β Cβ Cβ = Cβ CβH

(A2)
where CZβ1,β2

β ′
1,β

′
2

is the tensor of the CZ in the standard
computational basis with β ′

1,β
′
2 being input indices and β1,β2

being output. Although we have illustrated this with with C

tensors that initially have three virtual indices, this identity will
hold for any number of initial virtual indices (including zero).
Note that as HT = H , there is no need to specify which index
of H is contracted with which neighbor. The tensor network
for a general graph state therefore consists of a C tensor at each
vertex and a H contracted between neighboring C tensors on
each edge, as illustrated in Fig. 4(b).

3. Family of states |ψ(δ)〉 as PEPS

Finally, we will define the tensor network for the family of
state |ψ(δ)〉 defined in Sec. II B interpolating between between
the AKLT state (at δ = 1) and a graph state (at δ = 0). As these
states can be obtained by applying a product of single-particle
operators

⊗
i Di(δ) to the AKLT state, the tensor network of

|ψ(δ)〉 can be obtained simply by replacing the A tensors of
the AKLT state with the δ-dependent tensors A(δ)βi

α1,α2,...,αdi
:=∑

β ′
i
Di(δ)βiβ

′
i A

β ′
i

α1,α2,...,αdi
. We show in Appendix B that the

tensor network for the state |ψ(0)〉 is equivalent, up to local
unitaries, to the tensor network of a graph state.

We remark that the tensors we have used to define AKLT
states, graph states, and |ψ(δ)〉 have only real entries.

APPENDIX B: LOCAL CONVERSION
OF AKLT STATES TO GRAPH STATES

Here, we will provide a proof of the fact that, on three-
colorable graphs, AKLT states can be converted to graph states
by applying a rank-2 projector to each particle. The result was
originally proved in Ref. [10] for the particular case of spin- 3

2
particles using the stabilizer formalism. Here, we will provide
an alternative proof using tensor networks.

Let G be a three-colorable graph and let |AKLT〉 be the
AKLT state defined on this graph, according to Appendix A 1.
Let {ci ∈ {x,y,z} : i = 1, . . . ,N} be a three-coloring of the
vertices of G, in the sense that ci �= cj if i and j are neighbors
in G.

Define P x , P y , and P z as in Eq. (4). Then, the AKLT state
can be transformed into a graph state by these local operators
in the following sense.

Lemma 6. The following relation holds:

N⊗
i=1

P ci |AKLT〉 ∝
N⊗

i=1

Z(θi)|G〉, (B1)

where |G〉 is the graph state as defined in Appendix A 2,
Z(θ ) = diag[1, exp(iθ )] is a local z rotation by θ and where
θi ∈ {0,π/2,π,3π/4} ∀ i.

Proof. Applying
⊗N

i=1 P ci to the AKLT state attaches
one of P x,P y,P z to the physical index of each tensor.
It is straightforward to show that applying P z transforms
the AKLT tensor A to the graph state tensor C, i.e.,
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FIG. 5. Illustrating how to convert AKLT states to graph states
with single-particle projectors. We consider an AKLT state on a
triangle where a different projector is applied to each particle.
(a) AKLT state on a triangle. (b) State after applying P x , P y , P z

to particles 1, 2, and 3, respectively. (c) Rewriting each edge matrix
as H multiplied on the left and right by z rotations. (d) Absorbing all
z rotations into the C’s. They will appear only on the physical indices
(not pictured).

∑
β ′ (P z)β,β ′

Aβ ′
α1α2,...,αn

= Cβ
α1α2,...,αn

. Now let eiθ�r· �S be the

spatial rotation by angle θ about the axis �r , where �S =
(Sx,Sy,Sz) is the vector of spin operators. [Note that we have
adopted a different convention in our above definition of the z

rotation of a spin- 1
2 particle Z(θ ), so that, for example, Z(π )

equals Pauli Z, however, these two definitions differ only up
to an overall phase.] From the symmetry of the A tensors,
applying the same spatial rotation to the physical index and
all virtual indices leaves A invariant. Furthermore, applying
either P x or P y is equivalent to applying a rotation to the
physical index, followed by applying P z. From this, one can
see that, up to an overall phase,

∑
β ′(P x)β,β ′

Aβ ′
α1α2,...,αn

and∑
β ′ (P y)β,β ′

Aβ ′
α1α2,...,αn

are, respectively,

∑
α′

1,α
′
2,...,α

′
n

Hα1,α
′
1
Hα2,α

′
2
, . . . ,Hαn,α′

n
C

β

α′
1α

′
2,...,α

′
n
,

∑
α′

1,α
′
2,...,α

′
n

H ′
α1,α

′
1
H ′

α2,α
′
2
, . . . ,H ′

αn,α′
n
C

β

α′
1α

′
2...α

′
n
, (B2)

where H = 1√
2
(X + Z) and H ′ = 1√

2
(Y + Z) are complex

Hadamard matrices. Applying the projectors
⊗N

i=1 P ci to
|AKLT〉 thus converts all A tensors to C tensors and attaches
H and H ′ to their virtual indices according to which projector
(P x , P y , or P z) was applied. This is illustrated for a three-
particle AKLT state in Figs. 5(a) and 5(b). To prove the lemma,
we show that this tensor network is equivalent to the tensor
network of a graph state described in Appendix A 2 up to local
z rotations. We will use the fact that for the C tensor, Z(θ )
applied to any virtual index has the same effect as Z(θ ) on the

physical index, i.e.,

Z(θ )αkα
′
k
C

β

α′
1α2,...,αk−1α

′
kαk+1,...,αn

= Z(θ )β,β ′Cβ ′
α1α2,...,αn

(B3)

for any k.
As seen in Fig. 5(b), after applying the projectors (4) to the

state and using Eq. (B2), we are left with a product of matrices
along edges of the tensor network between the C tensors. By
assumption, if i and j are neighboring vertices, ci �= cj . Thus,
there are only three distinct edges we must consider xy, xz, and
yz. These edges have the matrices iHYH ′, iHY , and iYH ′
applied on them, respectively. These can all be expressed as H

multiplied on the left and right by z rotations and by an overall
phase, specifically

iHYH ′ = e
3π
4 iS†H,

iHY = ZHZ,

iYH ′ = iSHS, (B4)

where S = Z(π/2). Using (B3), all z rotations can be moved to
the physical indices of the C. From this we see that the tensor
network is equivalent to the tensor network of a graph state
described in Appendix A 2, up to z rotations on the physical
indices. �

We remark that from the definition of Di(δ) in Eq. (6), we
have P ci Di(δ) ∝ P ci , and therefore the result also holds for
all deformed states |ψ(δ)〉.

Corollary 1. Let G be a three-colorable graph, and {ci ∈
{x,y,z} : i = 1 . . . N} be a three-coloring of G. Define the
corresponding one-parameter family of states |ψ(δ)〉 according
to Sec. II B. Then,

N⊗
i=1

P ci |ψ(δ)〉 ∝
N⊗

i=1

Z(θi)|G〉 (B5)

for all δ � 0.

APPENDIX C: INJECTIVE REGIONS

Here, we will prove a necessary and sufficient condition
for a region of particles in the tensor network of |ψ(δ)〉 to be
injective.

Lemma 7. A region R in the tensor network state |ψ(δ)〉
for any δ � 0 is injective if and only if each vertex in R is
connected to at most one vertex outside R.

Proof. Let R be a region for which every vertex is connected
to at most one vertex outside R, and B̂(R)(δ) be block tensor
for this region (as defined in Sec. III B 2). First, we will show
that this map is injective, i.e., R is injective. We showed in
Appendix B that we can transform the tensors of the state
|ψ(δ)〉 to those of |ψ(0)〉 = |G〉 via a set of rank-2 projectors.
Specifically, we have that (⊗i∈RPi)B̂(R)(δ) ∝ B̂(R)(0). There-
fore, the rank of B̂(R)(δ) is equal to or greater than the rank of
B̂(R)(0) for all δ � 0. Thus, showing B̂(R)(0) is injective will
imply injectivity of B̂(R)(δ) for all δ � 0.

To show that B̂(R)(0) is injective, we will apply a unitary to
its output (which will not change its injectivity) and transform
it into a form that is clearly injective. We define a unitary
W := ⊗

〈i,j〉∈E(CZ ⊕ I )i,j , as a product of CZ gates acting on
all pairs of neighboring particles in the region R where each
(CZ ⊕ I )i,j acts as CZ on the logical subspace HL

i ⊗ HL
j ⊆

045129-10
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FIG. 6. Disentangling a region in the tensor network of a graph
state by applying the unitary W . One can clearly see that the
corresponding map from outgoing virtual indices to physical indices
is injective. (a) A particular region in the tensor network of a graph
state with three outgoing indices. (b) The same region after the unitary
W has been applied to physical indices.

Hi ⊗ H of particles i and j and as the identity on the remainder
of the space. [Given, however, that the image of B̂(R)(0) is
contained entirely in the logical space

⊗
i∈R HL

i , the action of
W on the remainder of the space is not actually important.]

We have illustrated the tensor network describing the map
B(R)(0) before and after applying W in Fig. 6. Using Eq. (A2)
to remove edges, we see that WB(R)(0) describes the identity
map from each outgoing virtual degree of freedom into the
logical subspace HL

i of the particle i it is incident to, with all
interior particles (those without an outgoing edge) placed in
the |+〉 state. The identity map is clearly injective, therefore,
B(R)(δ) is injective for any δ � 0.

It remains to show that having at most one outgoing index
per particle is also a necessary condition for injectivity. Con-
sider a region R containing a vertex with two outgoing indices
α1 and α2, say. Let Aβi

α1,α2,...,αdi
be the tensor corresponding

to this vertex. From its definition, A is symmetric under any
permutation of the virtual indices. Thus, the input |01〉 − |10〉
on indices α1 and α2 of the map B(R)(1) will map to zero. Thus,
B(R)(1) is not injective. As B(R)(δ) ∝ ⊗

i∈R Di(δ)B(R)(1)
for all δ � 0, B(R)(1) being noninjective implies B(R)(δ) is
noninjective for all δ � 0. �

APPENDIX D: STABILITY OF GAPPED REGION

Here, we will provide a proof of Lemma 4, which states
that under the assumptions of Theorem 2, there exists δc > 0
such that HB(δ) is gapped for all δ ∈ [0,δc).

We make use of an argument, previously used in
Refs. [33,34], for frustration-free Hamiltonians. Let H =∑

〈j,k〉 hjk be a two-body Hamiltonian acting on N particles,
and for simplicity we will assume that the interaction graph has
constant degree r . Assume that the Hamiltonian is frustration
free and has a unique ground state with zero energy. If there

exists a constant � > 0 such that H 2 � �H for all system
sizes, then H is gapped.

Without loss of generality, we assume that the Hamiltonian
is scaled such that h2

kl � hkl for all interaction terms. A
sufficient condition for the gap is that there exists a � > 0 such
that for every particle c and for any pair of distinct interaction
terms hic, hcj that act nontrivially on c we have

hichcj + hcjhic � − 1 − �

2(r − 1)
(hic + hcj ). (D1)

To see this, we expand H 2 to get

H 2 =
⎛
⎝∑

〈j,k〉
h2

jk

⎞
⎠ +

⎛
⎝ ∑

〈k,l〉,〈p,q〉:〈k,l〉�=〈p,q〉
hklhpq

⎞
⎠. (D2)

The first term is greater than or equal to H . For the second
term, we can split the sum into terms where hkl and hpq overlap
at one site, and terms where the interactions do not overlap
(disjoint). The disjoint term is clearly positive, thus,

H 2 � H +
⎛
⎝ ∑

〈k,l〉�=〈p,q〉 overlapping

hklhpq

⎞
⎠. (D3)

Using condition (D1) in Eq. (D3), we find that the right-hand
side reduces to �H . Therefore, H is gapped.

Next, we show that if a Hamiltonian satisfying the gap
property (D1) is deformed by a sufficiently small amount, it
will remain gapped.

Lemma 8. Let H = ∑
〈i,j〉 hij be a frustration-free Hamil-

tonian with a unique ground state on a graph of constant
degree r , such that {hij } are projectors satisfying the gap
condition (D1) for some 0 < � � 1. Define the Hamiltonian
H ′ = ∑

〈i,j〉 h
′
ij with interaction terms

h′
ij = (�i ⊗ �j )hij (�i ⊗ �j ) (D4)

for a set of invertible positive operators {�i} which satisfy
�i � I and let μ � 1 be the largest eigenvalue of �2

i (which
we assume is independent of i). Define

�′ := 1 − μ[1 − � + 2(r − 1)(μ − 1)]. (D5)

Then, H ′ is gapped when 0 < �′.
Proof. Note that �′ � � for all μ � 1. We claim that

h′
ij h

′
jk + h′

jkh
′
ij + 1 − �′

2(r − 1)
(h′

ij + h′
jk) � 0 . (D6)

Therefore, if there exists μ such that 0 < �′, the deformed
Hamiltonian will itself satisfy Eq. (D1) and be gapped. We
define � = �2 − 1 � 0, which satisfies (μ − 1)I � �. To
prove Eq. (D6), multiply the left-hand side on the left and
right by �−1

i ⊗ �−1
j ⊗ �−1

k and simplify as follows:

hij�
2
jhjk + hjk�

2
jhij + 1 − �′

2(r − 1)

(
hij ⊗ �−2

k + �−2
i ⊗ hjk

)
� hij�

2
jhjk + hjk�

2
jhij + 1 − �′

2μ(r − 1)
(hij ⊗ I + I ⊗ hjk)

= hij�
2
jhjk + hjk�

2
jhij + 1

2(r − 1)
[1 − � + 2(r − 1)(μ − 1)](hij ⊗ I + I ⊗ hjk) = hij�jhjk + hjk�jhij

+
[
hijhjk + hjkhij + 1 − �

2(r − 1)
(hij + hjk)

]
+ (μ − 1)(hij + hjk) � hij�jhjk + hjk�jhij + (μ − 1)(hij + hjk)
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= hij�jhjk + hjk�jhij + hij (μ − 1)hij + hjk(μ − 1)hjk � hij�jhjk + hjk�jhij + hij�jhij + hjk�jhjk

= (hij + hjk)�j (hij + hjk) � 0.

By multiplying left and right by �i ⊗ �j ⊗ �k , we obtain
Eq. (D6). �

If the terms hij are commuting, then Eq. (D1) will clearly
hold for any 0 < � � 1 as the left-hand side will be positive,
while the right-hand side will be negative. In this case, we have
the following:

Corollary 2. Let H and H ′ be Hamiltonians defined as in
Lemma 8 with the additional property that interaction terms
hij commute. Then, H ′ is gapped if

μ <
1

2
+ 1

2

√
r + 1

r − 1
. (D7)

Proof. As H is commuting, we can set � = 1 in Eq. (D5).
Equation (D7) then follows by solving 0 < �′ for μ and
restricting to μ � 1. �

We will now apply this result to our specific Hamiltonian.
Consider the map B̂(Ra )(δ) from virtual to physical degrees of
freedom on an injective region Ra . We can polar decompose
B̂(Ra )(δ) = Qa(δ)Wa(δ) where Wa(δ) is an isometry onto the
image of B̂(Ra )(δ) and Qa(δ) is an invertible positive operator
that maps the image of Wa(δ) onto itself. As the action of
Qa(δ) on [img Wa(δ)]⊥ is arbitrary, we assume that Qa(δ) is a
square matrix that acts only the img Wa(δ).

Let �a(δ) = γ (δ)−1Qa(δ)−1, where γ (δ) is the smallest
eigenvalue of Q(δ)−1 [which we have included to ensure
that �a(δ) � 1 as is required in Lemma 8]. Consider the
block tensor B̂(a,b)(δ) for two neighboring injective regions Ra

and Rb and let ha,b(δ) be the projection onto the orthogonal

complement of the image of [�a(δ) ⊗ �b(δ)]B̂(a,b)(δ). The
map �a(δ)B̂(a)(δ) ∝ Wa(δ) is proportional to an isometry and
therefore is proportional to B̂(a)(0) up to left multiplication
by a unitary. Therefore, the map [�a(δ) ⊗ �b(δ)]B̂(a,b)(δ) is
equivalent to B̂(Ra∪Rb)(0) up to a product of two unitaries, one
acting on Ra and one acting on Rb. As the interaction terms
�(a,b)(δ) [the projectors onto the orthogonal complement of
the image of B̂(Ra∪Rb)(0)] are pairwise commuting, as we
showed in the proof of Lemma 3, so are ha,b(δ). Thus, the
Hamiltonian

∑
〈a,b〉 ha,b(δ) is commuting and gapped, with a

system-size-independent gap of � = 1.
Now, consider the terms

h′
a,b(δ) = [�a(δ) ⊗ �b(δ)]ha,b(δ)[�a(δ) ⊗ �b(δ)], (D8)

and the Hamiltonian
∑

〈a,b〉 h′
a,b(δ). We see that h′

a,b(δ) and
h′

a,b(δ) have the properties required of hij and h′
ij in Corollary

(2). We also have that the kernel of h′
a,b(δ) coincides with

the kernel of the projector �(a,b)(δ) (i.e., the image of
B̂(a,b)(δ)). Thus for each edge (a,b) we have that h′

a,b(δ) �
η(δ)�(a,b)(δ), where η(δ) is the largest eigenvalue of h′

a,b(δ).
Therefore, HB(δ) = ∑

〈a,b〉 �(a,b)(δ) is gapped for any δ where∑
〈a,b〉 h′

a,b(δ) is gapped. From Corollary 2 we thus conclude
that HB(δ) is gapped when the largest eigenvalue μ(δ) of �a(δ)
satisfies the inequality (D7). Note that from the definition of
�a(δ) that μ(δ)−1 can be computed as the smallest nonzero
eigenvalue of [B̂(Ra )(δ)]†B̂(Ra )(δ), which can be expressed as a
simple tensor contraction.
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