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We study the temperature-dependent quantum correction to conductivity due to the interplay of spin density
fluctuations and weak disorder for a two-dimensional metal near an antiferromagnetic (AFM) quantum critical
point. AFM spin density fluctuations carry large momenta around the ordering vector Q and, at lowest order of
the spin-fermion coupling, only scatter electrons between “hot spots” of the Fermi surface which are connected
by Q. Earlier, it was seen that the quantum interference between AFM spin density fluctuations and soft diffusive
modes of the disordered metal is suppressed, a consequence of the large-momentum scattering. The suppression
of this interference results in a nonsingular temperature dependence of the corresponding interaction correction
to conductivity. However, at higher order of the spin-fermion coupling, electrons on the entire Fermi surface
can be scattered successively by two spin density fluctuations and, in total, suffer a small momentum transfer.
This higher-order process can be described by composite modes which carry small momenta. We show that the
interference between formally subleading composite modes and diffusive modes generates singular interaction
corrections which ultimately dominate over the nonsingular first-order correction at low temperatures. We derive
an effective low-energy theory from the spin-fermion model which includes the above-mentioned higher-order
process implicitly and show that for weak spin-fermion coupling the small-momentum transfer is mediated by
a composite propagator. Employing the conventional diagrammatic approach to impurity scattering, we find the
correction δσ ∝ + ln2 T for temperatures above an exponentially small crossover scale.
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Quantum interference plays a crucial role in the electronic
transport of disordered metals. At low temperatures, the
conductivity is largely dominated by elastic scattering of
electrons off static disorder. A classical description of im-
purity scattering leads to the well-known Drude conductivity
σ0 = e2nelτ/m, where τ is the transport mean-free time, and
e, nel, and m are the charge, density, and mass of the electrons,
respectively. Taking into account interference processes, one
finds corrections to σ0, which are typically small, but exhibit
strong temperature dependence [1]. Already at the one-particle
level, interference of time-reversed trajectories leads to the
weak localization correction [2–4]. In the presence of electron-
electron interaction, coherent scattering off Friedel oscillations
results in the Altshuler-Aronov corrections [1,5–7]. In two
dimensions (2D) and at low temperatures (where electron
motion is diffusive), both types of corrections are logarithmic
δσ ∝ ln T .

Tuning the system to the proximity of a second-order
quantum phase transition, one typically finds that the physics is
determined by critical fluctuations [8]. If at the same time weak
disorder is present, then such critical fluctuations may interfere
with the diffusive modes leading to enhanced temperature de-
pendence of the quantum corrections to transport coefficients.
Examples of such phenomena were discussed in Ref. [9] in the
context of a metamagnetic quantum critical point (QCP) and
in Ref. [10] in the context of the ferromagnetic QCP. In the

*Present address: Institute for Theoretical Physics, University of
Cologne, D-50937, Cologne, Germany.

latter case, the paramagnetic phase possesses a critical region
close to the quantum phase transition which is dominated by
the critical fluctuations of the spin density. This system can be
described in terms of the spin-fermion model [11], which treats
the spin fluctuations and low-energy electrons independently.
Moreover, the spin fluctuations mediate the effective electron-
electron interaction, which for small momenta is more singular
than the usual Coulomb potential. Consequently, coherent
scattering off Friedel oscillations is enhanced: the Altshuler-
Aronov correction evaluated with this effective interaction
exhibits squared logarithmic behavior, δσ ∝ ln2 T (in the 2D
case). Similar behavior was seen by Ludwig et al. [12] in the
effect of gauge-field interaction on fermion transport in two
dimensions.

The situation at an antiferromagnetic (AFM) QCP is quite
different. Here, critical spin density fluctuations carry large
momenta of the order of the AFM ordering wave vector
Q. As a result, via leading-order processes electrons can be
scattered by the AFM fluctuations only between few special
points on the Fermi surface, the so-called “hot spots.” One
might then conclude that the discrepancy between typical
momentum scales of the AFM fluctuations and the diffusive
modes will lead to nonsingular temperature dependence of
the Altshuler-Aronov–type interaction correction [13]. In this
paper, we show that such conclusion would be premature.
The reason is the emergence of a composite collective mode
[14,15] that, while of subleading order in the dimensionless
coupling constant, is singular at small momenta. Interference
between these composite modes and the diffusive modes leads
to a correction to the conductivity that exhibits a singular
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FIG. 1. Temperature dependence of the interaction correction to
conductivity in a 2D disordered metal near an AFM QCP. Red curve:
Drude conductivity with the interaction correction due to hot-spot
scattering [13] σ = σ0 + δσhs. Blue curve: modified temperature
dependence once the correction due to the composite modes is
taken into account σ = σ0 + δσhs + δσc. The dashed extrapolated
curves intersect the vertical axis at σ1 = σ0 + e2/(8π 2λ�) and
σ2 = σ0 − e2/(2π 2λ�). The crossover temperatures T ∗ and T̃ are
defined in the main text.

temperature dependence (see Fig. 1), and thus is more relevant
at low temperatures than the leading-order hot spot scattering
[13].

Theoretical investigations of the resistivity of disordered
AFM metals go back to 1977, when Ueda [16] considered
spin density fluctuations around Q in his calculation of the
resistivity. Treating electron scattering off potential disorder
and the spin density fluctuations on equal footing within the
Boltzmann equation approach, he found an expression for
the correction to the resistivity of a nearly antiferromagnetic,
disordered metal in three dimensions δρ ∝ T 3/2. Twenty
years later, the problem of the quasiclassical resistivity of
disordered AFM metals was revisited by Rosch [17], who
focused on the dichotomy of the “hot” and “cold” manifolds
of the Fermi surface and analyzed three- and quasi-two-
dimensional systems. While in clean systems the less resistive
cold sections of the Fermi surface have been argued [18] to
“short-circuit” the contribution of quasiparticles at hot spots,
Rosch demonstrated that impurity scattering broadens the hot
spots and recovered the T 3/2 temperature dependence (in
contrast to the T 2 behavior found in the clean case [18]).

Quantum corrections in the disordered AFM metals close to
the QCP were recently considered by Syzranov and Schmalian
in Ref. [13] within the spin-fermion model. It was shown that
the interference processes involving the AFM spin density
fluctuations and the diffusive modes are suppressed due
to the large-momentum transfer in the hot-spot scattering.
Technically, at each spin-fermion vertex the arguments of the
electronic Green’s functions are shifted by ∼EF relatively to
each other. Therefore, each additional impurity line results in
the small factor 1/(EF τ ) � 1. The corresponding interaction
correction to resistivity due to the hot-spot scattering was
found to be δρ ∝ T d/2 in d dimensions, in full agreement
with the Boltzmann theory. Thus, diffusive modes appeared to
be irrelevant for transport at the AFM QCP.

However, for higher-order processes the argument of
Ref. [13] breaks down. While the contribution of such pro-
cesses to thermodynamic quantities is less singular compared
to the leading-order results, transport phenomena are affected
by the higher-order processes in a qualitatively different way.
Following Hartnoll et al. [14], we consider the effect of multi-
ple scattering of electrons off the spin density fluctuations. In
the simplest process, a fermion is scattered by two spin density
fluctuations successively via an intermediate off-shell state,
such that the momentum difference between the initial and
final electronic states (near the Fermi surface) can be arbitrarily
small. Such process can be described in terms of scattering
off a composite mode that combines both spin fluctuations.
Recently, such composite modes were shown to renormalize
the quasiparticle mass in a strong coupling theory of critical
spin density fluctuations [15].

The above composite modes mediate an effective electron-
electron interaction with small-momentum transfer. This raises
the question of whether the interference processes involving
this effective interaction and the diffusive modes would give
rise to singular corrections to the conductivity. Here, we
report a positive answer to this question (see Fig. 1). Our
argument consists of two major steps. First, we demonstrate
the emergence of the composite modes in perturbation theory
and find the effective electron-electron interaction. Second, we
follow the standard calculation of the interaction corrections
[1,7] in order to find the effect of the critical composite modes
on electronic transport in 2D disordered AFM metals close to
the QCP.

Our findings are illustrated in Fig. 1 where we plot the
conductivity near an AFM critical point as a function of
temperature. The dominant (in amplitude) contribution to the
conductivity stems from the Drude expression σ0. The red
curve shows the temperature dependence of the conductivity
found in Ref. [13], σ = σ0 + δσhs, where the quantum cor-
rection δσhs arises due to scattering of electrons between the
hot spots induced by the critical spin density fluctuations. The
resulting conductivity is decreasing linearly with temperature
δσhs ∝ −T (which on the logarithmic scale of Fig. 1 shows
as the exponential drop). This behavior should be contrasted
with our main result, i.e., the temperature dependence of
the correction δσc resulting from the interference processes
involving the composite modes. This correction exhibits
two distinct regimes. In a wide intermediate temperature
range, we find an antilocalizing correction with a stronger
than usual temperature dependence δσc ∝ + ln2 T . For the
lowest temperatures, this behavior is replaced by the expected
localizing behavior δσc ∝ − ln T . The crossover between the
two regimes occurs at T ∗ = EF e−1/λ, which is exponentially
small for small effective coupling constant λ. The overall
temperature dependence of the conductivity comprising both
types of corrections is shown by the blue curve in Fig. 1. We
estimate that below a certain temperature scale T̃ , the ln2 T

correction exceeds the leading-order result δσhs.
We describe the disorder in the metal by a random potential

acting on the electrons only. In contrast, if magnetic impurities
are present, both spin fluctuations and magnetic moments of
the electrons couple directly to the disorder. Similar to a single
Kondo impurity in a normal metal, one expects a significant
T dependence of the conductivity. In this paper, we restrict
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ourselves to the simpler case of nonmagnetic impurities, as it
was done in Ref. [13].

The remainder of the paper is organized as follows. In
Sec. I, we introduce the spin-fermion model for the AFM
metal close to the QCP. The composite modes and the
resulting effective interaction are described in Sec. II. In
Sec. III, we introduce the quenched disorder. The subsequent
Sec. IV details the calculation of the interaction correction.
The result is compared to the previously known expressions
and applied to experimental resistivity data in Sec. V. The
closing arguments are presented in Sec. VI.

I. AFM SPIN-FERMION MODEL

In principle, the spin-fermion model is the result of
a renormalization procedure where fermionic high-energy
degrees of freedom are integrated out from a microscopic
lattice model in order to obtain an effective low-energy theory.
We do not attempt a rigorous derivation and, instead, place
qualitative arguments in order to motivate the model.

An AFM metal exhibits an antiferromagnetically ordered
phase below a transition temperature TN . In the ordered phase,
the spins of the electrons, responsible for the itinerant mag-
netism, point in opposite directions on two atomic sublattices.
In the antiferromagnetically ordered phase, the magnetic order
parameter is nonzero and spatially modulated according to
〈Mj 〉 ∼ eiQ·Rj where Rj is a lattice vector. The periodicity
of the order parameter is given by the AFM ordering wave
vector Q. In reciprocal space, this ordering maps to the
magnetic Brillouin zone which is spanned by Q. Above TN ,
in the paramagnetic phase, the electron spins are disordered.
By applying pressure, a magnetic field or by changing the
chemical composition the transition temperature can be tuned
to zero. If this transition is of second order, a QCP separates
the antiferromagnetic and the paramagnetic phase. A typical
phase diagram of an AFM metal is depicted in Fig. 2. Aside

FIG. 2. Typical phase diagram of an AFM metal. T denotes the
temperature and r represents a nonthermal tuning parameter. For
r < rc, the electron spins are antiferromagnetically ordered with
respect to two sublattices. For large values of r > rc, the electron spins
are disordered and the electrons are described by the Fermi liquid
(FL) theory. If the system is tuned close to the transition (following
the arrow in the phase diagram) spin density fluctuations develop,
ultimately becoming soft modes. Within the cone above the QCP
(indicated by the dashed lines), the critical fluctuations are thermally
populated.

from the temperature T , r represents the nonthermal tuning
parameter. By changing the tuning parameter the metal can
undergo a quantum phase transition from the paramagnetic
phase to the AFM phase at T = 0. If the paramagnetic electron
system approaches the QCP at r = rc, spin density fluctuations
pronounce the transition to the antiferromagnetically ordered
phase and, ultimately, become soft modes. Typically, at T > 0
the critical fluctuations persist in thermally excited states in a
cone above the QCP in the phase diagram, indicated by the
dashed lines in Fig. 2.

Our treatment of the AFM quantum phase transition relies
on the following basic assumptions, similar to Ref. [11]: First,
we presume the existence of the AFM QCP of the two-
dimensional metal at T = 0. The AFM ordering is described
by an AFM ordering wave vector Q with a magnitude
comparable to the Fermi momentum |Q| ≈ kF . Even though
the vector Q and the Fermi momentum are independent
quantities, their magnitudes scale with the lattice spacing.
Therefore, it seems to be reasonable to assume that they
are of the same order. Second, the high-energy degrees of
freedom, which are responsible for the antiferromagnetism,
do not affect the low-lying fermionic excitations, i.e., the
quasiparticle picture is still valid close to the AFM instability.
Besides, critical spin density fluctuations emerge near the AFM
second-order quantum phase transition.

The spin-fermion model describes the metal close to
the AFM quantum phase transition in terms of fermionic
quasiparticles and critical spin density fluctuations [11]

S = 1

β

∑
k

	kG
−1
0,k	k + 1

β

∑
q

|φq |2χ−1
0,q

+
√

u

β2L

∑
kq

	k+q[σ · φq]	k, (1)

where 	k = (	k↑,	k↓) is a spinor of Grassmann fields, φq is a
three-component order-parameter field, and σ = (σx,σ y,σ z)
are the Pauli matrices. The summation over imaginary fre-
quencies is implicit in our notation, i.e., k = (iεn,k) and
q = (iωm,q) for fermions and bosons, respectively. While the
fermionic quasiparticles are described by the free-fermionic
Green’s function G0,k , the spin susceptibility χq plays the
role of the propagator of the spin density fluctuations. The
critical excitations are subject to a spin-fermion interaction
with coupling constant

√
u. As spin density fluctuations are

precursors of the AFM order, the peak of the spin susceptibility
lies at the AFM ordering wave vector Q which is typically
a large vector, comparable to the Fermi momentum. As a
consequence, spin density fluctuations carry large momenta.
More specifically, including the effect of low-energy Landau
damping we use the following form of the renormalized spin
susceptibility:

χ−1
q = ξ−2 + (q ∓ Q)2 + γ |ωm| + ω2

m

c2
. (2)

Without AFM long-range order, the spin susceptibilities are
equal for each component of the order-parameter field. q
is the momentum and q ∓ Q measures the small deviation
from the large vector ±Q. Formally, we introduce a cutoff q∗
for the deviations and declare q∗/|Q| � 1 a small parameter
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of our theory. ξ is the correlation length which diverges at the
critical point. Right at the critical point the gap in the excitation
spectrum vanishes and the spin susceptibility is singular for
small deviations from q = ±Q. We neglect the mass term
close to the critical point and set ξ−2 = 0 from now on. γ is a
phenomenological damping constant and c is a velocity.

At low temperatures, the fermionic modes are bound to
a thin shell around the Fermi surface and we cut off the
summation over k at a distance k� from the Fermi momentum
kF where k�/kF � 1. The restriction of fermionic momenta
to the Fermi surface together with the restriction of bosonic
momenta to the respective AFM wave vector Q limits the
phase space of the spin-fermion coupling. The initial and final
fermionic momenta k and k + q are restricted by the cutoff
k� to the Fermi surface and the momentum transferred by the
spin density fluctuations q is restricted by the cutoff q∗ to the
vicinity of Q. As a consequence of momentum conservation,
at the lowest order u, spin density fluctuations can scatter
fermions only between small patches of the Fermi surface
which are connected by Q. These patches are called “hot spots”
since they are coupled to spin density fluctuations prominently
while the remaining Fermi surface stays “cold” in this sense.
As an example, Fig. 3 illustrates the hot spots on the Fermi line
for a generic spherical Fermi surface and the AFM ordering
vector Q = (π/a,π/a) of a square lattice with a magnetic
unit cell of size a. However, the results of this paper are not
restricted to a specific form of Q.

The spin density fluctuations are damped due to the
interaction with fermions at the hot spots. In order to account
for the damping, we introduce the phenomenological damping
constant γ . In fact, γ is related to the spin-fermion coupling
constant. If the damping is due to particle-hole excitations
at the hot spots, the damping constant is determined by the
polarization operator �(Q,iωm) − �(Q,0) ∼ −u|ωm|. Yet,
we do not specify the damping mechanism and treat γ as
an independent input parameter.

FIG. 3. In reciprocal space, the magnetic unit cell of an an-
tiferromagnetically ordered square lattice maps to the magnetic
Brillouin zone which is spanned by the AFM ordering wave
vector Q = (π/a,π/a). Carrying momenta around Q, spin density
fluctuations scatter electrons only between eight hot spots. For
simplicity, we draw a generic circular Fermi line. We emphasize
that the calculations of this paper are not restricted to a specific form
of Q.

→

FIG. 4. Self-energy correction to the fermionic Green’s function
at order u2. The orange lines denote Green’s function of high-energy
fermions shifted by EF from the Fermi surface, the thin solid lines
denote low-energy Green’s functions of on-shell fermions. The wavy
lines represent propagators of spin density fluctuations which are joint
in the definition of a composite propagator, represented by the curly
line.

II. COMPOSITE MODES FROM THE AFM SPIN-FERMION
MODEL

In higher-order processes, AFM spin density fluctuations
can transfer small momenta although a single fluctuation
carries the large momentum Q. A fermion at an arbitrary
point of the Fermi surface can be scattered by a spin density
fluctuation to an intermediate off-shell state and, then, be
scattered back to the Fermi surface. In total, the fermion suffers
only a small momentum transfer. As an example, we consider
a diagram in the perturbative expansion of the fermionic
Green’s function beyond the order of u. At order u2, the
self-energy corrections are represented by diagrams with two
wavy lines of spin density fluctuations. One of these diagrams
is depicted in Fig. 4. As the fermionic Green’s functions
are shifted by a large vector Q at each spin-fermion vertex,
the fermionic Green’s functions between the first and the
second and between the third and the fourth vertex necessarily
describe high-energy fermions for generic external momenta
k. If the first spin density fluctuation carries Q + q, the second
fluctuation carries −Q + q1 and returns the fermion back to
the Fermi surface. q and q1 denote the small deviations from
Q from now on. In total, the double scattering transfers the
small momentum q + q1. In the following, we argue that both
spin density fluctuations can be combined to a composite mode
which effectively carries small momenta.

The interaction correction to the Drude conductivity cor-
responding to such higher-order processes is parametrically
smaller in the spin-fermion coupling ∼u2 as the interaction
correction due to the hot-spot scattering ∼u. However, in a
disordered metal the small-momentum-scattering process may
be boosted by diffusive modes. We ask the question whether
the interplay of composite modes and diffusive modes leads
to qualitatively different and relevant corrections to the Drude
conductivity.

A. Effective low-energy theory for weak spin-fermion coupling

1. Scale separation and integrating out high-energy modes

In this section, we derive an effective low-energy theory
from the spin-fermion model which includes scattering of
fermions via intermediate off-shell states implicitly. To this
end, we extend the fermion sector from the momentum shell
near the Fermi surface up to the bandwidth W of the underlying
lattice model. The bandwidth W is assumed to be sufficiently
large, such that all fermionic intermediate states which can be
reached by Q from the Fermi surface lie within the band.
Formally, we neglect the finite size of the band and take
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W → ∞. The fermion sector is divided into low-energy modes
and high-energy modes with respect to the momentum cutoff
k� of the original spin-fermion model

	<
k ≡ �k�−|k⊥| 	k,

(3)
	>

k ≡ �|k⊥|−k�
	k ,

where k⊥ measures the distance from the Fermi surface. �x is
the usual step function. In order to avoid any complication of
nested Fermi surfaces we assume a generic spherical Fermi
surface. The extended action of the spin-fermion model,
in terms of high-energy modes and low-energy modes, is
conveniently written in matrix form, similar to a two-level
system:

S = Sφ + 1

β2

∑
k1k2

∑
a,b=<,>

	
a

k1

[
Gab

k1k2

]−1
	b

k2
. (4)

The matrix elements read as[
G<<

k1k2

]−1 = β
[
G<

0,k1

]−1
δk1k2 + √

u�k1−k2 ,[
G>>

k1k2

]−1 = β
[
G>

0,k1

]−1
δk1k2 + √

u�k1−k2 ,
(5)[

G<>
k1k2

]−1 = √
u �k1−k2 ,[

G><
k1k2

]−1 = √
u �k1−k2 ,

where we use the notation

�k1−k2 = 1

L

[
σ · φk1−k2

]
�q∗−|k1−k2∓Q| . (6)

The fermionic momentum summations are restricted to the
vicinity of the hot spots by the step function. The dynamics of
the low-energy sector and the high-energy sector are described
by [G<<

k1k2
]−1 and [G>>

k1k2
]−1, respectively. The low-energy

sector is identical to the original spin-fermion model in (1). In
the high-energy sector, the free-fermionic Green’s functions
G>

0,k are shifted by the energy EF relatively to the Green’s
function of the low-energy sector G<

0,k1
. The nondiagonal

elements [G<>
k1k2

]−1 and [G><
k1k2

]−1 describe transitions of
fermions between the low-energy sector and the high-energy
sector due to scattering by spin density fluctuations.

In order to construct an effective low-energy theory which
deals with low-energy fermions 	<

k only, we integrate out the
high-energy fields 	>

k from the functional field integral of the
partition function Z:

Z =
∫

D(	
<
	<)

∫
D(	

>
	>)

∫
D(φ∗φ) e−S

=
∫

D(	
<
	<)

∫
D(φ∗φ) e−Seff . (7)

The occurring Gaussian integration over the Grassmann fields
	>

k is an exact transformation without loss of dynamical
information. The effective low-energy action is the sum of
three contributions:

Seff = S< + Sφφ + S<
	φφ. (8)

S< repeats the original spin-fermion action of (1) in terms of
low-energy fields 	<

k . The additional contributions Sφφ and
S<

	φφ result from the integration procedure. The first additional

contribution,

Sφφ = − Tr ln[G>>]−1, (9)

contains the action of noninteracting high-energy fermions
and, furthermore, describes the impact of the high-energy
fermions on the dynamics of the spin density fluctuations.
The high-energy Green’s function provides the inverse energy
scale 1/EF . For weak spin-fermion coupling, the ratio u/EF

is a small parameter and the dynamical contribution of Sφφ to
the spin susceptibility is suppressed by u/EF � 1. The second
additional contribution,

S<
	φφ = − u

β2

∑
{ki }

	
<

k1
�k1−k2G

>>
k2k3

�k3−k4	
<
k4

, (10)

introduces a new interaction vertex with respect to the low-
energy fermions. G>> denotes the inverse matrix of [G>>]−1,
defined in (5). The structure of the interaction vertex can
be interpreted as successive scattering of fermions by spin
density fluctuations involving high-energy states. A fermion
in an initial low-energy state is coupled to a first spin density
fluctuation and accesses high-energy degrees of freedom
described by the matrix G>>. Subsequently, the coupling to a
second spin density fluctuation scatters the fermion to a final
low-energy state.

The representation Seff is the desired critical low-energy
theory as it contains low-energy fermionic excitations only.
The extended action S describes the dynamics of the system
in terms of an interaction between the low- and high-energy
fermions with coupling constant

√
u explicitly, whereas Seff

describes the dynamics of the system in terms of low-energy
fermions exposed to an effective interaction with coupling
constant u and the interaction vertex �G>>�. In other words,
the effective low-energy action Seff is derived at the expense
of a more complex interaction vertex between the low-energy
fermions.

We cannot treat the effective action exactly and restrict
ourselves to the weak coupling limit. For weak spin-fermion
coupling, the action Seff in (10) is suitable to an expansion in
the small ratio u/EF . Furthermore, the deviations of bosonic
momenta q∗ are small compared with the AFM ordering
wave vectors Q. We only consider the lowest orders in the
expansion of u/EF and q∗/|Q|. The matrix elements of G>>

are determined by the equation

[G]>>
k1k2

= 1

β
G>

0,k1
δk1k2

−
√

u

β
G>

0,k1

∑
k3

�k1−k3 [G]>>
k3k2

. (11)

The free Green’s function of high-energy fermions G>
0,k

contributes a factor of 1/EF such that uG>
0,k introduces the

small parameter u/EF . The matrix G>> can be calculated to
arbitrary accuracy by iterating (11). In this paper, we consider
the leading order in u/EF , i.e., we approximate G>> by the
inverse of the diagonal part

G>>
k1k2

≈ 1

β
G>

0,k1
δk1k2 . (12)
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Inserting the approximation of (12) into (10), the interaction
contribution S<

	φφ reads as

S<
	φφ = − u

β3

∑
k1k2k3

	
<

k1
�k1−k3G

>
0,k3

�k3−k2	
<
k2

= −u

∫
x,x ′

	
<

x �∗
xG

>
0,x−x ′�x ′	<

x ′ . (13)

The momenta k1 and k2 are restricted to the Fermi shell while
k3 is off shell. It is convenient to turn back to the coordinate
representation x = (r,τ ).

The field �x ≡ σ · φx corresponds to the scattering of a
fermion to a high-energy state while the complex-conjugate
field corresponds to the scattering from the high-energy
state back to the Fermi surface. The matrix product �∗

x�x ′

divides the interaction vertex into a scalar channel and a
spin-dependent channel:

[σ · φ∗
x][σ · φx ′ ] = φ∗

x · φx ′1 + iσ (φ∗
x × φx ′ ). (14)

Equation (14) also reveals that the spin-dependent channel
only contributes for a nonlocal interaction. Approximating
the high-energy Green’s function by the inverse high-energy
scale G>

0,k ≈ 1/EF renders the high-energy Green’s function a
structureless constant. In coordinate space, this approximation
corresponds to

G>
0,x−x ′ ≈ 1

EF

δx−x ′ . (15)

Therefore, the interaction vertex in (13) becomes local, in-
stantaneous, and the spin-dependent channel of the interaction
vanishes. The interaction vertex takes the form of a local inter-
action vertex between low-energy fermions and spin density
fluctuations with effective coupling constant u/EF :

S<
	φφ = − u

EF

∫
x

	
<

x 	<
x φ∗

x · φx. (16)

In diagrammatic language, integrating out fermionic high-
energy fields ties two wavy lines of spin density fluctuations
to the same spin-fermion vertex (see Ref. [14]). In Fig. 5, the
integration procedure corresponds to the first arrow. Using
the usual logic of a renormalization group analysis, (16)
corresponds to a new interaction, generated by high-energy
processes. By power counting, this new interaction is less

→ →

=

FIG. 5. Illustration of the integration procedure: In the first
step, two spin density fluctuations φ are tied together to a scalar
vertex φ · φ. The original high-energy fermion line (orange line) is
approximated by 1/EF (orange dot). The composite spin-fermion
vertex translates to a fermion-fermion interaction described by a
composite propagator, represented by the curly line. The composite
propagator Cx−x′ ∼ χ 2

x−x′ combines two propagators of spin density
fluctuations χx−x′ , represented by the wavy lines.

relevant than the leading 	xσ	x · φx term and is usually
neglected. While this is correct if one is interested in the
thermodynamic behavior, it turns out that the interaction in
(16) gives rise to singular corrections to the resistivity of a
weakly disordered metal.

2. Effective fermion-fermion interaction

Finally, we integrate out the order-parameter field φ in order
to obtain the effective fermion-fermion interaction Sint which
is induced by the second-order scattering process:

Z =
∫

D(	
<
	<)D(φ∗φ) e−Sφ−S<

	φφ

=
∫

D(	
<
	<)e−Sint . (17)

We expand the interaction contribution with respect to u/EF .
The first order in u/EF is an inessential shift of the fermion
spectrum. At order u2/E2

F , the composite vertex translates into
the fermion-fermion interaction vertex

Sint = 1

2β3L2

∑
k1k2q

Cq	k1+q	k2−q	k2	k1 . (18)

The effective interaction propagator is the convolution of spin
susceptibilities which we refer to as composite propagator:

Cq = 3Nu2

E2
F

1

βL2

∑
q1

χq1χq−q1 . (19)

The factor of 3 results from the three independent polarizations
of spin density fluctuations. The summation over linearly
independent AFM ordering vectors yields the factor of N .
These vectors are equivalent with respect to adding a reciprocal
lattice vector. The integration of the order-parameter field
corresponds to the transition from the second to the third
diagram in Fig. 5. The composite propagator is represented
by the curly line.

For weak spin-fermion coupling u/EF � 1, the composite
propagator effectively mediates the composite interaction of
(16) and determines the dynamics of the fermions. As both
momenta q1 and q − q1 are small deviations from ±Q and
restricted by q∗, the total momentum transfer of a composite
mode is small. This implies that the composite propagator
transfers small momenta. Fermions on the entire Fermi surface
are subject to the new interaction.

For a disordered system, the question arises as to whether
impurity scattering modifies the composite propagator, i.e.,
whether the composite propagator should be averaged with
respect to disorder (cf. Sec. III). In order to answer this
question, we again consider the self-energy correction of the
fermionic Green’s function in Fig. 4. In principle, impurity
scattering involves the intermediate high-energy fermions as
well as the low-energy states. However, the lifetime 1/EF

of the high-energy states is shorter than the elastic scattering
time τ if we apply the main approximation EF τ � 1. As a
result, impurity scattering is not relevant during the successive
scattering via intermediate high-energy states [19] and we
are able to join the spin susceptibilities to the composite
propagator of (19). Of course, the impurity scattering of
low-energy fermions must be analyzed with great care.
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B. Evaluation of the composite propagator

In this section, we evaluate the composite propagator on
the real axis at T = 0. For d = 2 dimensions the composite
propagator takes the form

CR(q,ω) = Re CR
0 (q̃/q) + Re δCR(γ |ω|/(2q2))

+i Im CR(γ |ω|/(2q2)) , (20)

with the momentum cutoff q̃2 = γEF /2.
The imaginary part of the retarded composite propagator

(in d dimensions) was found in Ref. [15]. We adopt this result

Im CR(q,ω) = 3Nu2

E2
F

∫
d2q1

(2π )2

∫ ω

0

d�

2π

× Im χR
q1

(�) Im χR
q−q1

(ω − �)

≈ λ

νF

sign(ω)
π

2

( |ω|γ
2q2

) 3
2

(
1 + |ω|γ

2q2

) 3
2

, (21)

and introduce the effective dimensionless coupling constant of
the composite interaction

λ = 2N
π3

u2

E2
F

νF

γ
, (22)

where νF denotes the fermionic density of states at the
Fermi level. The imaginary part is a scale-invariant function,
i.e., it only depends on the ratio ω/q2. The integrals are
performed by employing the convolution theorem and by
means of interpolating functions [20]. In the calculation, the
overdamped form of the spin susceptibility is used and the
dynamical contribution ∼ω2 in (2) is neglected, i.e., we assume
that the damping term iγ ω is larger than the dynamical
contribution ω2/c2 for the relevant frequencies. Since the
imaginary part of the retarded spin propagators decays as 1/q4

for large q, the cutoff q∗ is lifted from the momentum integral.
The calculation of the interaction correction to the Drude

conductivity requires both the real and the imaginary parts of
the composite propagator [cf. (35)]. In order to find the real
part, we apply Kramers-Kronig relation [21] to the composite
propagator

Re CR(q,ω) = 1

π
P

∫ ∞

−∞
dω′ Im CR(q,ω′)

ω′ − ω
. (23)

The integral is formally UV divergent. This is a consequence
of the overdamped form of the spin susceptibility which is
inserted in (21). Therefore, we need to cut off the frequency
integral at the scale EF . In doing so, the integral depends
on two parameters: the cutoff energy and the external fre-
quency. The cutoff dependence can be separated from the ω-
dependent part by subtracting the zero-frequency contribution
Re CR(q,ω = 0) ≡ Re CR

0 (q̃/q). The integral of the cutoff-
dependent part yields

Re CR
0 (q̃/q) = 2

π
P

∫ EF

0
dω′ Im CR(q,ω′)

ω′

≈ λ

νF

2

3
ln

[
1 +

(
q̃

q

)3]
. (24)

Here, the ω-dependent part Re δCR(γ |ω|/(2q2)) =
Re CR(q,ω) − Re CR(q,ω = 0) is convergent, hence the cutoff
restriction can be lifted. Then, Re δCR is a scale-invariant
function. In the limit of small and large ratios x = γ |ω|/(2q2),
the asymptotic forms read as

Re δCR(x � 1) � λ

νF

π

2
x

3
2 ,

(25)

Re δCR(x � 1) � − λ

νF

ln(x).

In the static limit ω = 0, the scale-invariant functions are
zero and the composite propagator exhibits a logarithmic
singularity due to the cutoff-dependent contribution. For
x = γ |ω|/(2q2) � 1 the composite propagator takes the
asymptotic form

CR,A(q,ω) � λ

νF

[
ln

(
EF

|ω|
)

± iπ

2
sign(ω)

]
. (26)

The positive and the negative signs refer to the retarded and
the advanced propagators, respectively. The cutoff-dependent
ln(q) contribution cancels the scale-invariant contribution
of Re δCR . The logarithmic singularity cannot be avoided
irrespective of the order of the limits ω → 0 and q → 0.

For a disordered system, the question arises as to whether
the logarithmic singularity of the composite propagator con-
spires with the diffusion pole and produces singular interaction
corrections to Drude conductivity, similar to the Coulomb
interaction.

III. IMPURITY MODEL

At low temperature, the finite conductivity of metals is
attributed to elastic scattering of electrons and static impurities.
Our treatment of impurity scattering relies on a statistical
approach: Under the assumption that the phase relaxation
length of the electrons Lϕ is much smaller than the system
size L, a macroscopic system of size can be regarded as
network of statistically independent subsystems of size Lϕ .
Then, the conductivity of the total system is the average
over a large number of subsystems or the average over all
impurity configurations, i.e., the impurity positions are treated
as random quantities. A measured observable of the disordered
electron system is the impurity average of the respective
physical quantity. The diagrammatic rules of the impurity
averaging are developed by expanding the observable of
interest in the total impurity potential U (r) and by averaging
each term of the perturbation series [1,22]. For the random
impurity potential we assume Gaussian white-noise disorder
with

〈U (r)〉 = 0,
(27)

〈U (r)U (r ′)〉 = 1

2πνF τ
δ(r − r ′) ,

where τ is the elastic scattering time. In momentum space, the
two-point correlation corresponds to a structureless impurity
line which transfers momentum only. Furthermore, we assume
a “good metal,” i.e.,

g0 � 1 or EF τ � 1 . (28)
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Here, g0 = σ0�/e2 denotes the dimensionless conductance.
Within this main approximation, diagrams with crossing
impurity lines are suppressed by factors of 1/EF τ � 1 and we
are able to perform a controlled expansion in this parameter.

Observables of the electron system are typically expressed
as impurity-averaged combinations of Green’s functions. In
particular, the building block of the impurity-averaged Green’s
function

〈GR/A(p,ε)〉 = 1

ε − εp ± i
2τ

(29)

appears as building block. The impurity average of two
Green’s functions together introduces correlations between
two propagating electrons which are represented by impurity
lines connecting the formerly separate fermion lines. The soft
modes of the impurity-induced vertex are the diffuson and
the cooperon channel. The diffuson channel is the geometric
series of ladderlike diagrams with each number of impurity
lines. Summing up the geometric series yields [7]

D(q,�) = 1

2πνF τ

S

S − 1
τ

, (30)

where the function S is defined:

S(q,�) =
√(

i� + 1

τ

)2

+ v2
F q2. (31)

The diffuson channel is the relevant soft mode for small-
momentum differences since D(q,�) exhibits the diffusion
pole for small-momentum difference q. The cooperon channel
leads to the weak localization of electrons which we ignore in
this paper.

IV. INTERACTION CORRECTION: COMPOSITE MODES

For transport in disordered metals we distinguish between
the classical Drude conductivity σ0 and quantum corrections
due to quantum mechanical interference effects in the propa-
gation of the electrons. The quantum corrections fall into two
classes [23]. In the one-particle picture, the interferences in the
propagation of single electrons lead to the weak localization
correction to conductivity [1]. We do not consider this class of
quantum corrections in this paper. The second class is entirely
due to electron-electron interactions beyond the one-particle
picture. These interaction corrections are attributed to the
coherent scattering off Friedel oscillations of the electron
density around the impurities [7].

For a generic long-range electron-electron interaction, the
general form of the interaction correction to conductivity was
found in Ref. [7]. Since the composite propagator C exhibits
a logarithmic singularity at q = 0, this propagator falls into
the class of long-range interaction propagators for which the
general formula is applicable.

A. General form of the interaction correction

Following Ref. [7], the calculation consists of three steps:
(i) Within the linear response, the conductivity is related to the

FIG. 6. Expansion of the current-current correlator to lowest
order in the interaction. Solid lines denote fermionic Green’s function,
curly lines denote composite propagators, black dots denote current
operators.

current-current correlator Q
αβ
r1,r2 (ω) by the Kubo formula

σαβ
r1,r2

(ω) = i

ω

[
Qαβ

r1,r2
(ω) + e2

m
nr1δr1−r2δ

αβ

]
. (32)

The current-current correlator on the imaginary axis
Q

αβ
r1,r2 (iωn) is expanded to the lowest order of the electron-

electron interaction, represented by the diagrams in Fig. 6.
(ii) After the analytic continuation iωn → ω + i0+ of these
diagrams, the (real-valued) dc conductivity is obtained by
performing the zero-frequency limit

σαβ
r1,r2

(ω = 0) ≡ − lim
ω→0

(
Im Q

αβ
r1,r2 (ω)

ω

)
. (33)

(iii) Finally, the conductivity tensor σ
αβ
r1,r2 (ω = 0) is averaged

with respect to impurity configurations according to the dia-
grammatic rules of Sec. III and within the main approximation
1/EF τ � 1. The impurity averaging restores the translation
invariance of the conductivity tensor. Our final result is the
response to a homogeneous electric field which is related to the
impurity-averaged conductivity tensor by spatial integration:

〈σxx(ω = 0)〉 ≡
∫

d(r2 − r1)
〈
σxx

r1,r2
(ω = 0)

〉
. (34)

The impurity-averaged conductivity reflects the isotropy of
the system (without a magnetic field), i.e., the nondiagonal
elements vanish and the diagonal elements are equal. The
interaction correction to conductivity takes the form [7]

δσ = −e2

�
v2

F νF π

∫ EF

−EF

d�

4π2
f ′

(
�

T

) ∫
d2q

(2π )2

× Im
{
CA

eff(q,�)B(q,�)
}

(35)

with the Fermi velocity vF . The diverging function
f (x) = x coth(x/2) requires a frequency cutoff EF .

We include screening of the long-range electron-electron
interaction within the random phase approximation. In the
density channel of the electron-electron interaction, the effec-
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R

RR

A

RR

A A

FIG. 7. Relevant diagrams of the impurity-averaged current-
current correlator in the diffusive limit T τ � 1. R,A denote retarded
and advanced impurity-averaged fermion lines. Multiple dashed lines
indicate diffuson ladders.

tive composite propagator reads as

CA
eff(q,ω) =

[
CA(q,ω) + F

ρ

0

]
1 − [

CA(q,ω) + F
ρ

0

]
�A(q,ω)

(36)

with the Fermi liquid parameter F
ρ

0 which we assume to be of
order unity or less.

We are particularly interested in the interplay between the
composite modes and the diffusive modes and we turn to the
diffusive limit T τ � 1. In this limit, the diagrams of Fig. 7
with a maximum number of diffuson ladders dominate the
correction to conductivity. Performing the integration over
fermionic momenta and real frequencies, the function B and
the polarization operator �A take the explicit forms

B(q,�) = 2Dq2

(Dq2 + i�)3
,

(37)

�A(q,�) = Dq2

Dq2 + i�

with the diffusion constant in two dimensions D = v2
F τ/2.

The third-order diffusion pole of the function B corresponds
to the three diffuson ladders of the diagrams in Fig. 7.

B. Temperature dependence

Our goal is to find the asymptotic temperature dependence
for low temperatures, i.e., for EF /T � 1. For convenience, we
introduce the dimensionless integration variables z = Dq2/�

and ζ = EF /� and rewrite the interaction correction in the
diffusive limit as

δσc(T τ � 1) = −e2

�

νF

(2π )2
Im

∫ ∞

0
dz B̃(z)

×
∫ ∞

1

dζ

ζ
f ′

(
EF /T

ζ

)
C̃A

eff(ζ ) . (38)

Since the function B̃(z) = 2z/(i + z)3 over z decays ∼1/z2

for large z, the main contribution of the integral resides in the
region of z � 1. This allows us to approximate the composite
propagator under the integral by its asymptotic form

C̃A(ζ ) � λ

[
ln ζ − iπ

2

]
. (39)

The effective propagator C̃A
eff(ζ ) is given by the analog of

(36) where we replace �A by the dimensionless polarization
operator �̃A(z) = z/(i + z).

The relevance of screening effects, described by the
polarization operator, depends on the balance between thermal
energy of the fermions and the interaction energy: when the
temperature is lowered, the fermions lose kinetic energy. They
are increasingly influenced by the interaction and redistribute.
This leads to strong screening of the long-range interaction.
At lowest temperatures, strong screening renders details of
the composite propagator unimportant and the specific inter-
action is replaced by a universal interaction propagator. The
universal propagator entails a universal interaction correction
for sufficiently low temperatures.

At sufficiently high temperatures, the influence of the inter-
action is small compared to the kinetic energy of the fermions
and the screening is not efficient. Above a certain crossover
temperature, the screening of the composite propagator can be
neglected and the dynamics of the fermions is governed by the
bare propagator. In this temperature regime, the interaction
correction depends on the specific form of the interaction
propagator.

The logarithmic form of the composite propagator suggests
to introduce the exponentially small crossover temperature

T ∗ = EF e−1/λ , (40)

which separates the temperature regimes of (i) strong screening
T < T ∗ � EF and (ii) weak screening T ∗ < T � EF .

(i) For temperatures well below the crossover temperature
λ ln (EF /T ) � 1, the inverse polarization operator plays the
role of the universal propagator C̃A = −1/�̃A. Then, the
integral yields

δσc(T < T ∗ � EF ) = − e2

2π2�
ln

(
EF

T

)
, (41)

i.e., below the crossover temperature the conductivity is
reduced compared to the Drude conductivity. Equation (41) is
identical to the interaction correction obtained for the density
channel of the Coulomb interaction in the diffusive limit [7].

(ii) For temperatures above the crossover temperature
(but still in the asymptotic limit EF /T � 1), the in-
equality λ ln ζ < λ ln (EF /T ) � 1 holds for the frequency
variable ζ . The unity dominates in the denominator of CA

eff
and we approximate the effective screened propagator by the
bare composite propagator in (39). In the asymptotic limit, we
find the specific temperature dependence

δσc(T ∗ < T � EF ) = + e2λ

8π2�
ln2

(
EF

T

)
, (42)

i.e., above the crossover temperature, the conductivity is
raised compared to the Drude conductivity. Remarkably,
the interaction correction induced by composite modes is
not proportional to powers of the temperature. Instead, the
interference of composite modes and diffusive modes piles
up a strong ln2 T correction. Furthermore, the interaction
correction changes sign from the universal localizing behavior
to a specific antilocalizing behavior.
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WEIß, NAROZHNY, SCHMALIAN, AND WÖLFLE PHYSICAL REVIEW B 93, 045128 (2016)

V. RELEVANCE OF COMPOSITE MODES

The conductivity for a disordered two-dimensional metal near
an AFM QCP consists of three contributions:

σ = σ0 + δσhs + δσc. (43)

The main contribution is given by the Drude conductivity of
the noninteracting electron system σ0 ∝ EF τ � 1.

Two interaction corrections add to the Drude conductivity:
the interaction correction δσhs is induced by AFM spin density
fluctuations which scatter fermions only between hot spots of
the Fermi surface. Adopting the theory of Ref. [13] (which
was focusing on the 3D case), we recalculate this correction
for a two-dimensional metal which we consider in this paper.
Under the assumption of Landau damping, the correction can
be expressed in terms of the coupling constant λ:

δσhs = −e2

�
σ 2

0
π3C(T )

4
√

3
λ

T

EF

. (44)

The function C(T ) = ln (γ T ξ 2) depends weakly on the tem-
perature (ξ denotes the correlation length).

The second interaction correction δσc is caused by the
composite modes. In situations in which our theory applies,
the effective coupling constant λ is small and the crossover
temperature T ∗ ∝ e−1/λ is exponentially suppressed. Then,
δσc is given by the positive ln2 T correction of (42) down to
all experimentally accessible temperatures.

The crossover from δσhs to δσc occurs at low enough tem-
peratures when σhs(T ) < δσc(T ). Setting |σhs(T̃ )| = |δσc(T̃ )|,
we establish the second crossover temperature T̃ . Our theory
predicts that for T < T̃ the correction δσc is dominant.

The temperature scale T̃ is determined by the residual
resistivity ρ0 = σ−1

0 through

T̃

EF

=
√

3

2π5 C(T̃ )

(
ρ0e

2

�

)2

ln2

(
T̃

EF

)
, (45)

and can be calculated from experimental data of resistivity
measurements at low temperatures.

Using the data of Ref. [24] on the electron-doped cuprate
La2−xCexCuO at doping x = 0.17 (we also use the lattice
constant c from Ref. [25]), we find reasonable values of the
parameters of our theory. For the upper crossover scale T̃

below which the ln2 T correction may be observable, we find
the value T̃ ≈ 1.1 K. At the same time, the slope of the linear
part of the resistivity matches (44) with λ ≈ 0.033, which is
consistent with our previous restriction to the weak-coupling
limit. Therefore, the localizing behavior sets in at very small
temperatures T < T ∗ ≈ 10−9 K. In contrast, using the data
reported for the somewhat smaller doping level x = 0.15, we
find a much larger value of λ ≈ 0.31 resulting in a much
higher T ∗ ≈ 240 K. This suggests a possible breakdown of
our weak-coupling approach at this doping level.

Furthermore, our analysis of the linear resistivity data [26]
of the iron pnictide BaFe2(As1−xPx)2 at doping x = 0.33
yields a large effective coupling constant λ > 1. This result
(together with the wide range of the linear behavior up to
room temperature) suggests that the linear resistivity in this
compound has a different origin, different from small pertur-
bations by spin fluctuations and disorder. Similar conclusions
can be drawn for hole-doped cuprate superconductors.

VI. CONCLUSION

In this paper, we have analyzed the interaction correction
to conductivity in a 2D disordered metal near an AFM QCP
with the focus on the interplay between electron scattering
off composite modes of spin density fluctuations and static
impurities. Our study is based on the notion that successive
scattering by AFM spin density fluctuations can, in total,
transfer small momenta and hence can mimic the coherent
scattering off Friedel oscillations leading to an Altshuler-
Aronov–type correction to conductivity.

The effective electron-electron interaction mediated by the
composite modes can be found within the low-energy theory
of the spin-fermion model. Unlike the direct exchange of spin
fluctuations considered in Ref. [13], this effective interaction
involves processes of higher order in the spin-fermion cou-
pling. Assuming the spin-fermion coupling to be weak, we
can describe the leading higher-order process by a composite
propagator (26) given by a convolution (19) of two spin
susceptibilities (2). The real part of the composite propagator
exhibits a logarithmic singularity for small momenta.

Having found the effective interaction capable of small-
momentum transfers over the whole Fermi surface, we
followed the standard route [7] to evaluate the corresponding
quantum correction to conductivity. The peculiar form of
the effective interaction (26) results in two distinct temperature
regimes. For the lowest temperatures, all features of the
composite propagator are washed out by screening and we
recover the standard localizing correction δσ ∝ − ln T , as
expected for generic singlet-channel interactions. However,
the temperature range where screening is effective is limited
by the exponentially small crossover temperature T ∗. Above
the crossover temperature, we find a stronger dependence
δσ ∝ + ln2 T (with a positive sign). As a result, the con-
ductivity is a nonmonotonic function of T , as sketched in
Fig. 1. In terms of the original spin-fermion coupling, the
ln2 T correction is the second-order contribution and has to be
compared to the first-order result (44) (see Ref. [13]). Given
the linear temperature dependence of (44), the second-order
correction dominates at temperatures below the crossover
scale T̃ . We find that this behavior may be observable in
electron-doped cuprates.

An antilocalizing ln2 T behavior was previously reported by
Kim and Millis [9] near a metamagnetic QCP and by Paul et al.
[10] near a ferromagnetic QCP. Our analysis of the corrections
near an AFM QCP shows that the seemingly antilocalizing
ln2 T correction due to the composite modes appears only
in an intermediate (although wide) temperature regime. At
the lowest temperatures T < T ∗, we find the localizing
logarithmic behavior, as expected for a singlet-type interaction.
A quick estimate shows that for a three-dimensional metal the
quantum correction would scale as

√
T .

Would interaction corrections to the impurity vertex change
our results? In the absence of disorder, singular backscattering
due to ferromagnetic fluctuations was found in Refs. [9,27].
Indeed, in a clean system the composite modes considered
in this paper would also lead to singular (logarithmic)
backscattering. However, disorder averaging regularizes the
vertex function. Technically, the regularization comes from
the finite imaginary part in the Green’s functions (29). The
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finite vertex correction can be absorbed in the definition of τ

and does not lead to any qualitative changes in the theory.
Hence, our theory is applicable to disordered metals with
the finite Drude conductivity σ0. In contrast, we expect our
theory to break down if any competing order should emerge
preemptively near the QCP. Instead, our theory assumes that
the normal state of the metal persists until the critical point is
reached.

Our results demonstrate that at low temperatures the
interference between formally subleading composite modes
∼φ · φ and disorder is ultimately more important than the
direct scattering off spin excitations φ. Physically, this follows
from the singular behavior of the composite modes for small
momenta. Consequently, they affect the entire Fermi surface,
in contrast to the first-order scattering processes that are
important only around hot spots. Can this effect be observable
in a specific system? This depends on whether the other, com-
peting phases, such as superconductivity, intervene before the
effects discussed here begin to dominate the low-temperature
transport. We believe that the effect of composite modes may
be observable in the electron-doped cuprates. However, for a
generic QCP the localizing correction at lowest temperatures,
followed by the positive ln2 T correction in the intermediate
temperature regime, are the dominant contributions to the
conductivity of the system.
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APPENDIX: ASYMPTOTIC BEHAVIOR OF THE
INTERACTION CORRECTION

In this appendix, we provide details of the evalua-
tion of the conductivity formula in the asymptotic limit

EF /T � 1. We approximate f ′[EF /(T ζ )]/ζ � �EF /T −ζ /ζ

as f ′[EF /(T ζ )]/ζ decays ∼1/ζ 2 for ζ > EF /T and
f ′[EF /(T ζ )]/ζ ≈ 1 for ζ < EF /T . The frequency integral
is approximated by

∫ ∞

1
dζ

f ′(EF

T ζ

)
ζ

CA
eff(ζ ) �

∫ EF /T

1

dζ

ζ
CA

eff(ζ ) . (A1)

(i) For T < T ∗ � EF or λ ln (EF /T ) � 1, integration by
parts over ζ yields

∫ EF /T

1

dζ

ζ

[
λ
(
ln ζ − iπ

2

) + F
ρ

0

]
1 − [

λ
(

ln ζ − iπ
2

) + F
ρ

0

]
�̃A(z)

� ln

(
EF

T

)(
− 1

�̃A(z)

)

−
∫ EF /T

1

dζ

ζ

−[
λ
(

ln ζ − iπ
2

)]
{
1 − [

λ
(

ln ζ − iπ
2

)]
�̃A(z)

}2 . (A2)

In the asymptotic limit of EF /T � 1, the integral in the second
line of (A2) is proportional to ln [ln(EF /T )]. Thus, for low
temperatures the dependence is governed by the ln T term.

(ii) For T ∗ < T � EF or λ ln ζ < λ ln (EF /T ) � 1 we
approximate the denominator by unity under the frequency
integral

∫ EF /T

1

dζ

ζ

[
λ
(

ln ζ − iπ
2

) + F
ρ

0

]
1 − [

λ
(

ln ζ − iπ
2

) + F
ρ

0

]
�̃A(z)

≈
∫ EF /T

1

dζ

ζ

[
λ

(
ln ζ − iπ

2

)
+ F

ρ

0

]

� λ

2
ln2

(
EF

T

)
+

(
− iπλ

2
+ F

ρ

0

)
ln

(
EF

T

)
. (A3)

The logarithmic behavior of the bare propagator translates
to the squared logarithmic temperature dependence while
the constant contributions produce a subleading logarithmic
temperature dependence.
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[21] K. Elk and W. Gasser, Die Methode der Greenschen Funktionen

in der Festkörperphysik (Akademie Verlag, Berlin, 1979).
[22] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods

of Quantum Field Theory in Statistical Physics, translated and
edited by R. A. Silverman (Prentice-Hall, Englewood Cliffs, NJ,
1963).

[23] I. L. Aleiner, B. L. Altshuler, and M. E. Gershenson, Waves
Random Media 9, 201 (1999).

[24] N. P. Butch, K. Jin, K. Kirshenbaum, R. L. Greene, and
J. Paglione, Proc. Natl. Acad. Sci. U. S. A. 109, 8440
(2012).

[25] A. Sawa, M. Kawasaki, H. Takagi, and Y. Tokura, Phys. Rev. B
66, 014531 (2002).

[26] S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S.
Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K.
Hirata et al., Phys. Rev. B 81, 184519 (2010).

[27] E. Rossi and D. K. Morr, Phys. Rev. B 81, 054443 (2010).

045128-12

http://dx.doi.org/10.1143/JPSJ.43.1497
http://dx.doi.org/10.1143/JPSJ.43.1497
http://dx.doi.org/10.1143/JPSJ.43.1497
http://dx.doi.org/10.1143/JPSJ.43.1497
http://dx.doi.org/10.1103/PhysRevLett.82.4280
http://dx.doi.org/10.1103/PhysRevLett.82.4280
http://dx.doi.org/10.1103/PhysRevLett.82.4280
http://dx.doi.org/10.1103/PhysRevLett.82.4280
http://dx.doi.org/10.1103/PhysRevB.51.9253
http://dx.doi.org/10.1103/PhysRevB.51.9253
http://dx.doi.org/10.1103/PhysRevB.51.9253
http://dx.doi.org/10.1103/PhysRevB.51.9253
http://dx.doi.org/10.1088/0959-7174/9/2/308
http://dx.doi.org/10.1088/0959-7174/9/2/308
http://dx.doi.org/10.1088/0959-7174/9/2/308
http://dx.doi.org/10.1088/0959-7174/9/2/308
http://dx.doi.org/10.1073/pnas.1120273109
http://dx.doi.org/10.1073/pnas.1120273109
http://dx.doi.org/10.1073/pnas.1120273109
http://dx.doi.org/10.1073/pnas.1120273109
http://dx.doi.org/10.1103/PhysRevB.66.014531
http://dx.doi.org/10.1103/PhysRevB.66.014531
http://dx.doi.org/10.1103/PhysRevB.66.014531
http://dx.doi.org/10.1103/PhysRevB.66.014531
http://dx.doi.org/10.1103/PhysRevB.81.184519
http://dx.doi.org/10.1103/PhysRevB.81.184519
http://dx.doi.org/10.1103/PhysRevB.81.184519
http://dx.doi.org/10.1103/PhysRevB.81.184519
http://dx.doi.org/10.1103/PhysRevB.81.054443
http://dx.doi.org/10.1103/PhysRevB.81.054443
http://dx.doi.org/10.1103/PhysRevB.81.054443
http://dx.doi.org/10.1103/PhysRevB.81.054443



