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Renormalization group constructions of topological quantum liquids and beyond
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We give a detailed physical argument for the area law for entanglement entropy in gapped phases of matter
arising from local Hamiltonians. Our approach is based on renormalization group (RG) ideas and takes a resource
oriented perspective. We report four main results. First, we argue for the “weak area law”: any gapped phase with a
unique ground state on every closed manifold obeys the area law. Second, we introduce an RG based classification
scheme and give a detailed argument that all phases within the classification scheme obey the area law. Third, we
define a special subclass of gapped phases, topological quantum liquids, which captures all examples of current
physical relevance, and we rigorously show that topological quantum liquids obey an area law. Fourth, we show
that all topological quantum liquids have MERA representations which achieve unit overlap with the ground
state in the thermodynamic limit and which have a bond dimension scaling with system size L as ec logd(1+δ)(L)

for all δ > 0. For example, we show that chiral phases in d = 2 dimensions have an approximate MERA with
bond dimension ec log2(1+δ)(L). We discuss extensively a number of subsidiary ideas and results necessary to make
the main arguments, including field theory constructions. While our argument for the general area law rests on
physically motivated assumptions (which we make explicit) and is therefore not rigorous, we may conclude that
“conventional” gapped phases obey the area law and that any gapped phase which violates the area law must be
a dragon.
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I. INTRODUCTION

In this paper we make progress towards a proof of the
area law for entanglement entropy in gapped phases of matter
arising from local Hamiltonians. The area law conjecture states
that if ρ = |g〉〈g| is a ground state of a local Hamiltonian
with an energy gap to excitations, then given a subregion
A with state ρA = trĀ(ρ) the entanglement entropy S(A) of
A obeys S(A) ≡ −tr[ρA log(ρA)] � |∂A|. Although the area
law for gapped phases is widely believed to hold, at least for
“conventional” gapped phases, there are no rigorous proofs of
the area law outside one dimension. Hastings’ seminal result
[1] gave the first rigorous proof of an area law for local gapped
Hamiltonians in one dimension. There have since been several
alternative proofs and improvements of Hastings’ result in
one-dimensional systems [2–5]. In more than one dimension
there are various partial results including area laws for gapped
free fermion systems, for certain special kinds of gapped
frustration free systems, and numerous special cases which
have been checked numerically [2–25]. It has also recently
been shown that if one representative (meaning a particular
Hamiltonian) within a phase obeys the area law, then all
representatives within the phase obey the area law [26].

By contrast, the authors have long believed on physical
grounds that “conventional” gapped phases obey the area law
and that the area law is robust within phases. Indeed, we
believe that the area law is robust even within gapless phases
like emergent U (1) electrodynamics, but the existing rigorous
techniques are unable to demonstrate this. This circumstance
raises the following questions: Can we at least give a
convincing, if not rigorous, physical argument for the area law
in “conventional” phases? And what about “unconventional”
phases where physical intuition provides a weaker guide? To
make various physical intuitions into a real argument for the
area law, three things are required. First, we must specify what

is meant by “conventional” phases (our answer, for gapped
states, is the notion of “topological quantum liquids”). Second,
we must characterize the range of possible “unconventional”
phases. Third, we must show that all such phases obey the
area law. In this paper we propose a classification scheme for
gapped phases of matter (which quantifies how conventional
they are) and give a detailed physical argument for the area
law based on it. Our argument for a general area law is
not rigorous and rests on our classification scheme. As part
of the argument, we develop additional tools based on the
idea of reconstructing global states from local data which
are independent of the classification scheme but which rest
on other assumptions. As anticipated in Hastings’ original
work, the techniques necessary to argue for the area law give
additional insight into the structure of gapped phases.

Our approach is based on renormalization group (RG) ideas
and takes a resource oriented perspective. We define the notion
of an s-source RG fixed point in d dimensions as a phase of
matter where we need s copies of the entangled ground state at
linear size L (the resource) along with initially unentangled
degrees of freedom to produce the ground state at linear
size 2L by acting with a quasilocal unitary transformation.1

It follows from our definitions that all s-source RG fixed
points with s < 2d−1 obey the area law. Much of the paper is
concerned with demonstrating that various interesting models
are s-source fixed points and with building tools that relate
s to spectral properties of the Hamiltonian. Ultimately, our

1In our formulation, the RG transformation is reversible. This
assumption can be relaxed to give a more general construction, but
we will not need it here. Relatedly, we are using the term “fixed point”
in the metonymic sense that a fixed point of the RG labels a phase
of matter. The systems we describe will often have finite correlation
length.
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approach is an attempt to make rigorous the simple intuition
that violations of the area law are infrared phenomena, so
to violate the area law a phase of matter should have many
low-energy states.

It should also be emphasized that we are studying quantum
phases of matter, not just isolated gapped Hamiltonians. In
our analysis we make crucial use of the existence of families
of Hamiltonians at varying length scales with uniform local
properties which are all in the same phase; this leaves open
the possibility of isolated cases outside our framework (a
possibility we discuss further below). See Appendix A for
a further discussion of what we mean by a phase of matter.

Aside from the importance of understanding the entangle-
ment structure of gapped phases of matter, e.g., for purposes of
classical simulation, we have a seemingly different motivation
for the constructions presented here. Holographic duality
[27–31] relates quantum many-body systems without gravity
to quantum gravitational systems. It has long been known
that entropy is related to geometry in gravitational systems,
e.g., thermal entropy [32] and entanglement entropy [33].
Reference [34] proposed to construct the dual holographic
geometry from entanglement in the quantum many-body
system using a renormalization group construction like MERA
[35] (see also [36]). Aside from qualitatively matching many
features of conventional holographic duality, it is now possible
to directly derive the gravitational dynamics from the dynamics
of entanglement plus the assumption that “entanglement =
geometry” [37,38]. The proposal of [34] naturally produces the
identification “entanglement = geometry,” but applying this
to a particular model requires that a MERA representation (or
something similar) exists. Our demonstration that such MERA
representations exist for gapped field theories (including
long-range entangled topological theories) thus strengthens
the logic beginning from [34] and ending at quantum gravity.

A. Overview of results and axioms

The overall structure of the argument for the area law is as
follows. We first rule out very highly entangled states using
a thermodynamic argument based on weak spectral assump-
tions. Then we discuss in detail two more-or-less independent
approaches to the remaining range of gapped phases, the
s-source RG fixed point approach and the reconstruction from
local data approach. With certain physical assumptions which
can be proven in some cases and for which we offer general
arguments, both approaches give an area law for phases with
fewer than ecLd−1

ground states on various spaces. Finally,
while neither approach seems able to give a general area law
by itself, the combination of the two does permit us to argue
for a general area law.

In terms of the s-source framework, we argue that gapped
phases with fewer than ecLd−1

torus ground states (d dimen-
sions, size L torus, c a constant) have s < 2d−1 and obey the
area law. We also show that, with a weak assumption about
the thermal free energy, the area law may be violated at most
logarithmically. This argument rules out phases with s > 2d−1

and leaves one interesting case, s = 2d−1, which is dangerous
to the area law. We treat the special case s = 2d−1 separately
and argue such phases of matter either do not exist or obey the
area law.

Throughout this paper we will, with a few exceptions,
consider gapped phases of matter that are stable to arbitrary
weak Hamiltonian perturbations (sometimes this can be proven
[39–42], but we take it as a physical assumption). Except for
translation invariance, symmetry plays no role in our analysis,
and translation invariance beyond rough homogeneity is not
at all essential to the construction. We will also assume
that when the phase of matter possesses degenerate ground
states, those ground states are locally indistinguishable. Local
indistinguishability is a consequence of stability, for if the
degenerate ground states were locally distinguishable then the
degeneracy could be split with a local field and the system
would not be stable.2 Quantitatively, we assume that the ground
states are split by at most an exponentially small amount of
order e−cLα

for some constants c and α (see the Ground State
Degeneracy Lemma in Sec. III B).

Our fundamental assumption is that all stable gapped phases
of matter are generalized s-source fixed points (defined below)
for some s. We will discuss this assumption further, but for now
let us simply note that we know of no gapped phase of matter
that is not plausibly such a fixed point; we refer to a phase
which is not a fixed point as a dragon. (For work towards
constructing a possible dragon, see [43]3). In essence, we are
assuming that all phases of matter are renormalization group
fixed points.

Within our broader analysis an important role is played by
what we call the “weak area law” which asserts that all gapped
states with a unique ground state on any closed manifold
obey the area law for entanglement entropy. We give several
physical arguments for the weak area law. Using the weak
area law plus our basic assumption that all gapped phases
are generalized s-source fixed points, we show that all gapped
phases with torus ground state degeneracy G(L) scaling slower
than ecLd−1

obey the area law. This leaves a small window of
highly degenerate topological phases (with s = 2d−1) which,
if they exist, may violate the area law. We give a special
argument in this marginal case (Sec. VIII) to show that such
phases in fact do not exist. These arguments rely on ideas
about reconstructing quantum states from local data and lead
to additional arguments for the weak area law.

We further define the notion of topological quantum liquids
(a subset of all possible topological phases) which are, roughly
speaking, topological phases that are insensitive to the local

2For example, this restriction rules out a dilute array of decoupled
spins for which there exist linear combinations of degenerate states
with lots of entanglement. A more interesting case is a dilute array of
non-Abelian anyons. Unlike in the spin case, there are no operators
localized at a single anyon that can split the degeneracy. Nevertheless,
as we discuss in Appendix D the anyon array also violates our
assumptions.

3The system described in [43] is similar to two infinite-dimensional
clusters coupled by a weak link. As such, it appears to violate our
assumptions that the space must have a definite dimension and that the
Hamiltonian arises from a Hamiltonian motif (Appendix A). Other
examples of highly entangled states include [9,12]. These states also
fall outside our assumptions since the gap vanishes with increasing
system size, however, they are interesting in that they challenge
standard field theory scalings of entanglement with spectral gap.
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details of the system and to the precise geometry. For example,
the ground state degeneracy of a topological quantum liquid
depends only on long distance data, so the ground state
degeneracy on a d-torus is independent of torus size. The
primary experimental realizations of topological quantum
liquids are the fractional quantum Hall states [44–46]. Any
phase of matter which can be adiabatically deformed from
linear size L to linear size 2L is a topological quantum liquid.
States with ground state degeneracy independent of system
size and shape have also been singled out in [47] and more
recently in [48].

We prove that topological quantum liquids obey the area
law in d > 1. We also show how to produce a MERA
representation using modest resources for all topological
quantum liquids in any dimension. For example, we show that
chiral topological phases in d = 2 have approximate MERA
representations (see [49–53] for important prior work on this
topic; see [54] for a discussion of some obstructions). The
MERA representative has bond dimension ec logd(1+δ)(L) in d

dimensions and achieves unit overlap with the ground state in
the thermodynamic limit. The δ factor arises from truncating
almost-exponentially decaying interactions; any δ > 0 will do,
and we can even achieve a dependence like ec{log(L) log[log(L)]}d as
a limit δ → 0. Although such a MERA is not quite contractible
in time polynomial in L, it is much more easily contracted
than PEPS constructions [17,55,56] of similar bond dimension.
Furthermore, if we do not require such fantastic accuracy in
the thermodynamic limit, our results support the conjecture
that universal properties can be captured with a constant bond
dimension MERA. Our procedure for constructing a MERA is
quite different from one which obtains a MERA by variational
calculation, so it may lead to interesting new algorithms.

We conclude with discussion and conjectures about the ex-
tension of our results to gapless systems. The ideas previewed
in this final section will be discussed in greater detail in a
forthcoming companion paper.

Given the length and complexity of the paper, here is a
brief summary of results and a guide to notation. An attempt
has been made to render the sections modular so that readers
may skip around. The paper may be roughly divided into three
parts. First, the basic s-source RG construction is introduced
and developed (Secs. II–IV). Second, a number of concrete
examples and some elaborations of the basic framework
are discussed (Secs. V–VII). Finally, the more advanced
arguments for the area law, for MERA representations, and for
all field theories having s � 1 are presented (Secs. VIII–X).
The quickest way to proceed is to study the basic s-source
definitions in Secs. II and III and the examples in Sec. V. After
listing the main results and definitions, we briefly indicate the
level of rigor of the various results. The main definitions and
results include the following:

(i) definition of s-source RG fixed points and demon-
stration that a large number of phases fall into this class
(Secs. II, III, and V);

(ii) definition of an inverse state |ψ−1〉 for a state |ψ〉: a
state |ψ−1〉 such that |ψ〉|ψ−1〉 is deformable to a product state
by a quasilocal unitary (Sec. III);

(iii) definition of short-range entangled states: a state is
short-range entangled if it has an inverse state (Sec. III);

(iv) “wormhole array” argument that phases with a unique
ground state on any closed manifold have an inverse state,
implies the weak area law (Sec. III);

(v) demonstration of at most logarithmic violation of the
area law with a weak assumption about thermal free energy
(generalizes Hastings’ argument [17]) (Sec. IV);

(vi) explicit demonstration that a chiral phase (Chern
insulator) is an s = 1 fixed point (Sec. V);

(vii) definition of a topological quantum liquid (TQL): a
phase which can be adiabatically locally deformed, proof that
TQLs are s � 1 fixed points, proof of an area law for TQLs in
d > 1 (Sec. VI);

(viii) definition of generalized s-source RG fixed points,
conjecture that all stable gapped phases are such fixed points
(Sec. VII);

(ix) argument for area law for generalized s-source fixed
points with ground state degeneracy G scaling slower than
ecLd−1

, assumes weak area law (Sec. VII);
(x) reconstruction from local data argument for weak area

law, argument for the entanglement entropy bound S(A) �
O(|∂A|) + log[G(HA)] where G(HA) is the ground state
degeneracy on a space with boundary (Sec. VIII);

(xi) proof that entropy bound S(A) � O(|∂A|) +
log[G(HA)] plus assumption that all phases are s-source fixed
points implies area law (Sec. VIII);

(xii) construction of approximate MERA representative
with ec logd(1+δ)(L) bond dimension (δ > 0) for TQLs in d

dimensions (Sec. IX);
(xiii) conjecture that TQLs have an approximate MERA

representative with polynomial bond dimension, argument for
universal properties from bounded bond dimension (Sec. IX);

(xiv) expanding universe construction for field theories,
argument that all gapped field theories are s � 1 fixed points,
explicit example with Dirac fermions (same universality
class as Chern insulator), discussion of relation to dS/CFT
(Sec. X).

Of these results, the area law for TQLs, the area law for s <

2d−1 RG fixed points, the MERA construction for TQLs, the
demonstration that Chern insulators are TQLs, the logarithmic
bound on area law violations from thermodynamics, the
Dirac fermion field theory construction, and the weak area
law for frustration free Hamiltonians are (or can be made)
rigorous. The weak area law in full generality, the general field
theory constructions, the bound S � O(|∂A|) + log(G), and
the suggestion that system-size-independent bound dimension
in MERA suffices to capture universal properties are given
strong physical arguments. The s-source RG framework (and
the general area law result which relies on it) plausibly applies
to all phases we are aware of, but we cannot rule out isolated
cases outside the framework at the present time.

Notation: A denotes a subregion, L is the linear size
of the whole system, R is the linear size of A. c and k

denote generic constants which do not depend on important
parameters, s specifies the number of copies or the matrix of
RG dependencies. d is the dimension of space, D is the local
Hilbert space dimension. � and m denote gaps, J denotes the
magnitude of terms in the Hamiltonian. G(L) is the ground
state degeneracy on a torus of linear size L; sometimes we
use G(R) to denote the ground state degeneracy on an open
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manifold of size R and G(H ) to denote the ground state
degeneracy of a Hamiltonian H . Ground states are often
denoted |g〉 or |gi〉. Couplings in the Hamiltonian are denoted
gx or sometimes λ and should not be confused with the labels
of ground states.

II. RG-LIKE TRANSFORMATION

We begin by defining an s-source RG fixed point in d

dimensions. The number s specifies the number of nontrivial
resources (“source states”) needed to construct the state of a
larger system in terms of states of smaller systems. Unentan-
gled states always cost nothing and can be added or removed
at will. Note that this first definition is a simplified version
(single type theory) of the full theory (multitype theory)
where we restrict to source states that are identical. Following
(Sec. VII), we define the notion of a generalized s-source
RG fixed point (multitype theory) which we conjecture is a
sufficiently powerful notion to include all gapped phases. The
single type theory is nevertheless quite useful as it illustrates
the main ideas in a simpler setting and describes many cases
of physical interest.

Definition 1 (s-source RG fixed point). A d-dimensional
s-source RG fixed point is a system where a ground state
on (2L)d sites can be constructed from s copies of the ground
state on Ld sites plus some unentangled degrees of freedom by
acting with a quasilocal unitary as in Fig. 1. Unless otherwise
noted, s is assumed to be the smallest value for which the
construction is possible.

A quasilocal unitary is a unitary U generated by time
evolution for a time of order L0 by a Hamiltonian K which is
a sum of terms that are local up to tails decaying faster than
any power. In detail, K = ∑

x Kx and

Kx =
∑

r

Kx,r , (2.1)

L black sites are intercalated with L blue sites using a quasi-
local unitary.  The output is the black state on on 2L sites.  In 
the simplest case (s=0), the blue sites start in product states. 

FIG. 1. A d = 1 version of the RG transformation.

where each term Kx,r is supported on a disk of radius r centered
at x and has norm ‖Kx,r‖ decaying faster than any power
of r .4

Recall that we restrict to stable phases, so the gap does not
close under small Hamiltonian perturbations (i.e., the s-source
fixed point is a completely attractive RG fixed point). We will
relax this assumption for future extensions to gapless states. In
many cases we need only consider 0 � s � 2d−1 (see Sec. IV).
The case s = 0 corresponds to ground states which can be
produced at any size just from product states with a quasilocal
unitary.

As a technical note, for concreteness we focus on coarse-
graining schemes where linear dimensions are halved, e.g.,
a decimation scheme where we map 2d sites to one site.
Nothing in the formalism depends on this choice, so we may
immediately extend our results to other kinds of decimation
schemes. Indeed, some phases of matter in the recent litera-
ture behave best under coarse-graining transformations with
different coarsening factors, and the formalism can easily
accommodate this degree of freedom. We can even grow
the system anisotropically, enlarging some dimensions while
keeping others fixed, but we do not make use of this extra
freedom in this paper.

Let us also be clear about the notion of quasilocality. What
we are considering is a situation where the s copies at scale L

are intercalated and then glued together by a quasilocal unitary
as shown in Fig. 1. We are not gluing together regions at their
boundaries. We are imagining that the s copies exist in the same
space and are merged together locally (like riffling a deck of
cards) with respect to the usual Euclidean metric. Note that the
range of the quasilocal unitary which accomplishes this does
not depend on the system size L.

Finally, we assume that there exists an L0 such that the
local Hilbert space is isomorphic at all scales L � L0. If this
were not so then we could always trivially realize a size 2L

system with local dimension D as a size L system with local
dimension D2d

, so to get an interesting definition we must
make a restriction on the local Hilbert space. Furthermore,
throughout we assume no symmetry aside from translation
invariance, and translation invariance primarily means that
we consider Hamiltonians which are roughly homogeneous
in space. Clearly our approach can be refined by the inclusion
of symmetry (leading to the physics of topological insulators
[58–66]), but we leave this for future work.

Several detailed examples are presented in the following.
As a preview, any trivial insulator is an s = 0 RG fixed point
while the toric code/Z2 gauge theory is an s = 1 RG fixed
point. Haah’s code [67] is an example of an s = 2 RG fixed
point in d = 3 [68] (see also [69]). The concept of an s-source
RG fixed point has been latent for some time. In particular,
the (gapless) case of fermions with a Fermi surface seems to
realize an s = 2d−1 fixed point (although we do not prove
this claim here). Indeed, it is the distinction between the
RG for a conformal field theory (CFT) [70] and a Fermi

4The terms decay with distance r as e−rg(r) where g(r) is any
function with the property that

∫ ∞
1 dr

g(r)
r

< ∞ [57]. For example,
g(r) ∼ r−δ or g(r) ∼ [log(r)]−2 are sufficient. This almost exponen-
tial decay is the origin of the δ factor in our MERA constructions.
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surface [71–73] which we are trying to capture with our
notion of s-source fixed point. However, we will put these
motivations aside for this paper which is concerned almost
exclusively with gapped phases. The notion of an s-source
fixed point shares some similarities with branching MERA
[74], but we emphasize that our construction is different in
various important ways. Chief among them, our formalism
(making use of quasilocal unitaries) is sufficiently flexible to
naturally describe a wide class of phases, while producing a
MERA or branching MERA with its strict causality structure
requires a blowup of complexity.5 Later we will discuss the
precise relation to MERA (see Sec. IX).

The concept of a phase of matter is a primitive notion
discussed in Appendix A. An important property of many
phases is that they can be defined on any space.6 However,
in some cases it is not clear at present how to make the
definition, e.g., with Haah’s code. The phases we consider
must have some part of this flexibility so that they may
be defined on tori and disks of various sizes. Considerably
greater flexibility is available for phases obtained from a
Hamiltonian with two-body interactions after sufficient coarse
graining (e.g., by drilling a lattice of little holes). There is a
large literature on related two-body constructions realizing
interesting topological states, e.g., [75,76]. We conjecture
that at least all phases with s � 1 have such two-body
Hamiltonians. In any event, we will work for the most part
in the simplified setting of tori and disks.7

III. s-SOURCE FRAMEWORK

We now present a number of basic assumptions and results
within the s-source RG framework that will be used extensively
later. The first statement is our basic assumption, namely, that
all gapped phases of matter are generalized s-source fixed
points. The second statement is the weak area law. We offer
physical arguments for both these assumptions, we also later
rigorously prove the weak area law for the restricted class of
frustration free Hamiltonians. Then we characterize how the
entropy of subsystems depends on size via a recursive bound.
We also characterize the growth of ground state degeneracy
as a function of system size. Finally, we show that s can be
restricted to a certain reasonable range with an additional weak
spectral assumption.

5Our framework also preserves translation invariance, where as the
MERA network breaks translation invariance. However, the MERA
construction in Sec. IX shows that a nearly translation invariant
MERA is achievable despite the bias in the network.

6Extending the real time quantum theory to a Euclidean theory
defined on an arbitrary Euclidean spacetime is a nontrivial further
step.

7Interesting phenomena occur when we deviate substantially from
flatness or significantly complicate the topology, e.g., [77], which
studied the toric code on a negatively curved space with extensive
first Betti number. Fascinating as such examples are, we restrict to
flat geometries and small perturbations thereof; one reason for this
is that the area law is less well defined in a hyperboliclike geometry
where volumes and areas scale in the same way.

Conjecture 1 (Fundamental assumption). All stable gapp-
ed phases are (generalized) s-source RG fixed points for
some s.

Evidence. As a warmup, note that all continuum topological
field theories have s = 1 or 0. Indeed, we may place the field
theory (mass gap m) into a slowly expanding universe with
metric ds2 = −dt2 + a2(t)d 	x2 with the scale factor obeying
ȧ/a 
 m (see Sec. X). The adiabatic time evolution from
a = 1 to 2 generates an approximation to the desired quasilocal
unitary transformation. The short wavelength modes which
expand with the universe are the analogs of the unentangled
auxiliary degrees of freedom. Since we need only one copy of
the state to do this evolution we have s � 1. (More details of
this protocol can be found in Sec. X.)

More generally, as we show in the following, generalized
s-source fixed points can accommodate a wide variety of
scalings of entanglement entropy (up to volume law scaling)
and can even support long-range correlations. In other words,
the formalism is quite expressive in terms of the states it can
accommodate. Indeed, the authors know of no gapped phase
which is not plausibly in this class.

For a state to not be in this class, it must be the case that
there is no path in the space of local Hamiltonians (of system-
size-independent length) which connects the Hamiltonian on
(2L)d sites to 2d other decoupled Hamiltonians each on Ld

sites and which keeps the gap open. This must be true even
if we permit the use of extra initially unentangled degrees
of freedom which are returned to their unentangled state at
the end of the adiabatic path. Note that stability implies that
we have an open set in the space of Hamiltonians to work
with, at least in the neighborhood of the fixed points and
we need just one connection between these open sets. The
preceding statements must also be true for all other choices of
coarse-graining scheme. Given the considerable freedom this
construction affords us, we believe it is a plausible fundamental
assumption.

We also tend to the opinion to that a gapped Hamiltonian
which is so radically disconnected from any other gapped
Hamiltonian at smaller scales would be a very unusual beast.
Our RG intuition probably provides very little guidance to the
properties of this Hamiltonian. Nevertheless, it should be said
that our frustration free results (if the Hamiltonian is in this
class) still provide a measure of control independent of the
assumption of being an s-source fixed point. For example, we
can still show that to violate the area law the system would have
to have many degenerate ground states on an open manifold.
Thus, our basic intuition that area law violations are related
to the existence of many low energy states is still partially
preserved.

As a final point in favor of the s-source framework,
we observe that it produces conclusions in harmony with a
variety of independent results. For example, assuming the
entanglement entropy obeys an area law and the subleading
terms have a certain structure, [78] has shown that the number
of locally indistinguishable ground states is bounded by certain
combinations of entanglement entropies. The structure of
subleading terms necessary to have G(L) ∼ ecL is precisely
what is predicted by the s-source framework.

In essence, our fundamental assumption claims that
all phases of matter arising from local Hamiltonians are
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renormalization group fixed points. In any event, the very wide
applicability of the s-source framework justifies its study even
if phases outside the framework are eventually identified.

A. Weak area law

“Physics” Theorem 1 (Weak area law). All gapped phases
of matter with a unique ground state (on any closed geometry)
obey the area law.

Argument. We now present our first argument for the weak
area law. In fact, we establish a stronger result: phases with a
unique ground state on any closed geometry always have an
“inverse state” (defined momentarily). We give an independent
argument for the weak area law in Sec. VIII.

1. Inverse state

To begin, let us define the notion of an “inverse state.” Given
a gapped ground state |ψ〉 defined on some local geometry, we
say |φ〉 (defined on the same geometry) is an inverse state
for |ψ〉 if the tensor product |ψ〉|φ〉 can be deformed into a
product state with a quasilocal unitary. Note that |ψ〉 is also an
inverse state for |φ〉. As an example, if |ψn〉 is a quantum Hall
state with n filled Landau levels, then a state |φ−n〉 with n filled
Landau levels of the opposite magnetic field is an inverse state
for |ψ〉. This is because we may cancel the chiral edge states
between the two states, so while either state alone is nontrivial,
the combination is a trivial insulator.8

Now if |ψ〉 has an inverse state, then |ψ〉 obeys the area law.
Indeed, we have |ψ〉|φ〉 = U−1|0〉2Ld

where U is quasilocal
and we have assumed without loss of generality that ψ and φ

are defined on Ld sites. Then the entropy bound for a quasilocal
unitary implies that

Sφ(R) + Sψ (R) � Rd−1, (3.1)

so both entropies obey the area law separately since they are
both positive. Our goal is thus to show that every phase of
matter with a unique ground state on every closed geometry
has an inverse state.

As an aside, the existence of an inverse state is a good
criterion for calling a state short-range entangled (and is
different from circuit definitions, e.g., [81], which fail to
classify integer quantum Hall states as short-range entangled).
Since phases with an inverse have a unique ground state on any
closed geometry, the ground state can be exactly reconstructed
from local data [82,83], so the inverse-based definition of
short-range entanglement seems closely related to Kitaev’s
definition of short-range entanglement [80].

2. Edge inverse

Intuitively, if a phase has a unique ground state then there is
little interesting happening in the bulk of the phase. However,
the system may display interesting physics if we place it
on a manifold with boundary. In particular, we have the

8The related notion of an invertible topological field theory has
been used recently in [79]. Kitaev has independently developed a
very similar notion [80]. Hastings has proven the existence of inverse
states for free fermions [49].

Decoupled disks with edge states

Disks   hemispheres 

Gapped sphere Hamiltonian 

Glue at equator 

FIG. 2. Coupling H (blue disk) to its orientation reversed partner
Hrev (red disk) along their common boundary, we can produce the
gapped sphere Hamiltonian.

phenomenon of protected “edge” or “boundary” states which
are boundary degrees of freedom that are necessarily gapless
(or otherwise have some necessary low-energy degeneracy).
The canonical example here is chiral edge states in d = 2
dimensions. An integer quantum Hall state has a unique ground
state on any closed manifold, but on any open manifold
the system necessarily possesses chiral edge modes which
transport charge and heat.

These edge states will obstruct attempts to deform the
system to a product state (making chiral states s = 1 fixed
points, for example). Fortunately, every phase has an “edge
inverse”: another phase that can be coupled with the first phase
just along the boundary to gap out the edge states.

To show the existence of an edge inverse, let H be a
Hamiltonian defined on a d-disk which may have protected
edge states, e.g., the top blue disk (d = 2) in Fig. 2. Let Hrev be
the Hamiltonian defined on a d-disk which is obtained from H

by reversing the orientation, e.g., the bottom red disk (d = 2)
in Fig. 2. For example, if H were a quantum Hall system,
the sign of the magnetic field would be reversed in Hrev. Now
imagine deforming these two d-disks into the northern and
southern hemispheres of a d-sphere as in Fig. 2. Then couple
the boundary of H to the boundary of Hrev while keeping
them decoupled in the bulk. The resulting state, for suitable
couplings and perhaps after passing through an edge phase
transition, is the ground state of the original system but defined
on a d-sphere with Hamiltonian Hsphere. Since this is a closed
manifold, the Hamiltonian Hsphere possesses an energy gap,
so every protected edge state may be gapped out by pairing
it with its reverse. Furthermore, if the phase in question has
a unique ground state on any closed manifold, then the edge
inverse, which can be defined analogously for arbitrary open
geometries, always leads to a unique gapped bulk state.

3. Wormhole array

At this point, it is important to note that edge gappability
by itself does not imply that an inverse state exists. Edge
states can always be gapped by coupling to Hrev, but the bulk
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FIG. 3. An array of wormholes in d = 2.

remains nontrivial if it has nontrivial ground state degeneracy.
Indeed, if the ground states are locally indistinguishable, then
no quasilocal unitary can connect the ground states to product
states because product states are locally distinguishable. If
such a quasilocal unitary did exist, we could locally distinguish
the supposedly locally indistinguishable ground states by
choosing a local operator that distinguishes the corresponding
product states and conjugating it with the quasilocal unitary.

However, we now argue that edge gappability plus trivial
ground state degeneracy on any closed manifold implies that
an inverse state exists. To begin, consider such a system with
Hamiltonian H on an open manifold consisting of a d-torus
of linear size L with a periodic array of holes of linear size
Lh and separation Ls . The system may have gapless edge
states around these holes, but we know that such edge states
can be gapped by coupling to Hrev. Hence we introduce an
identical torus with holes supporting Hrev and couple the
two systems along the boundary of the holes. The resulting
coupled system is equivalent to the original system but defined
on a closed “wormhole array” geometry which is illustrated
in d = 2 in Fig. 3. As shown there, we have two layers,
corresponding to H and Hrev, and the layers are coupled with
“wormholes” connecting the boundaries of the corresponding
holes. Since this wormhole array is a closed geometry, the
system, by assumption, possesses a unique ground state on it.
A similar construction was used in [84] to relate topological
ground state degeneracy to topological entanglement entropy.
Reference [85] studied phase transitions that induced an array
of wormholes; here it is important that the introduction of the
wormholes is accomplished adiabatically.

4. Construction of adiabatic path

To complete the argument we make two physical assump-
tions. Assumption 1 (Deformability): Because the system
possesses a unique ground state on the wormhole array for
any set of parameters L, Lh, and Ls , we assume that it is
possible to deform the size and shape of the wormhole array
without closing the gap. Assumption 2 (Microinsensitivity).
We assume that we may make local microscopic deforma-
tions, e.g., creating and pinching off microscopic wormholes
without closing the gap. Both assumptions essentially say that
because the initial and final Hamiltonians are gapped, because
the changes are local, and because the state is completely
featureless, i.e., no bulk physics, no edge physics, and hence
nothing to require a phase transition, it should be possible to
find a gapped path in Hamiltonian space connecting the initial
and final points. In other words, surely we can drill a dilute
array of small holes in the system without closing the gap.

Create microscopic wormholes 
(white holes) 

Pinch off microscopic links 
(grey links) 

Expand wormholes 

Expand wormholes

FIG. 4. The transformation to a trivial state using an expanding
wormhole array. The white spaces denote product states or just empty
space. We have suppressed the wormholes and are effectively viewing
the whole system as a composite of H and Hrec on a system with
boundary.

For example, to drill a single hole, consider the Hamil-
tonian H (η) = (1 − η)Hno hole + ηHhole. Since this is a local
perturbation, finite size effects may be sufficient to keep
the gap open. However, suppose the gap does close along
this path, say at η0. Then we should be able to add to the
Hamiltonian a local perturbation V (η) which only turns on
near η0 and which keeps the gap open. Suppose the two
states that are about to cross are |0〉 and |1〉. Zooming in
on these two states, the Hamiltonian can be put in the form
H (η) ∼ (η − η0)(|0〉〈0| − |1〉〈1|) = (η − η0)Z. The gap may
be kept open by adding an X perturbation, e.g., V (η) = v(η)X
with v(η) a coupling localized in η near η0. We must only show
that X is a local operator, but this follows because |0〉 and |1〉
are indistinguishable far from the hole (they are gapped ground
states of the same stable unique ground state Hamiltonian
modulo a localized perturbation). Hence, the operator which
sends |0〉 to |1〉 is local and we can drill a hole in the system
without closing the gap. Using the locality of the process plus
the stability of the system to weak perturbations (due to effects
from distant holes), we should also be able to drill a dilute array
of holes without closing the gap. A similar argument applies to
the process of expanding the holes, e.g., done a site at a time.

Using Assumptions 1 and 2 (deformability and microin-
sensitivity, respectively), an adiabatic path to a product state
may be found as illustrated for d = 2 in Fig. 4. Begin with two
decoupled layers, one containing H and one containing Hrev,
which are shown as a single system in Fig. 4. Then introduce an
array of microscopic wormholes coupling the two layers. This
can be done without closing the gap by microinsensitivity.
Next expand the wormholes to larger and larger sizes. This
can be done without closing the gap because we know H

coupled to Hrev has a unique gapped ground state and by
deformability. Finally, when the wormholes have expanded to
consume almost the entire system, pinch off the remaining
thin tubes connecting different bulk regions. This can be done
without closing the gap by microinsensitivity. At the end of
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this process we have reduced the system to product states.
Our assumptions imply that a system-size-independent gap
may be maintained throughout this process and that therefore
the duration of the required adiabatic time evolution (as well
as the depth of the resulting circuit approximation) is also
independent of system size.

In d = 1 the introduction of wormholes simply disconnects
the space into many small pieces, so we immediately obtain a
product state. In d > 2 a slightly more complicated recursive
protocol is required. To begin, take two “layers” consisting of
H and Hrev and introduce an array of microscopic wormholes
coupling them as before. Let the wormhole spacing be Ls .
Expand these wormholes until their size is close to Ls (the
generalization of the process in Fig. 4 to higher dimensions).
The expanding wormholes eat most of the d-dimensional
bulk of the system, but leave a set of (d − 1)-dimensional
faces which are still entangled (analogous to the thin gray
tubes at the end of Fig. 4). Now repeat the procedure by
introducing wormholes in the (d − 1)-dimensional faces and
expanding the wormholes to consume the faces. This leaves
(d − 2)-dimensional objects which are then eaten with still
more wormholes and so on. The process terminates when we
reach a one-dimensional network at which point introducing
wormholes simply disconnects the remaining degrees of
freedom into product states.

Thus, the ground state of H + Hrev is an s = 0 fixed point
in any dimension d, and the ground state of Hrev is an inverse
state for the ground state of H . This more general result,
the existence of an inverse state, implies the weak area law.
Note the crucial role played by the wormhole array and the
assumption that the system has a unique ground state on it.

B. Basic s-source results

Lemma 1 (Entropy lemma). The entanglement entropy
S(R) of a region of size R in any s-source RG fixed point obeys
S(2R) � sS(R) + kRd−1 where k depends on the details of the
quasilocal unitary.

Proof. The entropy of a region of size 2R can be no more
than the sum of the entropies of the s regions of size R used to
make it plus a term coming from the quasilocal unitary. Such a
quasilocal unitary can generate at most area law entanglement
[26]. (This result is illustrated in Appendix E.) Although we
have phrased this as a bound, it should describe the asymptotic
behavior provided all s copies are actually being used at every
RG step and the quasilocal unitary is adding some entropy.
Note that we have implicitly assumed that the entropy S(R) is
independent of L provided L � R; this is one example of what
we call insensitivity to boundary conditions in Appendix A.
This assumption is not essential to the bound, but it is part of
what we mean by a phase of matter and can be proven in some
cases.

This bound is similar to the entropy accounting in branching
MERA [74], but our bound is more general because we
allow quasilocal unitaries instead of strictly local circuits. The
extension to quasilocality, while intuitively plausible, is not
immediate and requires the technology in [26]. Furthermore,
for strictly local circuits one has much more control, e.g. over
even the Schmidt rank, but such control is currently lacking
for quasilocal unitaries. �

Lemma 2 (Ground state degeneracy lemma). The ground
state degeneracy G(L) of a s-source RG fixed on a d-torus
of linear size L obeys the recursion relation G(2L) = G(L)s .

Proof. Recall that we are assuming all ground states are
locally indistinguishable. Choose one ground state from each
of the s copies at scale L. By assumption we can construct a
ground state at scale 2L using a quasilocal unitary. However,
because the unitary is quasilocal and because the ground
states are locally indistinguishable, we can actually produce a
different orthogonal ground state at size 2L for every choice
of ground state from each of the s sources at size L using
the same quasilocal unitary. Indeed, the action of all local
Hamiltonian terms, modulo the slight spreading due to the
quasilocal unitary, remains local throughout and so has the
same effect on all ground states. In other words, if we get
a ground state from one choice, we get a ground state for
another choice, because all Hamiltonian terms act the same on
the locally indistinguishable states.

To be precise, we take local indistinguishability to mean
that we have a set of ground states {|gi〉}i=1,...,G such that we
have

|〈gi |O|gj 〉| < ε (i �= j ) (3.2)

and

|〈gi |O|gi〉 − 〈gj |O|gj 〉| < 2ε, (3.3)

for any normalized local operator O and with ε ∼ e−cLα

. To
distinguish ground states we need to act with some operator
supported on Lα sites (called the code distance), thus any exact
ground state degeneracy is broken at order Lα in perturbation
theory which is the origin of the above estimate for ε.

Then, let |ψI (2L)〉 = U |i1〉 . . . |is〉 denote the state ob-
tained at scale 2L from ground states labeled I = {i1, . . . ,is}
(plus product states) at scale L. By definition we have∑

x〈ψI (2L)|Hx(2L)|ψI (2L)〉 = Eg(2L) where {Hx(2L)} are
the local Hamiltonian terms at size 2L and Eg(2L) is the
ground state energy at size 2L. Since U is quasilocal and
Hx(2L) is local, the conjugated operators U †Hx(2L)U are
also quasilocal. Hence, by local indistinguishability we have
〈i1| . . . 〈is |U †Hx(2L)U |j1〉 . . . |js〉 = hx(2L)δi1j1 . . . δisjs

with
hx(2L) a c-number up to exponentially small corrections.
Hence,

∑
x〈ψI (2L)|Hx(2L)|ψJ (2L)〉 = Eg(2L)δIJ up to ex-

ponentially small corrections and we have G(L)s ground states
at scale 2L. �

Lemma 3 (Restriction lemma). Under weak spectral as-
sumptions, we may restrict to s � 2d−1.

Proof. As discussed just below, a weak spectral assumption
on the low temperature thermal free energy implies that
gapped phases obey the area law up to logarithmic corrections.
Assuming all s = 2d−1+α copies of the state at size L are
needed to produce the state at size 2L (otherwise, choose a
smaller s) and that the quasilocal unitary is adding entropy, the
bound in the entropy lemma will be asymptotically saturated.
Then the entanglement entropy scales as S(R) ∼ Rd−1+α , but
this violates the area law worse than logarithmically when
α > 0. When α = 0 a logarithmic violation is consistent with
the entropy lemma. Hence, we must have α � 0 as claimed.

If the quasilocal unitary is not adding any entropy, then we
have a decoupled system which can be understood within the
layer construction (see Sec. V). Apply the argument of the
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previous paragraph to the nontrivial components making up
the layers to reach the same conclusion.

Alternatively, suppose the quasilocal unitary adds no
entropy. In this case the entropy obeys S(2R) = sS(R) and
S(R) ∼ s log(R)S(1). Assuming there is some entanglement
to begin with, this formula gives an entanglement entropy
growing faster than Rd−1 log(R) for s > 2d−1. In fact, even
considering the perverse possibility of the quasilocal unitary
removing entropy, it can only remove an area’s worth of
entropy, so there is a lower bound S(2R) � sS(R) − kRd−1.
For s > 2d−1 it may be verified that the only consistent
possibilities are S = 0 or S growing faster than Rd−1 log(R).
Hence, as claimed s > 2d−1 implies worse than logarithmic
violation of the area law. �

IV. S(R) � Rd−1 log(R) FROM SPECTRAL ASSUMPTIONS

Following [14,17] (see also [13] for an argument for at most
logarithmic violations of the area law with somewhat different
spectral assumptions), we can show that with a weak spectral
assumption the area law can be violated at most logarithmi-
cally. We first review Hastings’ original argument bounding
ground state entanglement by thermal mutual information at

low temperature and then generalize the argument to a wider
class of physically relevant systems, e.g., perturbed conformal
field theories which flow to massive infrared fixed points and
which violate Hastings’ density of states assumption. We also
give an explicit argument that the thermal mutual information
bounds the ground state entanglement even when we have
many locally indistinguishable ground states.

To motivate the assumption, consider a trivial para-
magnet on Ld sites. The Hamiltonian is just a lo-
cal magnetic field which favors the spins to align with
the field, and the gap is �. The number of excited
states at energy E (between E and E + �, say) scales
like

D(E) ∼ D0
(Ld )E/�

(E/�)!
, (4.1)

where D0 is some constant. In other words, we can flip E/�

spins, and these flipped spins can be on any of the sites, but spin
flips are indistinguishable so we must divide by the factorial.
In fact, the above formula overestimates D(E) because once a
spin is flipped, we cannot flip it again, so the correct formula
is actually

D(E) ∼ D0
1

(E/�)!
Ld (Ld − 1)(Ld − 2) . . . [Ld − (E/�) + 1]︸ ︷︷ ︸

(E/�) factors

. (4.2)

This formula is bounded by the form in Eq. (4.1), so below we
assume that Eq. (4.1) bounds the true spectral density (with
some system-size-independent constant �).

Now let P denote the ground state projector and let ρ(T ) =
e−H/T /Z be the thermal state of the system. Clearly we have

lim
T →0

ρ(T ) = P

G
, (4.3)

where G = tr(P ) is the ground state degeneracy. We would
like to now approximate the ground state projector by taking
a small but nonzero temperature.

We can easily compute the trace distance between ρ(T ) and
P/G to be∣∣∣∣PG − ρ(T )

∣∣∣∣
1

= 1

G
− 1

Z(T )
+ Z(T ) − G

Z(T )
. (4.4)

We have set the ground state energy equal to zero and then used
the fact that Z � G. We want the difference in trace norm to go
to zero like L−q to achieve high overlap in the thermodynamic
limit.

To achieve this, we may set T = �
κ log(L) . Then we write the

partition function as

Z = G +
∑
E>0

D(E)e−E/T

� G +
∑
E

D0

(
Ld

)E/�

(E/�)!
e−κE log(L)/�. (4.5)

Introducing the variable x = E/� we have

Z � G + D0

∞∑
x=1

(Ld−κ )x

x!
= G + D0

(
eLd−κ − 1

)
. (4.6)

If κ > d then the term in the exponent is going to zero at large
L and we have

Z � G + D0L
d−κ , (4.7)

and setting κ = d + q provides the desired accuracy in trace
norm.

We now use the property that the mutual information
between any region A and its complement Ā in such a thermal
state obeys [14]

I (A,Ā) � J |∂A|/T , (4.8)

where J is the norm of the local Hamiltonian terms. This bound
is proven by comparing the free energy, defined as F (ρ) =
tr(ρH ) − T S(ρ), of ρAρĀ to the free energy of ρAĀ and using
F (ρAρĀ) � F (ρAĀ) (the thermal state ρAĀ minimizes the free
energy). Using our expression for T we find that the mutual
information is bounded by

I � κJ

�
|∂A| log(L). (4.9)

The mutual information in the thermal state is also close to
the mutual information in the equal weight mixture of ground
states as follows from Fannes’ inequality [86,87] provided
q > d. Hence, the mutual information of any region A of
linear size R in the equal weight mixture of ground states is
bounded by ∼Rd−1 log(L).
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The above arguments also go through if the ground states
are only approximately locally indistinguishable and split by
an exponentially small amount.

A. Entanglement entropy from mutual information

To compute the actual entropy of the region A in the equal
weight mixture we need a little more work. First, suppose that
A is small enough so that the ground states are still locally
indistinguishable with respect to observables supported on A.
Recall we assume locally indistinguishable ground states up
to exponential corrections, in the sense of Eqs. (3.2) and (3.3).
With these definitions, any finite region of a sufficiently large
system satisfies the criterion of local indistinguishability. Now
the state of region A is

ρA = trĀ

(
P

G

)
= 1

G

G∑
a=1

trĀ(|ψa〉〈ψa|), (4.10)

where |ψa〉 are the ground states. By the assumption of local
indistinguishability we have trĀ(|ψa〉〈ψa|) ≈ trĀ(|ψb〉〈ψb|)
for all a and b. Thus, the sum over a is a sum over identical
terms, so the sum cancels the overall factor of G and we find
that the state of A in the equal weight mixture of ground states
is approximately the state of A in any particular ground state.

What about the state of Ā? We have

ρĀ = 1

G

G∑
a=1

trA(|ψa〉〈ψa|), (4.11)

but now Ā is too large to guarantee local indistinguishability.
However, this is now useful because the states ρĀ,a =
trA(|ψa〉〈ψa|) must be orthogonal. Let {Pa,1 − Pa} be the
projective measurement which distinguishes ρĀ,a from all
other states ρĀ,b so that we have tr(PaρĀ,b) = δa,b. It fol-
lows from positivity of PaρĀ,bPa that PaρĀ,bPa = ρĀ,aδa,b

and that (1 − Pa)ρĀ,b(1 − Pa) = ρĀ,b(1 − δa,b). Hence, we
have ρĀ,aρĀ,b = PaρĀ,aPa(1 − Pa)ρĀ,b(1 − Pa) = 0 as de-
sired. With the assumption of orthogonality plus the above
results for the entropy S(ρA) we have

S(ρĀ) = log(G) + S(ρA). (4.12)

Hence, the mutual information I (A,Ā) = S(ρA) + S(ρĀ) −
S(ρAĀ) is given by I (A,Ā) = 2S(A), so the entanglement
entropy of region A in any ground state is approximately half
the mutual information obtained above.

Above we bounded the entropy of a subregion of size R by
Rd−1 log L (recall that L is the whole system size). To see that
the subsystem entropy actually satisfies the stronger bound
Rd−1 log R, we consider a position-dependent temperature.
Consider a temperature that is roughly T0 within the region
and decays like 1/x outside the region, where x is the distance
from the center of the region. [Supposing the region in question
is a disk of radius R, a good choice is T (x) = T0

R√
x2+R2 ]. The

Fannes inequality again bounds the difference in entropies
between Pg and ρT (x) ≡ Z−1 exp (−∑

x
1

T (x)Hx) in terms of

their trace distance, which is Z−1 ∼ exp(+F/T0), where F is
the free energy in the state ρT (x) (with the ground state energy
set to zero). A simple local estimate for the free energy gives
F ∼ Rd exp (−�/T0) (and not Lde−�/T0 ). Therefore, ρT (x)

can be used to approximate the mutual info between A and its
complement in the ground state. In particular, we need only
choose T0 to be of order �/ log(R) to get close to [within
1/poly(R)] the true ground state, yet the local terms in the
mutual information bound are finite (because the temperature
only gets low outside the region in question).

B. Generalized argument for massive deformations of CFTs

Unfortunately, not all systems obey the spectral assumption
discussed above. For example, consider a massive relativistic
field φ. Even with the mass gap m, the density of states at high
energies scales like

D(E � m) ∼ exp(cT (EL)d/(d+1)), (4.13)

a result which is fixed by scale invariance and thermodynamics
at high temperature (cT is a constant). Since we will consider
field theories explicitly in Sec. X, it is important to understand
this case.

Of course, one may object that if a field theory is properly
regulated, then perhaps the scaling of D(E) in the previous
section can be recovered from the physics of the regulator.
Perhaps this is so in some cases, but it is a physically
irrelevant objection because violations of the area law should
have nothing to do with microscopic details. In fact, we can
show directly in the continuum that the same argument of
the previous section, even with the CFT scaling of D(E)
at high energies, gives at most logarithmic violation of the
area law for gapped field theories. The argument is identical
except that we assume the thermal free energy scales like
F = −T log(Z) ∼ Lde−�/T at low temperature. This scaling
is satisfied by all gapped field theories, for example, despite
the fact that these field theories violate the above spectral
assumption above at high energies. We now give a free field
example to demonstrate the argument.

To carry out the argument in the previous section we need
to know the density of states D(E) of a massive free boson
or fermion field in d dimensions. Since we will be especially
interested in the limit of low temperatures, where we have a
dilute gas of particles, both types of particles are effectively
classical and their statistics become irrelevant. We focus on
the boson case for simplicity.

The density of states is by definition

D(E) =
∑
{nk}

δ[E − E({nk})], (4.14)

where E({nk}) = ∑
k εknk , εk = √

k2 + m2 is the relativistic
dispersion relation, and nk is the number of particles in mode
k. We can easily develop an expression for this quantity, but in
fact what we really need is the partition function. Since the total
density of states can be written as a many-fold convolution
(over all k) of each mode’s density of states and since the
partition function is essentially the Laplace transform of the
density of states, we have a simple formula for the partition
function as a product of the partition functions of the individual
modes.
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That is, we have

Z(T ) =
∫

dE D(E)e−E/T =
∏
k

∑
nk

e−εknk/T

≈
T →0

∏
k

(1 + e−εk/T ). (4.15)

Taking the logarithm of both sides we obtain

log[Z(T )] =
∑

k

log(1 + e−εk/T ) ≈ Ld

∫
ddk

(2π )d
e−εk/T .

(4.16)

When T 
 m, the integral over k may be well approximated
as ∫

ddk

(2π )d
e−εk/T ≈ cde

−m/T (mT )d/2 (4.17)

with cd a dimension dependent constant.
If we now wish to have the total partition function close to

one we must have

Ldcde
−m/T (mT )d/2 ∼ ε 
 1. (4.18)

This is easily satisfied if we take

T ∼ m

log(Ld/ε)
, (4.19)

and even if we demand ε ∼ 1/Lq , we can achieve this with
only a logarithmically small T .

More generally, it should be clear that what we require to
demonstrate an area law up to at most logarithmic violations
is a low temperature free energy F of the form

F = −T log(G) + Fexcited, (4.20)

where Fexcited is extensive and decays as e−�/T . This suffices
to bound the mutual information. With the same assumptions
about the scale of the failure of local indistinguishability, the
entanglement entropy can be bounded as well. This formula
will also be useful later when we argue for the area law in
Sec. VIII.

V. EXAMPLES

In this section we give numerous examples to flesh out the
formalism. We also discuss in more detail how to construct the
quasilocal unitary which maps size L to size 2L.

A. Trivial insulators, any d

Any trivial insulator with an energy gap � that is inde-
pendent of system size is an s = 0 RG fixed point (even if
it is protected by a symmetry) because we can construct a
quasilocal unitary transformation (which may not commute
with the symmetry) which produces the ground state from a
product state.9 This is because by the definition of a trivial
insulator there is a path H (η) in the space of Hamiltonians

9It is worth mentioning that the ground state of quantum chromo-
dynamics (QCD) in the context of Hamiltonian lattice gauge theory,
say, is likely an s = 0 fixed point.

such that H (0) has a product ground state and H (1) is
the Hamiltonian of the trivial insulator. With this path in
Hamiltonian space we can construct the required quasilocal
unitary.

Define the quasiadiabatic generator

−iK(η) =
∫ ∞

−∞
dt F (t)eiH (η)t ∂ηH (η)e−iH (η)t (5.1)

with F a filter function [88,89]. F (t) is a fast-decaying, odd
function of t with the following properties. First, its Fourier
transform F̃ satisfies F̃ (ω) = − 1

ω
for |ω| � � and second,

F̃ (ω = 0) = 0. K(η) is designed to do the following job: when
acting on the ground state |ψ(η)〉 of H (η) it outputs i∂η|ψ(η)〉
as defined by first order perturbation theory. The assumption
of a finite gap is necessary to keep K(η) quasilocal. Once we
know that K(η) is quasilocal, then we know that it generates
a quasilocal unitary that maps the product state to the trivial
insulator ground state. The quasilocality of K(η) also implies
that all trivial insulators obey an area law [26].

To get a sense of what K(η) is doing, consider a family of
gapped Hamiltonians defined on L spins of the form

H (θ ) =
L∑

x=1

�

2
[Zx cos(θ ) + Xx sin(θ )]. (5.2)

Observe that H (θ ) is gapped with gap � for all θ . We could
then appeal to the adiabatic theorem to argue that if we vary
θ slowly the time evolved state will approximately follow the
instantaneous ground state. However, even with a finite gap
there will typically be some small probability p of error, e.g.,
a transition into a local excited state. Since the probability
of error is independent between sites, it follows that the total
probability to remain in the ground state of the whole system
is (1 − p)L. Even if p is quite small, for a sufficiently large
L there will always be an excitation somewhere in the system
and we will no longer be in the global ground state.

There are three responses to this fact. The first response is
to say that we just do not care if the system has a (roughly)
exponentially small density of excitations since this is not
expected to modify physical properties except perhaps at
exponentially long times, etc. And such a nearly exponential
scaling is achievable since the probability p of error can
typically be made nearly exponentially small in the gap times
the time scale τ of the adiabatic evolution: p ∼ e−(�τ )1−δ

. The
second response is to say that if we really want close to zero
excitations, we need only make p ∼ 1/Lq for some sufficiently
large q. Assuming p ∼ e−(�τ )1−δ

we may take τ ∼ log1+δ(L),
an evolution time growing very modestly with system size.
The third response reminds us that the above concern is
silly: there is another Hamiltonian H̆ (θ ) which is a sum of
single spin operators which generates a time evolution that
exactly maps the ground state of H (0) to the ground state of
H (θ ). Identifying θ = η, the quasiadiabatic generator K(θ ) is
nothing but an explicit construction of a Hamiltonian like H̆ (θ )
which generates a time evolution that exactly maps ground
state to ground state. [For the example (5.2), the quasiadiabatic
generator (5.1) evaluates to K(η) = ∑

x Yx , which clearly
generates a rotation from Z to X without incident.]

Returning to the general case of a gapped local Hamiltonian,
we still have the first two responses above and they may
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be sufficient for many purposes. However, it is now less
obvious that the third response remains valid, that there exists a
local Hamiltonian like H̆ (η) which generates a time evolution
that maps ground states to ground states. Remarkably, the
quasiadiabatic generator K(η) can still be defined and, at the
cost of a mild weakening of strict locality to quasilocality,
generates a time evolution which exactly maps ground states
to ground states. Note that this does not preclude the existence
of a strictly local Hamiltonian which does the same job, but
a quasilocal generator like K(η) is sufficient for almost all
purposes.

B. Chiral insulators, d = 2

Examples here include p + ip superconductors, integer
quantum Hall states [90,91], the E8 state of bosons [92], and
various kinds of chiral topological states such as fractional
quantum Hall states [44,45]. The distinguishing feature of this
class is that any system in it, when placed on a manifold with
boundary, supports chiral edge modes which cannot be gapped
[93].

On general grounds, we can argue that such insulators are
s = 1 fixed points. For example, in the context of a coupled
island construction it is possible to remove some faction of the
islands and place them into product states provided the rest of
the islands remain coherent. We cannot do this simultaneously
for all islands because the system is not an s = 0 fixed point,
but it is possible to remove a finite fraction of the islands.
Later we will give a very general field theory argument for
s = 1 which applies to various field theoretic representations
of these phases.

In the remainder of this section we would like to give an-
other construction for chiral insulators using band engineering
in a free fermion limit. For concreteness, we consider the
case of integer quantum Hall states in the guise of Chern
insulators. A simple lattice model for a Chern insulator [94]

is obtained by taking a square lattice with two orbitals cra

per site r = (x,y) and Hamiltonian H = ∑
k c

†
khkck (cka =

L−1 ∑
r eikrcra) where

hk = tAB[sin(kx)X + sin(ky)Y ]

+ [m + tAB(cos kx + cos ky)]Z. (5.3)

If 0 < m < 2tAB then at half-filling this system is a gapped
Chern insulator with Chern number C = 1.

Introduce a Q = (π,π ) perturbation which doubles the unit
cell. The perturbation has the form �1H = ∑

r V (−1)x+yc
†
r cr .

The resulting k space Hamiltonian is thus

h̃k =
(

hk V

V hk+Q

)
. (5.4)

We then obtain the band structure for all V and find that up to
V = 1 the bulk gap remains open. At V = 0.8 the two filled
bands below the gap are themselves separated by a gap with the
band nearer the chemical potential carrying C = 1 and with
the other band carrying C = 0. Having achieved a nontrivial
separation of the original Chern band into a nontrivial band
and a trivial band, we may now add additional perturbations
to manipulate the trivial band. In fact, we may deform the
trivial C = 0 band into a perfectly flat perfectly localized
band which forms an independent trivial insulator supported on
L2/2 sites.

The specific perturbations which accomplish this are

�2H = 1

2

∑
r∈A

tAA[c†r (Z − iX)cr+x−y + c†r (Z − iY )cr+x+y

+ H.c.] +
∑
r∈B

uc†rZcr , (5.5)

where A/B refer to the two sites of the enlarged (by the V term)
unit cell. In momentum space, this is �2H = ∑

k c
†
k�2h̃kck

with

�2h̃k =
(

tAA[2 cos(kx) cos(ky)Z + sin(kx − ky)X + sin(kx + ky)Y ] 0

0 uZ

)
.

The tAA term is a hopping term within the A sublattice of
the same form as the original hopping; to preserve the gap, we
must turn tAA on as we turn off the hopping between sublattices
tAB . The u term freezes the spins of the B-site particles. A
specific protocol for varying parameters between (5.4) and
a Hamiltonian where the B sites are decoupled and host a
completely trivial insulator, without closing any gaps, is given
in Table I.

This construction can be performed two times to go from
L2 to L2/2 to L2/4 sites supporting the Chern insulator.
Furthermore, since all manipulations preserved the bulk gap,
the quasilocal generator K(η) defined above generates a
quasilocal unitary that implements the coarse graining. Hence,
such Chern insulators are s = 1 fixed points. This also implies
that they obey an area law.

Given a quasilocal evolution generated by K implementing
an s-source RG transformation, the entropy S(2R) of a region

of linear size 2R in the new 2L linear size system obeys

S(2R) � sS(R) + kRd−1, (5.6)

where S(R) is the entropy of the same region type at size R in
the linear size L system and k is a number dependent on the
details of K . With s = 1 the bound (5.6) is easily iterated to
obtain

S(2log(R)) �
log(R)∑
m=1

k

(
2log(R)

2log(R)−m

)d−1

� k′(2log(R))d−1 = k′Rd−1. (5.7)

Hence, the entropy is consistent with the area law.
One can also extend the argument to phases with chiral

edge states and anyon excitations. In this context it is useful to
note that discrete gauge theories in d = 2 have exact MERA
representations and hence are s = 1 fixed points [96–98], so
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TABLE I. The details of the Chern band-folding protocol. Parameters are in units of m. We checked that the gap stays open along a linear
interpolation between each of these these checkpoints, and (therefore) that the Chern numbers of the four bands remain (0, − 1,1,0) from top
to bottom. The tricky part is gradually turning off tAB while turning on tAA. A movie of the resulting band-folding is available as part of the
Supplemental Material [95].

tAB −V u −tAA Description of step

1 0 0 0 Original band structure
1 0.8 0 0 Turn up (π,π ) potential V , double unit cell
1 0.8 1 0 Turn on B-site field u

1 0.8 1 0.4 Turn on AA hopping. The sign is important
1 1.3 1 0.4 Turn up (π,π ) potential
0.5 1.3 1 0.4 Turn down AB hopping
0.5 1.3 1 0.6 Turn up AA hopping
0.3 1.3 1 0.6 Turn down AB hopping
0.3 1 1 0.6 Turn down (π,π ) potential
0.3 1 1 0.8 Turn up AA hopping
0 1 1 0.8 Turn off AB hopping
0 1 1 1 Turn up AB hopping
0 1 5 1 Crank up B-site field with impunity

0 0 5 1 Turn off V →
B-site bands
become flat,

decouple.

A sites have
original band structure,

rotated by π/4

there is no obstruction to bringing anyons into the picture.
Using a similar gauge theory picture, we can exhibit wave
functions for fractional quantum Hall states by projecting
copies of free fermion chiral states onto a gauge invariant
subspace [99]. Adiabatically deforming the state of the partons
from size L to size 2L produces a short-ranged quantum Hall
state which adiabatically deforms as well, and it is quite
plausible that such a state is the ground state of a local
Hamiltonian. The analysis of discrete gauge theories can also
be extended to higher dimensions to exhibit exact MERAs for
a variety of p-form gauge theories.

Before ending this section, we give one example with chiral
edge states and topological order analogous to the model in
[92]. Consider spinless fermions fr hopping on some two-
dimensional lattice with mean-field-like pairing Hamiltonian

Hf =
∑
rr ′

wrr ′f †
r fr ′ +

∑
rr ′

�rr ′frfr ′ . (5.8)

The couplings in Hf are chosen so that the ground state of
Hf is a ν = 1 p + ip superconductor. Now, introduce spins
σ z

rr ′ living on the links, and for every term in the mean-field
fermion Hamiltonian choose a path γrr ′ connecting r and r ′.
Defining W [γrr ′ ] = ∏

�∈γrr′
σ z

� , we form the Hamiltonian

Hf +Z2 =
∑
rr ′

wrr ′f †
r W [γrr ′ ]fr ′ +

∑
rr ′

�rr ′frW [γrr ′]fr ′

−K
∑

p

∏
�∈p

σ z
� − U

∑
r

(−1)f
†
r fr

∏
�|r∈�

σ x
� . (5.9)

The Hamiltonian Hf +Z2 describes the f fermions coupled to
a Z2 gauge theory in the tensionless limit.

A π -flux defect where
∏

�∈p σ z
� = −1 supports a single

Majorana zero mode and this system has Ising topological
order [100]. Furthermore, because the Hamiltonian Hf +Z2

is solvable we can exhibit a quasilocal unitary mapping size
L to size 2L. We use a combination of the free fermion
unitary which implements the mapping for the f s and the Z2

circuit which implements the mapping for the spin degrees
of freedom to produce a mapping for the total system. Thus,
Ising topological order is (as expected) an s = 1 fixed point.

C. Layer construction

A class of examples of s-source RG fixed points for s > 1
is provided by the layer construction. Consider an s0-source
RG fixed point in d0 dimensions, the “layer,” and stack Ld−d0

copies of these layers, which are size Ld0 objects, to form
a torus of Ld sites. We may also add local perturbations
and couplings between the layers provided the individual
layers remain incoherent with each other. This layered system
is an s = s02d−d0 RG fixed point in d dimensions. By the
restriction lemma s0 � 2d0−1, so the layered system also obeys
the restriction lemma.

As a concrete example, consider a d = 3 system composed
of L layers of integer quantum Hall states. Such a system, when
cut open along a boundary piercing through the layers, supports
L chiral edge states that cannot be gapped. Furthermore, since
no individual integer quantum Hall state can be produced from
a product state using a quasilocal unitary, it follows that we
need s = 2 copies of the L layer system to make a 2L layer
system using a quasilocal unitary.

Note that in the context of the layer construction, some
cancellation may arise. For example, it may be the case that
multiple layers of a lower-dimensional state can be deformed
into a product state even if a single layer cannot (as with
the notion of inverse states in Sec. III A). In such a case, the
effective value of s will be reduced. In other words, we do not
require the full s copies since multiple layers can be produced
from product states.
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There is one interesting line of thought suggested by the
layer construction. Observe that as s increases we come closer
to violating the area law. However, in the layer construction
having large s requires stacking low-dimensional objects. This
intuition is precisely the same as for Fermi liquid entanglement
[101]. Following for a moment this gapless line of thought,
ordinary CFTs, being like s = 1 fixed points, are hopelessly
far from defeating the area law. We can do better by bundling
lower-dimensional gapless systems, and when we bundle
gapless one-dimensional systems we finally manage to violate
the area law.

To obtain a gapped state, we want to stack lower-
dimensional topological objects. If we could stack one-
dimensional topological objects with s = 1, then we would
obtain a d-dimensional topological system which violated the
area law. However, such one-dimensional s = 1 gapped states
do not exist (see Sec. VIII). Of course, the layered construction
is an amusing toy, but it is too trivial to cover the interesting
examples (like Haah’s code). We speculate that some local
generalization of the layer construction, a “bundle” of layers,
similar to the idea of a Fermi surface’s worth of 1 + 1 CFTs,
would provide a more robust framework in which to understand
the area law.

VI. TOPOLOGICAL QUANTUM LIQUIDS

In this section, we make good on our promise to define “con-
ventional” gapped phases. We call our proposal “topological
quantum liquids” since they have the have the ability to “flow”
and take the local “shape” of the system. We prove that all
topological quantum liquids obey the area law and have s � 1.
We conjecture that all systems with s � 1 are topological
quantum liquids. Our definition of a topological quantum
liquid is strong, so proving that s � 1 implies liquidity requires
some work establishing local deformability from the global
ability to map L to 2L.

A topological quantum liquid is, informally, a gapped
(topological) quantum phase of matter which is insensitive
to the local details of the system (liquid). Continuum field
theories with a mass gap, by their very definition, are
topological quantum liquids. This is because in order for
a continuum limit to exist, the microscopic details of the
space must be irrelevant. A reason for singling out topological
quantum liquids is that they represent, almost exclusively, the
type of gapped states encountered in Nature so far. Indeed,
all experimental realizations of gapped phases are, to the best
of the authors’ knowledge, topological quantum liquids, or
layers thereof. These realizations include most prominently
all integer and fractional quantum Hall states.

An example of a gapped state which is not a topological
quantum liquid is Haah’s code. This interesting Hamiltonian
has the property that the ground state space manifold depends
sensitively on the precise number of sites in the lattice.
This is not to say that Haah’s code is uninteresting, only
that it is not liquidlike. Indeed, it displays features much
more reminiscent of a glass. Following [102], we might call
such a phase a topological quantum glass. We do want to
imply that the dichotomy between topological quantum liquids
and topological quantum glasses is exhaustive. At the very
least, the layer construction demonstrates that we may have

layers of topological quantum liquids which do not form
a higher-dimensional topological quantum liquid and have
crystalline as opposed to glassy features.

The intuitive properties of topological quantum liquids
include a ground state manifold that depends only on global
features of the system as well as the ability to relax into thermal
equilibrium on a reasonable time scale. We may formalize
these criteria by saying that a topological quantum liquid has
the property that the shape of the underlying geometry may
be changed without closing the gap. We define a topological
quantum liquid as a gapped phase of matter with the property
that any ground state on a manifold M may be deformed into a
ground state on a manifold M ′ without closing the gap provided
there is a homeomorphism from M to M ′. As a technical point,
M and M ′ should also support Riemannian metrics such that
the deformation from M to M ′ is slowly varying compared to
the correlation length ξ .

In the discrete setting, we demand that for any two graphs
M̂ and M̂ ′ which differ only locally, there exists a gapped
Hamiltonian path mapping ground states of the TQL on
M̂ to ground states of the same TQL on M̂ ′. This gapped
Hamiltonian path may be defined on a third graph M̂ ′′ having
the property that both M̂ and M̂ ′ may be obtained from M̂ ′′ by
locally deleting or identifying edges and vertices. Equivalently,
we may imagine that both M̂ and M̂ ′ form locally equivalent
triangulations of some manifold M .

To give a few examples, in the continuous context the
two manifolds M and M ′ could have different sizes. In the
discrete setting, M̂ could be a torus with Ld sites while M̂ ′
could be a torus with (L + 1)Ld−1 sites, i.e., having one
extra layer of sites. Topological quantum liquids have the
property that any ground state on one such manifold or graph
can be deformed into a ground state on the other manifold
or graph using a quasilocal unitary without closing the
gap.

Theorem 1 (TQL structure theorem). All topological quan-
tum liquids have s � 1.

Proof. (Trivial) Let M̂ be an isotropic d-torus of length L

and let M̂ ′ be an isotropic d-torus of length 2L. Then, M̂ and
M̂ ′ are locally equivalent. Indeed, we may take M̂ ′′ = M̂ ′ so
that M̂ is obtained by identifying every 2d sites into one site.
By assumption there exists a gapped path connecting ground
states on M̂ to ground states on M̂ ′. This is precisely the
definition of an s = 1 fixed point. s = 0 fixed points are also
allowed. �

As a trivial consequence of the structure theorem, all
topological quantum liquids obey the area law and have
system-size-independent ground state degeneracy. There is
one subtlety, however. System-size-independent ground state
degeneracy is not, by itself, enough to guarantee s � 1.
Indeed, layers of s = 1, G = 1 states are not topological
quantum liquids (for example, we cannot in general add
layers with a quasilocal unitary), but they continue to have
G = 1. However, it does seem that system-size-independent
G plus some measure of isotropy is often sufficient to give a
topological quantum liquid.

This section may be summarized with the following brief
statement. If sizes L and 2L are in the same phase (meaning
connected by a quasilocal unitary) and if d > 1, then the phase
obeys the area law.
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A. Local stability for s = 1 fixed points

Here we sketch an argument that gapped s = 1 fixed points
are stable to local deformations of the space. This is of course
plausible since the ground state degeneracy is independent of
system size. It is obvious for s = 0 fixed points. Local gapped
quantum field theories also boast this kind of local stability;
this follows because local changes in the geometry couple
to a local operator, the stress tensor, which is short-range
correlated (and in fact identically zero in the topological limit).
The motivation for this sketch is simple: since the definition
of a topological quantum liquid is naively quite strong, it is
helpful to show that local deformability follows from simpler
assumptions.

What we are after is a spatially varying Hamiltonian
Hinterpolate which, given a local region A, interpolates between
HL far away from A and H2L deep inside A. Let H (η)
be a gapped path between HL at η = 0 and H2L at η = 1.
Decompose H (η) into local terms as

H (η) =
∑

x

Hx(η), (6.1)

and then construct Hinterpolate as

Hinterpolate =
∑

x

Hx(ηx), (6.2)

where ηx is a slowly varying function that asymptotes to zero
far from A and to one deep inside A. Since both sizes L and
2L are in the same phase, since the phase is stable, and since
the perturbation is slowly varying, it must be that Hinterpolate is
also gapped. We will give a more detailed argument for this
conclusion in Sec. VIII.

Combined with the ability to rearrange local regions with-
out closing the gap (see the discussion of microinsensitivity in
Sec. III A), the ability to insert and remove degrees of freedom
strongly suggests that the phase possesses local deformability.
Indeed, given any two homogeneous Hamiltonians H1 and H2

connected by an adiabatic path H (η), we should be able to con-
struct a gapped interpolating Hamiltonian which asymptotes
to H1 or H2 in different regions. Thus, adiabatic deformability
in time implies adiabatic deformability in space (but not vice
versa: there are states with topological order but no gapless
edge modes) [103], and the phase appears to be locally stable.
Hence, our original definition of a topological quantum liquid
is apparently essentially equivalent to having s � 1.

VII. GENERALIZATION OF THE s-SOURCE
FRAMEWORK

In this section we generalize the s-source framework to
effectively allow fractional s. The data defining a generalized
s-source fixed point are as follows. We have a label set �

whose elements label distinct gapped phases which transform
into each other under the RG. We also have an RG rule which
specifies that a type i phase can be obtained from si1 copies of
a type 1 phase plus si2 copies of a type 2 phase plus and so on.
As a technical assumption, we assume that the total number of
types of phases over all scales involved in producing a given
phase at a given scale is bounded by a system-size-independent
constant. We also assume that the quasilocal unitary at each
RG step always adds some entropy (so the entropy recursion

relation determines the asymptotic entropy instead of simply
bounding it). We believe these assumptions can be relaxed,
but they make the arguments much simpler, so we leave their
relaxation for future work.

Definition 2 (Generalized s-source RG fixed point). A d-
dimensional generalized s-source RG fixed point is a phase,
denoted i, with the property that a ground state on (2L)d

sites can be constructed from a set of ground states on Ld

sites using a quasilocal unitary U . We write |ψi(2L)〉 =
U (

∏
j |ψj (L)〉sij ). Unless otherwise noted, we assume that s

represents the smallest set of states for which the construction
is possible.

What follows are generalized entropy and ground state
degeneracy lemmas.

Lemma 4 (Generalized entropy lemma). The entangle-
ment entropy Si of a type i phase obeys Si(2R) �∑

j sij Sj (R) + kRd−1 where k depends on the details of the
quasilocal unitary.

Lemma 5 (Generalized ground state degeneracy lemma).
The ground state degeneracy Gi(L) of a type i phase on
a d-torus of linear size L obeys the recursion relation
Gi(2L) = ∏

j Gj (L)sij .
Lemma 6 (Generalized restriction lemma). For each type

i, we must have
∑

j sij � 2d−1. In particular, only a finite num-
ber of the sij can be nonzero even if the index set is infinite.

Proof. The argument is identical to the case of the single
type theory. Roughly speaking, if we are really using more
than 2d−1 copies, then the entropy must violate the area law
worse than logarithmically. This contradicts the bound from
thermodynamics in Sec. IV. �

A. Entropy scaling in generalized s-source fixed points

Let us characterize the set of phases that can violate the area
law. Let Y0 be the set of phases obeying the area law and let Ylog

be the set of phases violating the area law logarithmically. We
can imagine other types of violation, weaker than logarithmic,
which could also arise in the generalized s-source framework.
Let Yf denote the set of phases which violate the area law like
S(R) ∼ Rd−1f (R). We must have k1 � f � k2 log(R).

Assume that the recursion relation in the entropy lemma is
saturated [this being the worst case for the growth of S(R)].
Then, the entropy at size R = 2log(R) scales like

S(2log(R)) ∼
log(R)∑
�=0

(
R

2�

)d−1

s�k, (7.1)

where s is a matrix and k is some vector of entropies added by
the local unitary. The fastest growth of entropy occurs if

s� = λ�ŝλ + · · · (7.2)

or if this is obeyed after taking some number of RG steps as
one. Then, the entropy is given by

S(R) ∼ Rd−1ŝλk
∑

�

(
λ

2d−1

)�

∼

⎧⎪⎨
⎪⎩

Rd−1, λ < 2d−1

Rd−1 log(R), λ = 2d−1

Rd−1+α, λ = 2d−1+α.

(7.3)
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So long as λ < 2d−1, the area law is obeyed.
Next, we analyze the ground state degeneracy. Taking

logarithms of the terms in the ground state degeneracy lemma
gives us

log[Gi(2L)] =
∑

j

sij log[Gj (L)]. (7.4)

Thus, the logarithm of the ground state degeneracy obeys a
very similar recursion relation to the entanglement entropy.
With the same assumptions on s, we find

log[Gi(L)] ∼ s log(L) log[G(2)], (7.5)

where log G(2) denotes the ground state degeneracy of all
types on some fixed small system size in the ideal limit of no
ground state mixing.

Two cases are relevant. If ŝλ log[G(2)] �= 0, that is if some
state with nontrivial ground state degeneracy is participating
in the asymptotics controlled by ŝλ and λ, then the ground state
degeneracy grows like λlog(R). Thus, if λ = 2d−1, so that the
area law is violated, then the number of ground states must
also grow like log G ∼ Ld−1 as claimed.

If no phases with nontrivial ground state degeneracy
participate in the asymptotics, then at large scales all source
terms have no ground state degeneracy and hence obey the area
law (by the weak area law). The generalized entropy lemma
with all sources obeying the area law is then only consistent
with an area law for the state at larger scales.

B. Example: Haah’s code

Within the layered construction we can construct various
examples which make use of the generalized s-source frame-
work. As a nontrivial example, Haah has shown that his code
is a generalized s-source RG fixed with � = {1,2} and source
rules s11 = 1, s12 = 1, s21 = 0, s22 = 2 [67,68].

A simple calculation then gives

s� =
(

1 2� − 1

0 2�

)
. (7.6)

s� grows at large � like λ�ŝλ with λ = 2 and

ŝλ =
(

0 1
0 1

)
. (7.7)

Hence, both phases have roughly log(G) ∼ 2� = L on a size
L = 2� system.

Since Haah’s code is a stabilizer code with locally indis-
tinguishable ground states, the entanglement entropy in any
ground state can be computed exactly (see, e.g., the discussion
in [104] for the toric code). The general formula for the
entropy is S(A) = qubits in A − stabilizers in A. Haah’s code
is defined on a cubic lattice with two qubits per site and two
stabilizers per cube [67]. In a cube of R3 sites there are 2R3

qubits and 2(R − 1)3 stabilizers, so the entanglement entropy
of the cube is S(R) = 2R3 − 2(R − 1)3 = 6R2 − 6R + 2.
This formula obeys the area law but has a peculiar subleading
term proportional to R.

By contrast, the entanglement entropy of Z2 gauge theory
in d = 3, which is also a stabilizer code, has no such term.
Z2 gauge theory in d = 3 dimensions can be defined on a

cubic lattice with one qubit per link and stabilizers for each
vertex (Gauss’ law) and face of the lattice (flux constraint).
Given a cube with R links on a side, the number of qubits is
3R(R + 1)2, the number of vertex stabilizers is (R − 1)3, and
the number of plaquette stabilizers is 3R3 + 3R2 − R3 (the last
subtraction accounts for the fact that only 5 of the 6 plaquette
stabilizers for each elementary cube are independent). Hence,
the entanglement entropy is S(R) = 6R2 + 1. To understand
this formula, note that the number of surface sites is 6R2 +
2, so the entropy is the number of surface sites minus one.
In gauge theory language, each surface site gives one bit of
freedom (electric flux or no electric flux entering the site from
outside) and there is one overall constraint of total Z2 charge
neutrality.

VIII. TOWARDS A GENERAL AREA LAW

In this section we discuss the structure of states that could,
within our RG framework, violate the area law, and we give
a physical argument that such states do not exist. The tools
developed here, based on reconstructing states from local data,
also provide independent arguments for the weak area law and
for the stronger claim that phases with ground state degeneracy
scaling slower than log(G) ∼ Ld−1 obey the area law. Thus, we
provide an independent check on the results from the s-source
RG framework.

For convenience in this section we will typically assume
that the phases in question have no protected edge states. This
assumption entails no loss of generality as regards the area
law. Intuitively, this is because edge states can only contribute
area law entropy. Alternatively, the general existence of an
edge inverse (Sec. III A) implies that for every phase which
has protected edge states and violates the area law, there is
another phase which violates the area law and has no protected
states. Hence, ruling out area law violations in all phases
with no protected edge states rules out area law violations
in phases with protected edge states. Except where explicitly
stated otherwise, we assume the “accidental” edge states which
arise in the constructions below can be removed with local
perturbations.

Our goal is to establish a bound of the form S(ρA) �
O(|∂A|) + log(G) for an appropriate ground state degeneracy
G.10 We do this by constructing a local Gibbs state (exponential
of a local “effective Hamiltonian”) which is locally consistent
with the state ρA and which upper bounds the entropy of ρA.
The quickest route through the argument is to jump to the main
argument in Sec. VIII B referring back to the preliminaries in
Sec. VIII A as needed.

Although the arguments in this section are powerful by
themselves, we still need the s-source framework to argue
for the general area law. Furthermore, the s-source RG also
provides a powerful method to argue for the existence of
frustration free Hamiltonians (see the MERA discussion in
Sec. IX). Frustration free Hamiltonians are an important
special case in our analysis, and we expect such Hamiltonians

10Assuming the bound is saturated, as is plausible, states with
unusual ground state degeneracy will have unusual terms in their
entanglement entropy, e.g., a linear in L term in d = 3 for G ∼ ecL.
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to exist on general RG grounds provided we are deep within the
phase where spatial correlations are minimized. We also use
ideas from Sec. IV, in particular the free energy estimate (4.20),
in the arguments following.

A. Preliminaries

Several tools are needed to proceed with the arguments.
First, we discuss reconstruction of global states from local
data. Then, we discuss the idea of a local gap and the stability
of spatially varying local Hamiltonians. Finally, we describe
the idea of a diverging local gap.

1. Local reconstruction

It is useful to consider trying to reconstruct the ground states
from local data (for important early work in this direction see
[83,105–107]). This reconstruction is more feasible than one
might at first imagine. For example, given access to the states
of all local d-disks of sufficiently large (but still microscopic)
size, [82,83] have shown that the maximum entropy global
state approximately consistent with this local data is close to
the ground state projector. In other words, one can reconstruct
global ground states from local data (even in topological
phases). Here, we consider a variant of this situation: the
problem of reconstructing the state of a subsystem A of size
R from local data.

Suppose we have a set of local operators {Oi} supported
in a region A. We want to find the maximum entropy state
which gives expectation values for the Oi that agree with
expectations taken in the true state ρA of A. In other words,
among all possible states σA such that tr(σAOi) = tr(ρAOi)
for all i, we want the state that maximizes the entropy S(σA).
This problem has a known solution. Construct the variational
function f (σ,{λi}) given by

f (σ,{λi}) = S(σ ) +
∑

i

λi[tr(σOi) − tr(ρAOi)]

+ λ[tr(σ ) − 1]. (8.1)

Then, maximize f with respect to σ and the λs. The resulting
maximum entropy state has the form

σ � = exp
(−∑

i λ
�
i Oi

)
Z

, (8.2)

and hence is a local Gibbs state.
Suppose the operators Oi form a complete set of observ-

ables for a set of small regions {Aj } such that ∪jAj = A.
Then, we say σ � is a maximal entropy reconstruction of ρA

from local data. Denoting the disk of radius r centered at x0 by
D(r,x0), a typical choice for the Aj might be all regions of the
form A ∩ D(r,x0) for all x0 and some fixed small r . The linear
size R of A will be much larger than r in our constructions.

Why is this formalism useful? Note that ρA is locally
consistent with itself, so it is a candidate for the maximum
entropy state and

S(ρA) � S(σ �). (8.3)

Furthermore, σ � is by construction a local Gibbs state, so it is
easier to manipulate than ρA.

2. Localized excitations

Let σA be the maximum entropy state consistent with local
data on patches of linear size r 
 R. Write

σA = e−H̃A (8.4)

and define HA to be the Hamiltonian H restricted to terms
having support just in A. We have just shown that H̃A is a sum
of local operators supported on patches of linear size r . But
what does H̃A look like? It turns out that σA is close to being
a ground state of HA as we now show.

The Hamiltonian of the whole system is H = ∑
x Hx

where, without loss of generality, we assume each term
Hx � 0. Let the ground state energy of HA be Eg,A and let
the ground state projector be Pg,A. To control the energy of σA

we first bound the expectation value of HA in the state ρA as
follows [13].

Separate the Hamiltonian into three pieces, and H =
HA + HĀ + H∂A, where the terms act within A, Ā, and at
the boundary of A, respectively. We use the positivity of H∂A

to bound 〈HA + HĀ〉,
〈HA + HĀ〉g � 〈HA + HĀ + H∂A〉g = Eg, (8.5)

where we have taken expectation values in a global ground
state |g〉. Now, we bound the ground state energy using the vari-
ational principle and the trial state ρfactor = Pg,A

tr(Pg,A) trA(|g〉〈g|).
We obtain

〈HA + HĀ + H∂A〉g � tr[ρfactor(HA + HĀ + H∂A)]

� Eg,A + 〈HĀ〉g + max
x∈∂A

(‖Hx‖)|∂A|.
(8.6)

Combined with the first inequality we have for 〈HA〉g =
tr(ρAHA) = 〈HA〉ρA

the result

Eg,A � 〈HA〉ρA
� Eg,A + J∂ |∂A|, (8.7)

where J∂ = maxx∈∂A(‖Hx‖).
Because the correct expectation values of the terms in HA

are included in the local data defining σA (assuming r is bigger
than the range of the terms Hx), we also have the bound

Eg,A � 〈HA〉σA
� Eg,A + J∂ |∂A|. (8.8)

Since H̃A a sum of local operators and since the average
excitation energy of σA is nonextensive, it must be that the
entropy coming from excitations is nonextensive and scales
like the average excitation energy.

For example, if we restrict the local data defining σA to just
the terms Hx contained in HA, then H̃A has the form

H̃A =
∑

x

gxHx, (8.9)

where we have renamed the Lagrange multipliers λi → gx .
The local effective temperature 1/gx must go to zero away
from ∂A in order for the excitation energy of HA to be
proportional to |∂A|. Equivalently, σA reproduces ground state
correlations of HA away from ∂A, so the local temperature
must go to zero or equivalently the local gap must diverge
away from ∂A.
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3. Local gap and local thermodynamics

To justify the notion of a local gap, we first appeal to
the stability of the phase. It is trivially true that H and gH

give the same ground states for all g > 0. Now consider the
Hamiltonian H [g] = ∑

x gxHx . We expect that the stability of
the phase implies that the couplings in H can be modulated
slowly in space without closing the gap. Suppose the variation
in gx is bounded and small. Then, since H [g] − H [1] is a sum
of bounded local operators, the gap must be preserved if the
perturbation is small enough since the phase is stable. To build
up larger changes in gx we can consider as a basic building
block bump configurations of gx . These bump configurations
gx = g0 + (g1 − g0)χx(A) are smooth functions gx which
approach g0 outside region A and g1 inside region A. If the
region A is sufficiently large, then inside A the Hamiltonian
is effectively indistinguishable from g1H [1]. Since H [1] and
g1H [1] trivially have the same ground state, the difference
in the ground states of H [1] and H [g0 + (g1 − g0)χx(A)] is
actually localized near ∂A.

Finally, since the ground state properties deep inside A are
indistinguishable from those far outside of A, the stability of
the uniform Hamiltonian implies that we may make further
changes deep inside A. Hence, we may repeat the argument by
adding another bump function localized deep inside A which
further increases gx . To argue for stability to arbitrary smooth
variations gx , we first approximate gx by collection of bump
functions, then we use the stability of the bump function
Hamiltonian itself to smooth out the bump functions and
produce gx . This is possible because the difference between
gx and its bump function approximation is a sum of bounded
local operators and hence obeys the criterion of stability for
sufficiently slow variations.

To be quantitative, suppose we have some disk B(l,x0) of
radius l centered at x0 where the Hamiltonian locally looks
like

H =
∑
x∈B

gx0Hx + (∂g)x0 (x − x0)Hx + · · · , (8.10)

where . . . includes terms outside B and higher derivative
corrections. These local terms are smoothly patched together
to form the entire Hamiltonian, and as long as the local gap is
larger than the perturbation, the phase should be stable. If � is
the bulk gap when gx = 1 then the local gap is roughly g(x0)�,
and the strength of the perturbation, assuming the norm of the
Hamiltonian terms is of the same order as the gap, should be
roughly ξ (∂g)x0� where ξ is the correlation length. Hence,
stability only requires that g vary slowly,

ξ (∂g)x 
 gx. (8.11)

Stability for all slowly varying gx and hence the persistence of
short-range correlations justifies the notion of a local gap.

4. Infinite bulk gap

We now make quantitative the idea that the local gap must
diverge away from ∂A sufficiently fast to bound the entropy of
excitations by |∂A|. This property of infinite bulk gap implies
that entropies may be bounded by the logarithm of the relevant
ground state degeneracy plus a term of order |∂A|.

Call ςA the maximum entropy state consistent just with the
expectation values of the local terms in HA. This state has the
form

ςA = exp
(−∑

x∈A gxHx

)
Zς

(8.12)

and satisfies the inequality S(ςA) � S(σA) (because ς satisfies
fewer constraints than σ ). Since the average excitation energy
of this state is proportional to |∂A|, local thermodynamics
implies that the entropy of excitations is similarly bounded.

The condition for stability (8.11) when interpreted as a
statement about local temperatures is the condition for local
thermodynamics to be valid,

ξ
|∂T |
T


 1, (8.13)

where T = T (x) ∼ 1/gx is a position-dependent temperature.
Given the validity of local thermodynamics, we can estimate
the free energy of ςA using the formula (4.20):

F = −T log(G) + Fexcited. (8.14)

In particular, we assumed Fexcited was extensive, so the excited
state free energy per unit volume goes like ∼e−�/T where
� and T are the local gap and temperature. Of course, there
is an ambiguity in splitting the ratio �/T into a gap and a
temperature; all that really matters is the ratio.

Suppose (8.11) is not obeyed by gx . Then, gx increases at
least exponentially fast away from ∂A and clearly the entropy
of excitations will be bounded by |∂A|. Thus, suppose gx does
obey (8.11) so that local thermodynamics is applicable. The
free energy of excitations may be estimated as

Fexcited ∼
∑

x

e−�gx , (8.15)

where � is the gap when gx = 1. The danger is this: it might
be possible for gx to decay in such a way that the energy of
excitations is bounded by |∂A| while the entropy of excitations
scales less favorably with the size of A.

To put this danger to rest, consider the generalized free
energy

F(T ) = F0

∑
x

e−�gx/T (8.16)

which reduces to Fexcited when T = 1. Conventional thermo-
dynamics relates the energy E(T ) and the entropy S(T ) of
excitations to F :

S(T ) = −∂T F(T ) (8.17)

and

E(T ) = F(T ) + T S(T ). (8.18)

The entropy is thus

S(T ) = F0

∑
x

�gx

T 2
e−�gx/T , (8.19)

while the energy is

E(T ) = F0

∑
x

(
1 + �gx

T

)
e−�gx/T . (8.20)
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It is thus clear that since gx is increasing, the entropy of
excitations cannot outgrow the energy of excitations. The
entropy of excitations is bounded by |∂A| and gx must increase
sufficiently rapidly away from ∂A to guarantee these bounds.

As an aside, if one is uncomfortable with the idea of using
local thermodynamics near zero temperature, another way to
phrase the above results is in terms of the density of states.
Since the magnitude of the local terms in

∑
x gxHx is slowly

increasing, it must be the density of states is also thinning
relative to the density of states of

∑
x Hx . With the rather mild

assumption that the density of states thins relatively locally
with gx , the above claims about entropy again follow.

B. Main argument for area law

Using the ideas just established plus the s-source frame-
work, we now give our main argument for the area law. A

is a subregion with state ρA inside a large gapped phase in a
ground state of the global Hamiltonian H .

Let σA be the state of maximal entropy locally consistent
with ρA. σA has the form

σA = e−H̃A

Z
. (8.21)

Since ρA is locally consistent with itself, we have S(ρA) �
S(σA).

Recall that we may restrict to phases without protected
edge states. H̃A is locally gapped away from ∂A, but H̃A may
have accidental edge states. Repair these with a perturbation
V which is localized near ∂A.

Let the thermal state of the fully gapped Hamiltonian
H̃A + V be

σ ′
A = e−(H̃A+V )

Z
. (8.22)

σ ′
A minimizes its own free energy, so we have (temporarily

dropping the A subscript)

〈(H̃A + V )〉σ − S(σ ) � 〈(H̃A + V )〉σ ′ − S(σ ′). (8.23)

Rearranging terms gives

S(σ ) � S(σ ′) + [〈(H̃A + V )〉σ − 〈(H̃A + V )〉σ ′]. (8.24)

The terms in [. . .], whatever they may be, are proportional
to |∂A| because V is localized near ∂A and σ and σ ′ give
approximately the same expectation values for local terms Hx

in H̃A far from ∂A. In fact, the convergence of the local terms
is exponentially fast since the system has a finite correlation
length and the perturbation V is localized near ∂A.

This gives

S(σA) � S(σ ′
A) + O(|∂A|). (8.25)

H̃A + V is in the same phase as a gapped local Hamiltonian on
A and has a diverging local gap away from ∂A by infinite bulk
gap. Thus, the entropy of σ ′ is bounded by the ground state
degeneracy of H̃A + V , which is the universal value associated
with the phase on this open geometry, plus a term proportional
to |∂A|:

S(ρA) � S(σA) � log[G(H̃A + V )] + O(|∂A|). (8.26)

If S(ρA) ∼ Rd−1f (R) with f a growing function of R, then
the number of ground states G(H̃A + V ) must also grow faster
than ecRd−1

. However, if we build up the open boundary system
defined on A using our RG procedure (which we can do if the
system has no protected edge states), then the ground state
degeneracy on A will obey the same recursion relation as the
torus ground state degeneracy. Violating the area law with a
logarithmic correction requires s = 2d−1, but s = 2d−1 gives
a ground state degeneracy growing only like log(G) ∼ Rd−1.
This growth violates the lower bound on log(G) in (8.26): we
simply do not have enough ground states to account for the
anomalous entropy. Hence, S(ρA) � S(σA) must obey the area
law even with s = 2d−1. If we further assume that the entropy
recursion relation is saturated, then there are no gapped phases
with s = 2d−1. Either way, we obtain a general area law for
gapped phases.

Even without the s-source framework, the bound (8.26)
implies the weak area law. Of course, the wormhole array
argument in Sec. III A gives more information than just the area
law, but the present argument provides a useful independent
check.

C. Frustration free Hamiltonians

Frustration free local Hamiltonians provide a very general
setting in which the above argument can be made more
rigorous. Suppose that the global ground states are frustration
free ground states of the local Hamiltonian H = ∑

x Px

which is assumed to be a sum of projectors Px (not neces-
sarily commuting, the easier commuting case is discussed
in Appendix F). Frustration free means that every term Px

independently annihilates the ground state. The truncated
Hamiltonian HA is still a sum of projectors and the state ρA

lies entirely within the ground state manifold of HA. This is
because ρA is annihilated by every projector in HA, so we have
tr(ρAHA) = 0 which is the minimal energy of HA.

The following lemma bounds the entropy of ρA in terms of
the number of ground states of HA.

Lemma 7 (Frustration free entropy bound). Let H be a
frustration free Hamiltonian (meaning its ground states are
frustration free) and let ρ be a ground state of H , tr(ρH ) = 0.
Then the entropy S(ρ) obeys S(ρ) � log[G(H )] where G(H )
is the ground state degeneracy of H .

Proof. (Trivial) Since ρ is a ground state, it cannot have
more entropy than the maximum entropy ground state. The
maximum entropy ground state is the equal weight mixture of
all G(H ) ground states and its entropy is log[G(H )]. �

Applied to the case of HA and ρA, this lemma bounds the
entropy of ρA as desired. In particular, if HA descends from
another frustration free Hamiltonian H ′

A which differs from HA

only at the boundary ∂A and has fully gapped edge states, then
one expects that deleting the boundary terms in H ′

A within �

of ∂A can only add ec|∂A|� additional ground states associated
with the edge. Then, the entropy of ρA would be bounded
by the logarithm of the bulk ground state degeneracy of H ′

A

(assumed to have no edge states) plus an area term.
Theorem 2 (Limited growth of ground state manifold). Let

ȞA be a gapped, stable, and frustration free Hamiltonian
written as a sum of positive operators with strictly
bounded support on an open region A with G(ȞA) locally
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indistinguishable zero energy ground states and let HA be
obtained from ȞA by deleting operators within � of ∂A. Then,
we have log[G(HA)] � log[G(ȞA)] + c|∂A|�.

First Proof. Let V denote ȞA − HA, i.e., the edge terms
which gap out the accidental edge states of HA. Then, consider
the Hamiltonian H (λ) = λHA + V and let its thermal state at
temperature T be σ (λ,T ):

σ (λ,T ) = e−H (λ)/T

Z(λ,T )
. (8.27)

Because σ (λ,T ) minimizes its own free energy, we have the
bound

tr

(
(λHA + V )

Pg,A

G(HA)

)
− T log[G(HA)]

� tr[(λHA + V )σ (λ,T )] − T S[σ (λ,T )]. (8.28)

Rearranging terms, using the positivity of the Hamiltonian,
using that tr(Pg,AHA) = 0, we find

T log[G(HA)] � tr

(
V

Pg,A

G(HA)

)
+ T S[σ (λ,T )]. (8.29)

The above bound holds for all λ, so send λ → ∞. Since the
“bulk temperature” T/λ is now zero, we would like to argue
that S[σ (∞,T )] scales like |∂A|. To do this, we compute the
heat capacity C(T ) = T ∂T S(T ), using the formula C(T ) =
∂T E(T ). By definition, E(T ) is given by

E(T ) = lim
λ→∞

tr[(λHA + V )σ (λ,T )]. (8.30)

As λ goes to infinity, the average of all the terms in HA are set
to zero. Indeed, every term in HA is positive definite, so if any
term had a nonzero value, the energy would tend to infinity in
the Boltzmann weight, thus giving zero contribution. Hence,
the contribution from λHA must be zero as λ goes to infinity.

This intuition may be proven by noting that, given
two positive operators P1 and P2 with a common null
space, the partition function Z(λ1,λ2) = tr(e−λ1P1−λ2P2 ) is a
monotonically decreasing function of λ1. Indeed, we have
−∂λ1 log[Z(λ1,λ2)] = 〈P1〉 � 0. Integrating both sides with
respect to λ1, we obtain the formula − log[Z(∞,λ2)] +
log[Z(1,λ2)] = ∫ ∞

1 〈P1〉(λ1)dλ1. Since the left hand side is
finite, it must be the case that 〈P1〉 vanishes faster than 1/λ1

as λ1 goes to infinity. Hence, limλ1→∞ λ1〈P1〉 = 0.
Now since V is explicitly localized near ∂A, it follows

that E(T ) and C(T ) are bounded by |∂A|. Integrating the heat
capacity to produce the entropy, we find that S(T ) − S(0) is
also bounded by |∂A|. Hence, we bound log[G(HA)]:

log[G(HA)] � O(|∂A|) + log[G(λHA + V )]

= O(|∂A|) + log[G(ȞA)]. (8.31)

The second equality follows because log[G(λHA + V )] =
log[G(ȞA)] since every ground state of a frustration free
Hamiltonain

∑
x Hx is also a ground state of

∑
x gxHx for

all gx > 0 and vice versa. �
Second (Restricted) Proof. We give another proof of a

weakened version of the theorem. Let a Hamiltonian HA

defined on an open region A be called � bulk stable if the
ground state manifold is stable to all perturbations a distance
greater than � from ∂A. Then, if ȞA is stable and HA is

at least bulk stable, we can again prove that log[G(HA)] �
log[G(ȞA)] + c|∂A|�.

Let |gA〉 be a ground state of HA which is not a ground
state of ȞA and let |ǧA〉 be a ground state of ȞA. If |gA〉
is locally indistinguishable from |ǧA〉 then |gA〉 is a ground
state of ȞA. Thus, |gA〉 must be locally distinguishable from
|ǧA〉. However, |gA〉 cannot be distinguishable from |ǧA〉 in the
bulk because HA is bulk stable. If |gA〉 could be distinguished
from |ǧA〉 by a bulk operator then we could partially lift the
degeneracy of HA by a bulk perturbation contradicting bulk
stability.

Thus, |gA〉 must be distinguishable from |ǧA〉 only near the
boundary ∂A. The number of states distinguishable from |ǧA〉
only by operators within � of ∂A is bounded by ec|∂A|� for
some constant c. Hence, the ground state degeneracy of HA

obeys log[G(HA)] � log[G(ȞA)] + c|∂A|� as claimed. �
Two annoying features of the second (restricted) proof are

the requirement of strict locality of the Hamiltonian terms
and the extra assumption of bulk stability for ȞA. Does bulk
stability not follow from the stability of HA? Indeed, it does
but at the cost of relaxing strict locality.

Lemma 8 (Bulk stability from stability). Let ȞA be a
gapped, stable, and frustration free Hamiltonian written as
a sum of positive operators with quasilocal support on an open
region A with G(ȞA) locally indistinguishable zero energy
ground states and let HA be Hamiltonian obtained from ȞA by
deleting up to c|∂A|� operators localized near ∂A. Then, HA

can be taken to be bulk stable.
Proof. Observe that every ground state of ȞA is a ground

state of HA. Let |gA〉 be a ground state of HA which is not
a ground state of ȞA and assume |gA〉 is distinguishable
from a ground state |ǧA〉 of ȞA in the bulk. Then, there
exists a quasilocal bulk operator O such that O|gA〉 �= 0
but O|ǧA〉 = 0. Add to ȞA a bulk term O†O. The resulting
bulk Hamiltonian has the same ground state manifold since
O|ǧA〉 = 0, and the bulk Hamiltonian is of the same form as
assumed in the theorem statement. However, the resulting edge
deleted Hamiltonian no longer has as a ground state the state
|ǧA〉 since there exist zero energy states, e.g., |ǧA〉, but the
energy of |gA〉 is nonzero. Hence, we may assume that HA is
bulk stable. �

The technical subtlety is that while we can guarantee that
a quasilocal O exists, we cannot guarantee that a strictly local
O exists. If O does have some quasilocal tail, then we must
not delete O†O from the bulk Hamiltonian when removing
boundary terms. We can truncate these tails with 1

poly(R) error
by taking � ∼ log(R), but this leads to weakened (and not
useful for the area law) bound of the form log[G(HA)] �
log[G(ȞA)] + c|∂A| log(R). This technical point leads us
naturally to the general case.

D. Reducing general gapped phases to frustration free phases?

What about general gapped ground states |g〉 which may not
be frustration free? If it were possible to approximately reduce
any gapped phase to a frustration free phase, then the logic
of the previous section might be sufficient. On very general
RG grounds, one expects that in the extreme long wavelength
limit of a gapped phase, the ground state can be specified
by local constraints. Unfortunately, it is difficult to prove this
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intuition, although some progress is possible (see also the
MERA discussion in Sec. IX).

Suppose we have a general Hamiltonian H = ∑
x Hx

where each term satisfies 〈g|Hx |g〉 = 0 and has bounded norm.
Then, we can construct new operators Ĥx that annihilate the
ground state [92]. Let the gap of H be � and let f̃ (ω) be smooth
function satisfying f̃ (−ω) = f̃ ∗(ω), f̃ (0) = 1, and f̃ (ω) = 0
for |ω| � �. The Fourier transform f (t) = ∫

dω
2π

e−iωt f̃ (ω)
decays faster than any power of t and we can define a quasilocal
Ĥx by

Ĥx =
∫

dt f (t)eiHtHxe
−iH t . (8.32)

Each Ĥx then annihilates all ground states up to terms expo-
nentially small in system size. Indeed, since f̃ = 0 beyond the
gap, the operators Ĥx keep us within the ground state manifold,
and since the ground states are locally indistinguishable, the
operators Ĥx do not connect different ground states. Local
operators that annihilate the ground state manifold are called
local constraints.

Given local constraints, a simple local frustration free
Hamiltonian with the same ground state manifold as H can be
defined. Let Ĥ be

Ĥ =
∑

x

Ĥ 2
x , (8.33)

so that every term is a positive operator and annihilates the
ground states of H . The issue is that Ĥ may not be gapped,
although Kitaev has conjectured that a gapped Hamiltonian
built from local constraints always exists.

Conjecture 2 (Existence of local constraints (Kitaev [92])).
Every gapped phase with locally indistinguishable
ground states admits a gapped Hamiltonian of the form
Ĥ = ∑

x M
†
xMx where the Mx are local operators that

annihilate the ground state manifold.
We may still allow exponentially small splittings of the

ground state manifold and we have two versions of the
conjecture depending on whether the constraints are assumed
to be strictly local or only quasilocal. For our purposes,
Kitaev’s conjecture with strict locality would certainly be
sufficient to establish the required properties of universality
and infinite bulk gap. Even the conjecture with quasilocality
may be sufficient, but it appears to require surmounting some
technical obstacles.

If we accept Kitaev’s conjecture with strictly local oper-
ators, then the results of the previous section complete the
argument. What about quasilocal constraints? A quasilocal
constraint can always be truncated to a strictly local one of
range � with an error which decays faster than any power of
�. To make the error smaller than 1

poly(R) , take � ∼ log1+δ(R)
for any δ > 0. This extra ∼ log(R) blowup seems dangerous
to the strict area law, e.g., the effective width of the boundary
region near ∂ may grow slightly with R.

However, suppose the phase does not have protected edge
states. Then, we have some intuition, illustrated in Fig. 5, that
even quasilocal constraints may be sufficient to prove that the
entropy is bounded by ∼ log(G). As long as the number of
constraints we must delete from Ĥ to obtain the Hamiltonian
restricted to A is bounded by |∂A|� (plus terms strictly in

vacuum 

gapped bulk gapped edge 

FIG. 5. The red dot is local term in the Hamiltonian which
is smeared into a quasilocal constraint. The dashed circle is a
cutoff where we truncate the quasilocal constraint to a strictly local
constraint. Gappability of an edge suggests the constraint can be
chosen to live strictly within A.

Ā) for some system-size-independent �, then the arguments
of the previous section would be sufficient. So the dangerous
constraints are those that are further from � from the boundary
but closer than log(L) so that they cannot be truncated without
further analysis. Given one of these dangerous distant but not
too distant constraints, the idea is that if the edge of the system
can be gapped, then there is a different quasilocal constraint,
shown on the right in Fig. 5, which lives strictly within A and
which does the same job (e.g., we smear the local Hamiltonian
term with the gapped Hamiltonian with edge).

Pick a region A and suppose that all quasilocal constraints
further than some system-size-independent � but less than
∼ log(L) from ∂A can be deformed as in Fig. 5 to live
strictly within A. Then, we have a frustration free Hamiltonian
Ĥdeformed which has the property that when restricting the
Hamiltonian to region A, the number of terms we must delete is
bounded by |∂A|�. Since we already assumed the edge can be
gapped, it follows that Ĥdeformed,A (the restriction of Ĥdeformed to
A) can be completed to a gapped frustration free Hamiltonian
with a perturbation V which consists of a boundary’s worth of
operators. Then, the analysis of the previous section implies
that the ground state degeneracy of Ĥdeformed,A is bounded by
ground state degeneracy of Ĥdeformed,A + V times a factor of
the order of ec|∂A|� (the exponential of the number of operators
in V ).

It should be said that the above intuition about squeezing
quasilocal constraints using gapped boundaries suggests that
phases without protected edge states can be described by
strictly local constraints or perhaps even commuting projector
Hamiltonians. This would be a converse to the result of [108].

In this section we have given a general argument for
the bound S(ρA) � O(|∂A|) + log[G(HA)]. It should be em-
phasized that we have not proven that the entanglement
Hamiltonian (named in [109]) log(ρA) is local (although we
believe this is probably true). Instead, we worked with the
maximal entropy state σA consistent with local data which is
provably the Gibbs state of a local Hamiltonian and which can
be more easily controlled. The bound (8.26) sharply encodes
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our intuition that many ground states are required to violate the
area law. Aside from our general arguments, we have proven
this bound in the context of frustration free Hamiltonians.
Finally, we showed how the above bound, together with the
s-source framework, leads to an argument for the area law.

IX. RELATION TO MERA

We now show how to cast our results into the form of
a MERA provided the quasilocal unitaries are generated by
quasilocal operators. Quasilocality will mean that the effective
range of the generator is bounded by a rapidly decaying
function h(r) which we may take to be, for example, h(r) ∼
e−r1−δ

or h(r) ∼ e−r/ log2(r). The basic idea of the construction
is then to truncate quasilocal tails when they reach size 1

poly(L) ;

this requires us to take h(rtrunc) ∼ 1
poly(L) and hence rtrunc ∼

log1+δ(L) or rtrunc ∼ log(L) log[log(L)]. We then group rd
trunc

sites into a single supersite and show that the quasilocal unitary
may be approximated by a strictly bounded width circuit acting
on these supersites.

We restrict our discussion here to MERA representations
for s = 1, although our techniques should also provide ap-
proximate branching MERA representations for s > 1 states.
We leave the details of these branching constructions to future
work. Note that MERA has been applied to models which
probably host s = 1 fixed points [110]. Finally, although the
bond dimensions we achieve are comparable to those recently
obtained in the project entangled pair states (PEPS) context
using a very different method [56], the MERA construction
has the advantage that it is contractible in time polynomial
in the bond dimension. This gives an exponential speedup in
the contractibility of the network in the worst case. Our results
show that, given the MERA network (which may still be hard to
find), it is possible to calculate properties of even complicated
topological quantum liquids in time almost polynomial in
system size.

The MERA construction also sheds light on the question
of the existence of frustration free Hamiltonians for gapped
states. In Sec. X we will show how to construct MERAs for
all TQLs by studying gapped field theories in an expanding
universe.

A. Truncating time evolutions with exponentially
decaying interactions

Given a quasilocal generator K , we may truncate the
generator to a strictly finite range generator K� by setting
to zero all interactions acting beyond range � (� is what
we called rtrunc just above). The neglected terms have size
of order h(�). We may determine the error in time evolution
introduced by this truncation by studying the evolution under
K − K�. To be precise, we must compute the average of
eiKe−iK� to determine the error due to evolving with K� instead
of K , and this exponential can be processed using Baker-
Campbell-Hausdorff to give ei(K−K�)+ 1

2 [iK,iK�]+··· where . . .

denotes further commutators. Since the commutator [K,K�] is
bounded by h(�) and of the same order as K − K�, it suffices
to consider K − K� to get the scaling structure.

We compute the probability p(t) to remain in the state |ψ〉
under time evolution by δK = K − K� in perturbation theory.
By definition we have

p(t) = |〈ψ |e−iδKt |ψ〉|2, (9.1)

and expanding to first nontrivial order we obtain

p(t) ∼ 1 − t2

2
〈(δK)2〉. (9.2)

Suppose δK is the sum of an extensive number of terms δK =∑
x δKx , each of magnitude Jh(�) or less. We then compute

〈(δK)2〉 =
∑
x,y

〈δKxδKy〉 � J 2h2(�)
∑
x,y

e−|x−y|/ξ , (9.3)

where we have used the exponential decay of connected
correlations and have assumed (without loss of generality)
that 〈δKx〉 = 0.

Evolving for a time of order 1/J we find

p(t ∼ 1/J ) ∼ 1 − h2(�)Ldξd. (9.4)

Demanding that this probability be close to one, so that the
perturbative calculation is valid, we must have

h(�) ∼ 1

L
d+q

2

(9.5)

with q > 0. Then, we are guaranteed that p(t ∼ 1/J ) ∼
1 − L−q which converges to one in the thermodynamic limit
L → ∞.

B. Conversion of an s = 1 fixed point to a MERA

We have just argued that to have the evolution under
K − K� preserve the state in the thermodynamic limit, we
must take � ∼ log1+δ(L). This cost is modest given the global
accuracy since we are only required to coarse-grain chunks of
�d ∼ logd(1+δ)(L) sites into supersites of total Hilbert space of
dimension ec logd(1+δ)(L) to have a local generator acting only
on neighboring supersites. We now show that the unitary
generated by K can also be truncated to a strictly bounded-
causal-width circuit acting only on neighboring supersites with
local Hilbert space scaling in the same way with L. This circuit
then constitutes one layer of a MERA of bond dimension
ec logd(1+δ)(L).

Note that the contraction of a MERA with ec logd(1+δ)(L)

bond dimension is almost polynomial in system size, and
since a MERA is contractible in time polynomial in the
bond dimension, it follows that physical properties of s = 1
fixed points may be computed in time ec logd(1+δ)(L) given the
MERA circuit (which may be hard to find). Furthermore, while
this large a bond dimension may be prohibitive in practice,
our result provides strong support for the conjecture that
universal properties can be computed to high accuracy with
a system-size-independent bond dimension, as we discuss in
Sec. IX D.

To show that a ec logd(1+δ)(L) bond dimension MERA exists,
we must take the strictly local unitary evolution generated by
the local operator K� and turn it into a quantum circuit with
strictly bounded causal width. In this case, we can again appeal
to a coarse-graining argument.
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FIG. 6. The staggered circuit composed of blocks of size �̂ which
approximates the action of the quasilocal unitary mapping |ψL〉 to
|ψL/2〉|0〉L/2 in d = 1 for an s = 1 fixed point. The colors of the
circuit elements are coordinated with the colors of the terms in the
equation in the figure.

Consider first the case of d = 1. Suppose we are given a
range � two body Hamiltonian K� acting on qubits. Group
neighboring sets of �̂ sites into supersites of Hilbert space
dimension 2�̂ as shown in Fig. 6. By acting with one layer of
unitaries on the supersites and one layer of unitaries between
neighboring supersites (say between �̂/2 on the left and �̂/2 on
the right) we obtain a causal width of 2�̂. To accuracy ε one can
replicate the action of the local time evolution generated by
K� by taking �̂ ∼ � + vLRt + log(ε) where � is the interaction
range, vLR is the Lieb-Robinson velocity [111,112], and t is
the evolution time.

A crisp way to make the argument is to use the interaction
picture with respect to the generator restricted to the size
�̂ blocks. The remaining coupling terms between blocks
get effectively smeared out by an amount much less than
�̂ by the Lieb-Robinson bound [111,112]. Then, take the
resulting time evolution with these smeared generators which
couple neighboring supersites and truncate the exponential
tails beyond size �̂/2 on either side of the interface. We have
a two layer circuit consisting of staggered unitaries acting
on blocks of linear size �̂; this is the bounded-causal-width
quantum circuit discussed above. Since � already scales like
log1+δ(L), it follows that (even with ε ∼ L−q) �̂ does as well.
In fact, Lemma 1 of [7] can be adapted to rigorously prove that
the above construction provides an excellent approximation to
the time evolution; see also [113,114] for earlier independent
work along the same lines.

When d > 1 a very similar construction may be used. First,
we block the system into blocks of linear size �̂ ∼ log1+δ(L)
as shown in Fig. 7. Then, we apply a unitary generated by K

restricted to have support completely within the blocks. Each
block unitary commutes with every other block unitary by
construction. Next, we switch to the interaction representation
of the block restricted K . The remaining terms in K will be
smeared in the process, but provided we take �̂ large enough,
these interaction terms will be confined to thin regions near
the boundaries of the blocks. In d = 2, for example, we would
be left with a thin network of terms along the boundaries of
the blocks. These terms are now essentially one dimensional

1 

2 

3 

FIG. 7. The three layers of a d = 2 circuit approximation of the
quasilocal unitary transformation. In layer 1 we apply K in the red
boxes to leave a quasi-one-dimensional network which is dealt with in
layers 2 and 3 using the blue and purple unitaries similar to Fig. 6. We
have |ψL〉 ≈ U3U2U1|ψL/2〉|0〉3L2/4. The colors of circuit elements in
the figure are coordinated with the colors of terms in the previous
equation.

and the arguments in the previous paragraph can be used to
deal with them. For example, by applying the blue and purple
unitaries in Fig. 7 we approximate the remaining quasilocal
unitary acting on the quasi-one-dimensional network with a
circuit. The only difference from the setup in Fig. 6 is that we
have junctions in the quasi-one-dimensional network, but the
purple junction unitaries (which play the role of the second
staggered layer of unitaries in Fig. 6) handle this overlap.

In d = 3 we would first block the system into cubic
blocks (red blocks in Fig. 8) and apply the unitary generated
by K restricted to those blocks. Then, we would switch
to the interaction representation of the blocks and apply a
unitary generated by the terms in K restricted to the faces
between neighboring blocks (blue faces in Fig. 8). Then, we
would again be left with a quasi-one-dimensional network
of unaccounted-for terms in K , and the one-dimensional
construction may be brought to bear. In general d dimensions,
we recursively deal with the d-blocks, then the (d − 1)-

FIG. 8. The blocking scheme in d = 3. First, we deal with the red
blocks. Then, we deal with the blue faces. Finally, we are left with a
quasi-one-dimensional network where the blue faces intersect.
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blocks between neighboring d-blocks, then the (d − 2)-blocks
between neighboring (d − 1)-blocks, and so on until we reach
the one-dimensional limit. In this way, a general quasilocal
evolution may be blocked into a quantum circuit acting on
up to ∼ logd(1+δ)(L) degrees of freedom at a time. This is a
generalized MERA with bond dimension ∼ec logd(1+δ)(L) which
has unit overlap with the ground state in the thermodynamic
limit.

C. Polynomial bond dimension MERA?

One reason to be optimistic that a polynomial bond dimen-
sion MERA exists is that the quasilocal tails which obstructed
our construction above can perhaps be partially incorporated
by modifying the tensors at smaller scales. Indeed, a MERA
with bounded bond dimension can accommodate power-law
decaying correlations, so at least in terms of raw expressive
power, a polynomial bond dimension MERA should easily
be able to accommodate exponential tails. We also know that
many kinds of topological phases without edge states have,
at a certain point in their phase diagram, an exact MERA
representation with system-size-independent bond dimension.

We encode our speculations as a conjecture:
Conjecture 3 (Polynomial bond dimension MERA). Every

s = 1 RG fixed point has a MERA representation with
poly(L) bond dimension which achieves high overlap with
the ground state in the thermodynamic limit.

Note that the conjecture implies a strong result, that s = 1
fixed points are well approximated in the thermodynamic limit
by states with Schmidt rank bounded by ec|∂A| log(L) for any
bipartition AĀ. Such a result has already been proven in the
context of regulated field theories in [115] which showed that
truncating the reduced density matrix of a size R region to its
ec|∂A|+δ largest eigenvalues left a state which was still ε close
to the correct reduced density matrix with δ ∼ − log(ε). As
a rough estimate, to produce a state with error ε ∼ 1

poly(L) for
all R, we must take a bond dimension of order poly(L). With
such a bond dimension, the Schmidt rank of any region will
be ec|∂A| log(L) which is sufficient to produce small error. Note
that our construction above gives a Schmidt rank going like
ec|∂A| logd(1+δ)(L) for a ε ∼ L−q approximation to the true state,
but there are subtleties in this analysis; see Appendix C for a
further discussion.

It should be further noted that ground states of frustration
free Hamiltonians have Schmidt rank bounded by G(HA),
the ground state degeneracy of the Hamiltonian truncated to
region A. Since G(HA) obeys an area law for s = 1 fixed
points, it follows that these ground states have strictly area law
Schmidt rank. Combined with the existence of the quasilocal
unitary mapping size L to size 2L, surely a polynomial bond
dimension MERA exists.

We proceed to set up some definitions to reduce the above
conjecture to a sharp technical statement. To be concrete, we
mostly consider d = 1 and briefly remark about what changes
in d > 1.

Call K� a range � quasilocal generator if it is a sum of
local terms which decay faster than any power of distance
beyond distance �. Call U� a range � quasilocal unitary if it is
generated by a quasilocal generator of range �′ evolving for a
time t with � = �′ + t (we have put the Lieb-Robinson velocity

to one). It follows that the effects of a range � quasilocal unitary
decay faster than any power of distance beyond size �. Finally,
call a range � quasilocal unitary acting on L sites (�′,�loc,ε)
recursively localizable if its action on |0〉L can be reproduced
up to error ε in norm by a two layer quantum circuit of
staggered unitaries of strictly bounded range �loc times another
quasilocal unitary of range �′ acting only on every other site
(more generally acting only on the sites surviving at size L/2):

‖U�|0〉L − UcircuitU�′ |0〉L‖ < ε. (9.6)

Since |0〉L is the ground state of a local gapped Hamiltonian,
our construction of the ec logd(1+δ)(L) bond dimension MERA
shows that every quasilocal unitary is [0, log1+δ(L),L−q]
recursively localizable with the quasilocal unitary acting on
L/2 sites taken to be the identity. By considering nontrivial
quasilocal unitaries acting on L/2 sites we can hope to improve
the parameters.

Recursive localizability of unitaries acting on |0〉L is clearly
equivalent to recursive localizability of unitaries acting on
any state obtained from |0〉L by a quasilocal unitary V acting
on every other site. Indeed, we may simply absorb this L/2
site quasilocal unitary into the unitary defining the recursive
localization at the cost of increasing �′ by the range of V . If
we define recursive localizability of unitaries acting on the
state |ψL/2〉|0〉L/2 with |ψL/2〉 not quasilocally equivalent to
|0〉L/2, then we obtain a potentially different classification of
unitaries. A particularly interesting classification is obtained
if |ψ〉 is allowed to be a local gapped s = 1 ground state on
L/2 sites.

Call a quasilocal unitary U� acting on L sites (�′,�loc,ε)|ψ〉
recursively localizable if there exists a staggered circuit and
another quasilocal unitary acting on L/2 sites such that

‖U�|ψL/2〉|0〉L/2 − UcircuitU�′ |ψL/2〉|0〉L/2‖ < ε. (9.7)

These definitions generalize in an obvious way to higher
dimensions by mimicking the structure of the s = 1 fixed
point. They are purposefully set up to be recursive. Indeed,
suppose every quasilocal unitary W� is (�/2,�loc,L

−q)|ψ〉
recursively localizable for all s = 1 RG fixed points |ψ〉 with
�loc ∼ logζ (L) and ζ � 1

d
. Then, every s = 1 RG fixed point

has a MERA representation with poly(L) bond dimension.
Note that �/2 was chosen as the first parameter because we are
coarse graining by a factor of 2, so the quasilocal unitary on
L/2 sites has the same effective range as before (since those
L/2 sites are twice as far apart as measured in the undecimated
lattice).

Proof. We work in d = 1 then remark on the extension to
d > 1 at the end. By assumption, there is a quasilocal unitary
UL,� acting on L sites with range � that accomplishes the s =
1-source RG step UL,�|ψL/2〉|0 . . . 0〉 = |ψL〉. We assume that
the range � can be taken to be the same at every scale L and that
all range � quasilocal unitaries are (�/2,�loc,ε)|ψL/2〉 recursively
localizable for all L with ε ∼ L−q and �loc ∼ logζ (L).

Then, there exists a quasilocal unitary VL/2,�/2 and a strictly
local circuit VL,c such that∥∥UL,�|ψL/2〉| 0 . . . 0︸ ︷︷ ︸

L/2

〉 − VL,cVL/2,�/2|ψL/2〉| 0 . . . 0︸ ︷︷ ︸
L/2

〉∥∥ < ε.

(9.8)
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Multiply the quasilocal unitary VL/2,�/2 by the unitary UL/2,�

to produce a new quasilocal unitary ŨL/2,3�/2. Apply recursive
localizability for the unitary W = ŨL/2,3�/2 to produce a new
circuit VL/2,c and a new quasilocal unitary VL/4,3�/4 such that∥∥VL,c(VL/2,�/2UL/2,�)|ψL/4〉| 0 . . . 0︸ ︷︷ ︸

3L/4

〉

−VL,cVL/2,cVL/4,3�/4|ψL/4〉| 0 . . . 0︸ ︷︷ ︸
3L/4

〉∥∥ < ε. (9.9)

Repeat the entire process by absorbing VL/4,3�/4 into UL/4,�

to produce ŨL/4,7�/4. Notice that the range of Ũ will always be
less than 2� so there is no blowup of the range in the recursive
process. This is important because �loc depends in principle on
the range �, so to avoid a blowup of �loc we must avoid a blowup
of the range. For example, at the next stage we use recursive
localizability of W = VL/4,3�/4UL/4,� = ŨL/4,7�/4 to exhibit a
new circuit VL/4,c and a new quasilocal unitary VL/8,7�/8 such
that∥∥VL,cVL/2,cVL/4,3�/4UL/4,�|ψL/8〉| 0 . . . 0︸ ︷︷ ︸

7L/8

〉

−VL,cVL/2,cVL/4,cVL/8,7�/8|ψL/8〉| 0 . . . 0︸ ︷︷ ︸
7L/8

〉∥∥ < ε. (9.10)

To complete the argument, we iterate log(L) times, add and
subtract the intermediate states within the norm, and use the
triangle inequality to show that∥∥|ψL〉 − VL,cVL/2,c . . . | 0 . . . 0︸ ︷︷ ︸

L

〉∥∥ < ε log(L). (9.11)

Since ε ∼ L−q we have shown high overlap between |ψL〉 and
a MERA-like sequence circuits of range �loc acting on |0 . . . 0〉.

Returning to general d, grouping �d
loc sites into one supersite

and using �loc ∼ logζ (L), we produce a MERA with ec�d
loc ∼

ec logdζ (L) bond dimension. If ζ = 1/d can be achieved, then
we have a polynomial bond dimension MERA. If ζ < 1/d is
possible, the MERA actually has sublinear bond dimension.
We doubt this is possible generically, but it may be achievable
in some special cases.

It would thus be very interesting to make progress on
the technical problem of recursive localizability of quasilocal
unitaries. As an intermediate step, we might conjecture that
phases which have exact MERAs at some point in their phase
diagram have at worst a poly(L) bond dimension MERA
throughout the entire phase.

D. Universal properties from bounded bond dimension MERA?

We have stated that our results support the idea that
universal properties can be obtained with a bounded bond
dimension MERA. We now sketch an argument for this
conclusion, but first we must clarify what is meant by
universal properties. It is difficult to give a general list of
universal properties, but typically one means quantities that
depend only the phase of matter and not on the particular
realization (particular Hamiltonian) of that phase. Examples
from two-dimensional topological phases include the statistics
of anyons, topological entanglement entropy, and the chiral
central charge.

Because it is difficult to define these universal properties
in complete generality not to mention rigorously prove that
they are invariant under adiabatic deformations, we adopt a
simpler approach. Having already shown that MERA captures
the correct global structure of topological quantum liquids,
we now argue that local properties may be obtained to high
accuracy with bounded bond dimension. Good local properties
plus the correct global (RG) structure of the network, when
taken together, strongly suggest that universal physical proper-
ties can be obtained from a bounded bond dimension MERA.
Indeed, it should always be kept in mind that demanding
high overlap with the wave function in the thermodynamic
limit is an absurd requirement from the point of view of most
experimental settings where imperfectly known Hamiltonians,
neglected degrees of freedom, dirt, etc., essentially always
guarantee that a model wave function has tiny overlap with the
physical state.

To argue for good local properties, we appeal to the idea
that adiabatic evolution for a finite time, while failing to
preserve the global ground state, will still generate a controlled
density of excitations. Alternatively, taking the quasiadiabatic
generator and truncating it to finite range (independent of
system size) will again introduce a controlled density of
excitations (while failing to preserve the global ground state).
Some additional local error is also incurred in the truncation
of the resulting local unitary evolution to a strictly bounded-
causal-width circuit. We expect that both types of error can
be made roughly exponentially small (at least decaying faster
than any power) in the relevant cutoff length or time scale.

To make an estimate we suppose that approximating the
exact quasilocal unitary with a strictly bounded-causal-width
(independent of system size) quantum circuit produces a
finite density of excitations. Let the induced energy density
of excitations be δE . As discussed above, we expect that
δE ∼ e−(�τ )1−δ

for a finite evolution time τ and gap �;
similarly, we expect the δE ∼ e−�1−δ

where � is the causal
width of the truncated circuit approximating the full quasilocal
unitary.

We estimate the energy density E2L at scale 2L as follows.
Recall that (s = 1 fixed points) to obtain the state at scale 2L

we take the state at scale L, add (2d − 1)Ld product states, and
act with a quasilocal unitary. Thus, given the energy density
EL at scale L, we first dilute it (since the product states are in
their exact ground state) to obtain an energy density EL/2d .
Then, we act with the approximate circuit which increases the
density of excitations by δE . The final energy density is thus

E2L = EL

2d
+ δE . (9.12)

Iterating this recursive equation then gives

EL ∼
log(L)∑
n=0

δE
(2d )n

∼ δE
1 − 2−d

+ O(L−d ). (9.13)

Thus, the density of excitations at scale L is essentially just
given by δE , so by choosing large but system-size-independent
parameters τ and � we may achieve a small density of
excitations. In fact, the convergence appears to be almost
exponentially fast.
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Finally, why should universal properties be captured cor-
rectly by such an approximate state? One line of thought pro-
ceeds as follows. Once the energy density of the approximate
state is sufficiently close to zero, there should exist another
Hamiltonian H ′ which is a perturbation of H (whose exact
ground state we are approximating) for which the approximate
state is the correct ground state. Furthermore, because the
energy density relative to H is close to zero, the necessary
perturbation to reach H ′ should be small, hence, the stability
of the phase implies that H and H ′ are in the same phase and
thus have the same universal properties. A candidate for the
Hamiltonian H ′ (which turns out to be frustration free) is a
sum of projectors onto the null spaces of the local reduced
density matrices of the approximate state.

This final point, that H ′ is frustration free, is interesting.
If H ′ is also gapped, then this answers in the affirmative (for
s = 1 fixed points) Kitaev’s conjecture about the existence of
local constraints (strictly local case). It is hard to imagine that
H ′ is not gapped for sufficiently large (but still bounded) bond
dimension, but we do not prove that here.

E. Comments on algorithms

In addition to showing that a MERA with modest resources
exists for s = 1 fixed points, we have given a procedure to
construct such a MERA. Start with the exact ground state on
some small cluster; these data form the initial condition of the
MERA network (the “top” tensor). Then, we take any path
in Hamiltonian space that connects size L to size 2L without
closing the gap and form the quasilocal unitary that maps the
ground states. This can be converted into a layer of the MERA
network as discussed above. Then repeat. When finished, we
have the top tensor and all the layers of the network and at no
point have we done a variational calculation for a large system.

Now, of course, it may be that finding such a gapped path
in Hamiltonian space is hard, and it may be that constructing
the quasiadiabatic generator is hard. On the other hand, for
some problems of interest we may have a plausible guess
for a path, or we may even be able to provably find such a
path without knowing the ground state. Furthermore, although
constructing the quasiadiabatic generator requires simulating
time evolution, the effective time under which we evolve
is of order one, so the quasilocal unitary should be open
to efficient approximation. Alternatively, we could use the
adiabatic approach instead of the quasiadiabatic approach if
we are interested only in local properties.

The point of this discussion is not that we have a provably
superior algorithm, but simply to observe that our procedure
provides a rather different approach to constructing a MERA.
In particular, we are never faced with the problem of an explicit
variational calculation on a large system, so we might hope to
avoid the problem of local minima in some cases. Of course,
such local minima may manifest in other ways, for example,
as a small gap at some intermediate stage of the quasiadiabatic
evolution. In any event, the present construction is close in
spirit to the core motivation for the MERA construction where
one has a picture of removing local entanglement scale by
scale, a motivation that is to some extent obscured by the
variational approach.

X. FIELD THEORY CONSTRUCTION

In this section we consider what may be gained by
studying topological quantum liquids in the continuum limit.
As discussed above, the continuum limit necessitates the
consideration of a topological quantum liquid. Let us simply
assume that the system has some conventional field theoretic
representation where we may even impose Lorentz invariance
if we wish. We would like to implement the mapping from size
L to size 2L in this context. We show that this can be done
by placing the system into a background geometry consisting
of an expanding universe. This construction shows that all
massive field theories are s � 1 RG fixed points. We also give
an explicit example with free fermions.

Imagine we have a field theory with some mass gap m

playing the role of the gap � above. For example, we could
consider a Chern-Simons theory, a massive Dirac fermion,
a gapped nonlinear sigma model, a gapped discrete gauge
theory, or even fermions with a Fermi surface gapped out by
a superconducting order parameter. We place the system into
an expanding universe with metric

ds2 = −dt2 + a2(t)d 	x2. (10.1)

Where necessary, we can compactify the spatial directions into
a torus of coordinate size L0; more generally, we could take
the spatial geometry to be any closed d-dimensional manifold.
There may also be ambiguities in defining the field theory
on such a curved spacetime geometry, but we may resolve
these ambiguities any way we like provided the mass gap
is preserved, e.g., nonminimal couplings to the background
gravitational field are allowed provided the gap is not closed.

In (10.1) the proper distance corresponding to a coordinate
distance of |	x| is a(t)|	x|. Thus, letting a(t) run from a0 at
t = t0 to 2a0 at t = t0 + τ effectively doubles the linear size
of the system. Furthermore, if τ is long compared to m−1,
then we are in the adiabatic limit and the instantaneous ground
state will be a good local approximation to the true state of
the system at all times. The most useful aspect of the field
theory approach is that it dispenses with the lattice scale
details and gives us a universal recipe for implementing our
RG transformation. Hence, a very large class of topological
theories, regarded in a continuum approximation, indeed have
a quasiadiabatic transformation which maps from L to 2L and
MERA representatives with the basic features outlined above.

Now it must be said that to be truly globally close to
the ground state (i.e., finite overlap as L → ∞), we must,
as before, either use the quasiadiabatic generator or perform
an adiabatic evolution for a time polylogarithmic in system
size. For variety, let us first analyze the adiabatic approach.
Assuming the function a(t) is smooth and constant outside the
interval [t0,t0 + τ ], the Fourier transform ã(ω) can be made
to decay faster than any power of ω for |ω| > τ−1. First order
perturbation theory then gives, for the probability to create an
excitation, a quantity of order |ã(m)|2. An achievable decay of
ã(ω) is

ã(ω) ∼ e−(ωτ )1−δ

(10.2)

for any δ > 0, hence, by choosing

τ ∼ m−1 log1+δ(L) (10.3)
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we may assure that the probability to create an excitation is
bounded by L−q where L = a(t)L0 is the proper size of the
system. Furthermore, because the system is in finite volume
perturbation theory converges.

A comment about regulators is in order. If, for example, we
impose a hard cutoff �0 on momenta defined with respect to
the coordinate distance |	x|, then as space expands the physical
cutoff, � = �0/a, decreases with time. Without changing the
cutoff �0 the Hilbert space remains the same at all scales
(unlike in our lattice constructions above). In keeping with the
lattice construction, it is better to keep the physical cutoff � the
same before and after space expands. One way to accomplish
this is to add to the system auxiliary heavy spectator fields.
Then, as space expands some of the high energy states from
these spectator fields can be incorporated into the “low energy”
(but still gapped) field theory of interest to keep the physical
cutoff invariant. In other words, we can always safely steal
states from trivial field theories at very high energies (in fact,
this is in a sense the only nontrivial part of the construction). It
may also be necessary to truncate some unbounded operators to
apply our results for bounded strength interactions. This should
always be possible. Hence, we claim that any regularizable
massive field theory obeys the area law and has a MERA
representation with modest bond dimension.

A. Example: Dirac fermion, d = 2

We will now work through the example of a massive Dirac
fermion ψ in d = 2 evolving in a time dependent background.
This case is interesting because the system exhibits the
quantized Hall effect determined by the sign of mass m, so
our analysis will show this theory is an example of an s = 1
fixed point. The background geometry is

ds2 = −dt2 + a2(t)(dx2 + dy2) (10.4)

which we cast in the form gμν = ea
μeb

νηab where η is the flat
metric and e is the vierbein. We read off the values of e from
the metric and find that

ex̂
x = eŷ

y = a, et̂
t = 1. (10.5)

The spin connection ω is defined as

dea + ωa
be

b = 0, (10.6)

and we find

ωx̂
t̂

= ȧ

a
ex̂, ω

ŷ

t̂
= ȧ

a
eŷ, (10.7)

and all others zero.
For flat space γ matrices we take γ t̂ = iZ, γ x̂ = X, and

γ ŷ = Y which satisfy {γ a,γ b} = 2ηab. Curved spacetime �

matrices may then be defined as �μ = e
μ
a γ a . The Dirac action

(with ψ̄ = ψ†�0) is then

SD[ψ] =
∫

dt dx dy a2

×
[
ψ̄ �μ

(
i∂μ − i

2
ωμabσ

ab

)
ψ − mψ̄ψ

]
, (10.8)

where σab = i
4 [γ a,γ b] are the Lorentz generators.

The necessary components of σ are σ t̂x̂ = −iY/2 and
σ t̂ŷ = iX/2. If we also switch to Fourier modes ψ(x) =

∑
k ei	k·	xψk then the resulting action is SD[ψ] = ∑

k SD,k[ψk]
and the action for a given k mode is

SD,k[ψk] =
∫

dt a2(t)

[
ψ̄k

(
X

a

)(
−kx + ȧ

2
Y

)
ψk

+ ψ̄k

(
Y

a

)(
−ky − ȧ

2
X

)
ψk

+ ψ̄kiZi∂tψk − mψ̄kψk

]
. (10.9)

Observe that the two terms from the spin connection both
combine to give 2iZ ȧ

a
. Performing a time dependent rephasing

ψk = ai/2�k removes the spin connection term. The details
are not ultimately important; what is important is that we have
a Hamiltonian system of finite dimension which is changing
adiabatically.

As reviewed above, we may compute the probability pk for
each k mode to remain in its ground state using perturbation
theory. We have pk � 1 − ce−(

√
k2+m2τ )1−δ

, where τ is the
evolution time. This perturbation theory converges for any
finite τ � m−1 since each k mode is finite dimensional.

Multiplying over all k modes, the total probability to remain
in the ground state is

p ∼
∏
k

pk ∼ exp

(
−

∑
k

ce−(
√

k2+m2τ )1−δ

)
, (10.10)

where the second estimate follows if τ � m−1. Replacing the
sum over k with an integral we obtain

p ∼ exp

(
1 − cLd

∫
ddk

(2π )d
e−(

√
k2+m2τ )1−δ

)
(10.11)

which can be made to approach one as 1 − L−q if τ ∼
m−1 log1+δ(L) for some δ > 0. Crucially, the upper cutoff on k

does not enter because the integral converges rapidly. Hence, in
this case the formal cutoff may be sent to infinity and no heavy
spectator fields are required; the expansion of space smoothly
brings down higher momentum modes to continually fill the
growing number of long wavelength modes.

B. Black holes and dS/CFT

The preceding discussion of continuum field theory in
expanding universe, in particular of bringing in product states
at the UV cutoff, can be recognized as a regulated description
of the “Unruh vacuum” for quantum fields in curved spacetime.
Its defining properties are “reasonable at short distances,” that
is, the large-k modes are in their ground states, plus no particles
initially. The procedure we have described is just what is done
to compute density perturbations in inflation and also Hawking
radiation [116], and in particular is the resolution, in practice,
of the so-called “trans-Planckian problem” raised by large
gravitational blue-shifts.

Such a connection between renormalization group evolu-
tion and the physics of an expanding universe also appears in
the “dS/CFT correspondence” for the case of de Sitter space
[117] and for more general Friedmann-Robertson-Walker
(FRW) spacetimes [118].
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This connection between entanglement renormalization
and gravitational physics is different from the one proposed in
[34,119] (see also the further developments [120–122]) in that
here the evolution produced by the quantum circuit is really
timelike; such a Wick rotated picture has been advocated in
[123] (see also the sketch in [124]). An explicit calculation
of the entanglement entropy of subregions of an expanding
universe for free field theory was made in [125].

These previous analogies between FRW cosmology and
the RG were motivated by hopes of learning something about
quantum gravity and cosmology, while in the bulk of this paper,
we are using this idea in the other direction.

The restriction to log(G) < cLd−1, when interpreted as
a statement about an entropy, is temptingly reminiscent of
the black hole entropy bound. One way to attempt to make
a connection is to consider collapsing a shell of matter to
form a black hole in a space which already supports such a
highly entangled state. Now, because the system is gapped
and because the curvature is weak at the event horizon, one
might imagine that the highly entangled ground state survives
(at least away from the singularity). Further assuming that
the entanglement entropy of the matter across the horizon
contributes to the black hole entropy, we may be able to violate
the Bekenstein area bound if we had a gapped phase that
violated the area law. If so, the coupling to gravity would forbid
violations of the area law in gapped ground states. Notice that
the indistinguishability of the ground states is important to
ensure that the state outside the horizon is not perturbed by
the gravitational collapse. At present, however, this argument
is speculative.

Nevertheless, the coupling to gravity does provide con-
straints on the behavior of any putative topological field theory.
Consider a topological quantum field theory Q. Its Euclidean
path integral ZQ on �d × S1 (�d is some closed d-manifold)
computes tr(e−βHQ(�d )) where HQ(�d ) is the Hamiltonian of
the topological theory on space �d and β is the length of the
S1 factor. Since in the topological limit the gap to excitations
is infinite, the trace reduces to counting the number of ground
states of HQ(�d ), that is,

ZQ[�d × S1] = G[HQ(�d )]. (10.12)

Without invoking the topological nature ofQwe must allow
ZQ to depend on the metric g�

ij on �d , but with the assumption
that Q is topological we can rule out interesting dependence
on g� . Let g be the metric of spacetime; assuming Q couples
minimally to gravity we have

ZQ[g + δg] = Z[g] exp

(
1

2

∫
�d×S1

dd+1x
√

gδgμνT
μν

Q

)
,

(10.13)

where T
μν

Q is the stress tensor of Q. But, TQ = 0 since Q is
topological, so ZQ[g] is independent of small deformations of
g. Note also that the coupling to TQ is a small perturbation,
so the stability of the phase guarantees that the gap does
not collapse. This together implies that ZQ[�d × S1] is
independent of the size of �d and hence so is the ground
state degeneracy.

This argument does not rule out systems with ground
state degeneracy depending on the “size” of the space, but

it does imply that they must couple to gravity differently. For
example, suppose we realized a phase with G ∼ ecL in d = 3
in the laboratory by constructing an array of coupled localized
objects, e.g., a lattice of cold atoms. Now suppose that a
gravitational wave passes through the system. What happens
is that the distance between the different potential wells, say, is
changed, but the number of wells is not modified. Hence, the
coupling to gravity modulates the couplings between different
localized objects, but does not change the “size” (number
of localized objects) of the system. Said differently, there is
extra data in the path integral ZQ on which the ground state
degeneracy does depend and which is not sensitive to weak
gravitational perturbations (because the phase is stable).

C. Lorentz invariant entanglement Hamiltonian

As a final application of the field theory construction, we
may explicitly verify the claimed properties of the maximum
entropy locally consistent state σA. For simplicity, we analyze
the case where region A is a half-space, but we expect that the
lessons generalize to all regions because of the gap.

As shown in [126–130], the entanglement Hamiltonian for a
half-space in any Lorentz invariant quantum field theory can be
related to a generator of boosts Mxt . To be precise, suppose A is
a half-space given by A = {	x|x � 0,x⊥ ∈ Rd−1}. Associated
to region A we have the causal development C(A) which is
given by all (t,x,x⊥) with (x,x⊥) ∈ A and |t | < x. The causal
development or “Rindler wedge” C(A) is mapped into itself
by the flow generated by the boost generator

Mxt =
∫

A

dd−1x⊥dx xT00, (10.14)

where T00 is the energy density. Then, by constructing a path
integral for ρA in which the Euclidean angle in the x-t plane
is used as time, [130] showed that

ρA = e−2πMxt

tr(e−2πMxt )
. (10.15)

In other words, the entanglement Hamiltonian − log(ρA) is
local.

Since the entanglement Hamiltonian 2πMxt is local, it
follows that σA = ρA. Thus, the maximum entropy locally
consistent state explicitly has the form argued for in Sec. VIII
and in particular has the property of infinite bulk gap. We
may then pursue the kind of general local thermodynamic
arguments given in Sec. VIII. Alternatively, we may explicitly
compute the spectrum of Mxt in simple cases and verify that
the entropy obeys an area law.

XI. DISCUSSION AND SPECULATION

In this paper we have argued for an area law for gapped
phases, and we have shown how to produce tensor network
representations of interesting phases. We introduced the idea
of an s-source RG fixed point. Assuming all gapped phases
are s-source fixed points, we argued that only phases with
ground state degeneracy scaling like G(L) ∼ ecLd−1

or faster
could violate the area law. We also used ideas about local
reconstruction of quantum states to argue for the bound
S(ρA) � O(|∂A|) + log[G(HA)] which gave another proof of
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the claim that a stable Hamiltonian requires G(L) ∼ ecLd−1
or

greater to violate the area law. Combining the two approaches,
we showed that even with G(L) ∼ ecLd−1

, we could not support
the suggested logarithmic violation of the area law. More
extreme violations of the area law were ruled out with weak
spectral assumptions about the low temperature thermal free
energy.

Some of our results are rigorous, including the proof of
the area law for topological quantum liquids, the MERA
construction, and the bound S(ρA) � O(|∂A|) + log[G(HA)]
for ground states of frustration free Hamiltonians. Neverthe-
less, our overall argument for the area law rests on nontrivial
physical assumptions and is not rigorous. On the other hand,
we see no immediate obstacle to making much of the general
argument more rigorous. More interesting, in our opinion, is
our claim that if a phase does violate the area law, then it must
be a rather strange beast. For example, if it is an s-source fixed
point and obeys the free energy condition, it seems that the
phase must violate our reconstruction arguments in Sec. VIII.
If a frustration free gapped phase violates the area law, then it
must have a very large ground state degeneracy. If the phase is
not an s-source fixed point, then it is peculiarly disconnected
from its peers at smaller and larger scales. So while it would
be very interesting to exhibit such a peculiar beast, we hope to
have convinced the reader that the area law holds for a huge
class of systems including essentially all models of current
physical relevance.

There are numerous directions for future work. We have not
tried to optimize the analytic parts of the arguments to achieve
the best possible bounds, so it should possible to do better
than our simple estimates, e.g., in the MERA construction.
Making progress on the question of recursive localizability
or otherwise exhibiting a poly(L) bond dimension MERA
would be very interesting. Providing further arguments for the
s-source framework (or counterexamples) is highly desirable.
The inclusion of symmetry in the analysis is a logical next
step. Another possible direction would be to explore the
consequences of the s-source framework for defects, e.g.,
interfaces between phases. It would also be interesting to
study the precise quantitative relationship between the gap
and the entanglement entropy. Finally, of particular interest is
the extension of our results to gapless systems.

A very natural speculation is that conventional conformal
field theory (CFT) fixed points with gapless degrees of freedom
match our definition of s = 1 fixed points. One may object
that we have only studied gapped phases in this work, but
this objection has significantly less force than one might
imagine. Various kinds of topological states in d > 1 have just
as much entanglement in their ground state as CFTs, so the
amount and structure of entanglement is not obviously at issue.
Furthermore, long-range correlations can easily be included in
the MERA network, so this too does not seem to be a real
objection. We also only require the state to global accuracy
L−q ; this is consistent if very high dimension operators are
truncated from the spectrum (because they only contribute
very rapidly decaying power-law corrections which are well
within our error threshold). The field theory constructions are
also very promising. Nonlocal tensor networks that exactly
represent gapless phases have been exhibited [131], and [115]

has argued that even ground states of gapless regulated field
theories can be approximated by states with limited Schmidt
rank. It is also amusing to note that the structure of correlations
in strongly coupled large N gauge theories described by
holographic duals is not so different from a gapped phase,
e.g., short-ranged mutual information to leading order in N .
Taken together, this evidence suggests that the conjecture that
conventional field theory fixed points are also s = 1 RG fixed
points is quite reasonable. Of course, even if this conjecture
is true, it remains to construct the required quasilocal unitary.
We plan to address these points in a forthcoming companion
paper.
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APPENDIX A: WHAT IS A PHASE?

In this appendix we briefly discuss some of the properties
we expect of decent quantum phases of matter (clearly this
will be a somewhat personal perspective; for a somewhat
complementary discussion, see [132]). The starting point is
typically what we call a Hamiltonian motif which is a function
that maps a set G of graphs (or more generally a cell complex)
to a set H of Hamiltonians defined on those graphs. The set
of graphs often has some restrictions, e.g., to d-dimensional
graphs, to trivalent graphs, to planar graphs, or to graphs with
an even number of sites (e.g., in spin- 1

2 systems). Crucially,
the set of admissible graphs must include a sequence of graphs
with size going to infinity to define a thermodynamic limit.
For this paper we always restrict to local graphs which can
be understood as living in d dimensions. The word motif is
appropriate because typically the way the function works is
to assign terms to the Hamiltonian based on local features
or patterns in the graph, e.g., a term for every vertex, link,
or plaquette. So when we speak of a phase of matter we are
really considering an equivalence class of Hamiltonian motifs
where two motifs are equivalent if they give the same global
properties. In particular, a gapped phase refers at least to a
family of Hamiltonians defined on systems of various sizes all
having a system-size-independent gap (or lower bound on the
gap).

However, not just any function from graphs to Hamiltonians
can be a representative of a gapped phase of matter. A
Hamiltonian motif must obey certain rules to represent a
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gapped phase. We do not attempt to give a completely rigorous
definition of a gapped phase, but instead enumerate the most
important rules that a gapped phase must obey. Indeed, there
is some subtlety here. For example, the ground state manifold
of Haah’s code at size L cannot typically be adiabatically
connected to the ground state manifold of Haah’s code at
size L + 1, so by some definitions these two systems are
in different phases. However, because they descend from
the same Hamiltonian motif and because they share many
properties, one might like to think of them as representing the
same phase. It is not clear to us which viewpoint is superior.

Stability. A phase of matter has the property of stability with
respect to small changes in the Hamiltonian motif. We may
assign slightly different Hamiltonians to a given graph without
encountering any change in the global properties of the system.
Indeed, there should be an open set in local Hamiltonian space
around the Hamiltonian on any graph within which the global
properties are unchanged. In the case of gapped phases, one
convenient way to encode this criterion is to demand that
there be a family H (η) of gapped Hamiltonians interpolating
between the initial and final Hamiltonians. Then, ground states
of the initial Hamiltonian may be mapped to ground states of
the final Hamiltonian using a quasilocal unitary.

Local indistinguishability. Stability of the Hamiltonian
implies that the number of ground states cannot depend
on small local perturbations. This leads one to the idea
of local indistinguishability. Truly stable gapped quantum
phases must have the property that all ground states are
approximately locally indistinguishable. This ensures that
no local perturbation can split the ground state manifold
except possibly by an amount exponentially small in system
size. We will always assume that ground states are locally
indistinguishable unless otherwise specified.

Insensitivity to boundary conditions. Related to the idea
of local indistinguishability is the idea of insensitivity to
boundary conditions. Given some region A in a d-dimensional
graph G and given two gapped Hamiltonians H1 and H2

representing the same phase which differ only far away from
A, it should be the case that the state of A is approximately the
same in any ground state of either Hamiltonian. Note, however,
that this notion is subtle. For example, in an integer quantum
Hall state on a torus, inserting flux through the cycles of the
torus, which is a global operation, does lead to a nontrivial
Berry phase, so we are not claiming that boundary conditions
are totally irrelevant, far from it. Still, we will assume that
local data are indeed insensitive to boundary conditions.
Because this final assumption is not so straightforward as local
indistinguishability and stability (since it requires the notion
of a phase), we spend a little time discussing it.

The starting point for any discussion of insensitivity to
boundary conditions should begin with the decay of correla-
tions. In any gapped phase of matter it can be proven that all
connected correlations decay exponentially. In other words,
although the system may have long-range entanglement,
correlations of local operators always fall off rapidly with
distance. As a necessary tool to prove the decay of correlations,
one should also mention the Lieb-Robinson bound [111,112]
which states that causal influences propagate with a finite
velocity up to exponentially decaying tails. Causality, in
the form of the Lieb-Robinson bound, is another important

primitive in the discussion about insensitivity to boundary
conditions.

Now suppose we have two Hamiltonians H1 and H2

differing only far from region A such that there is a gapped
Hamiltonian path H (η) from H1 to H2 also differing only far
from A. Then, by constructing the quasiadiabatic generator
K(η) and its associated quasilocal unitary, we can map ground
states of H1 to ground states of H2. Since ∂ηH is only nonzero
far from A, it follows that the quasilocal unitary generated by
K(η) has an effect on A which is smaller than any power of the
separation between A and the region where ∂ηH (η) is nonzero.

This result is nice, but it relied on the existence of a gap.
We want an even stronger notion of insensitivity to boundary
conditions. For example, we might introduce a boundary to
the system which hosts gapless edge states, but we would still
expect that regions far from the boundary are in approximately
the same state as before the boundary was introduced. There
is thus a notion of a local gap which protects regions even
from the effects of gapless degrees of freedom provided those
degrees of freedom are localized far from the region of interest.

We can try to make this idea of a local gap sharper using
the generator of quasilocal evolution defined as

− iK(η) =
∫ ∞

−∞
dt F (t)eiH (η)t ∂ηH (η)e−iH (η)t . (A1)

Suppose that all members of the family H (η) have gapless
edge states near some boundary, but we demand that H (η)
is only changing far from these edge states. As usual, we
choose the filter function F such that its Fourier transform
vanishes for energies less than �. Then if we had a bulk gap,
we could take � to be the gap, but the presence of gapless
edge states makes that impossible. On the other hand, if the
matrix elements of K(η) between states of energy less than �

are exponentially small, e.g., because such low-energy states
are localized far away from where ∂ηH (η) is nonzero, then we
still approximately map ground states to ground states. This is
one example of what we mean by a local gap and insensitivity
to boundary conditions.

As the strongest notion of insensitivity to boundary con-
ditions, we might demand that even if we delete entirely
some part of the system, the state of distant regions remains
approximately the same. This situation can be viewed as an
extreme version of the gapless edge state situation where we
take an entire region of size R through a phase transition into
a trivial gapped phase (product state ground state). The gap of
the entire system will typically go to zero as R−p, but we still
expect that the state of distant regions will be little modified.
However, it should be noted that the ground state manifold
can change in this process. New ground states with splitting
at most e−Rα

can come down into the ground state manifold
during the phase transition. We expect all these new ground
states to be locally indistinguishable far from the region which
experienced the phase transition.

In some cases, this expectation of strong insensitivity to
boundary conditions can be explicitly verified. Suppose we
wish to take a large region A through a phase transition
into a trivial phase. Let us further suppose that there is a
Hamiltonian H (η) which interpolates between the initial and
final Hamiltonians and which is gapped throughout the phase
transition. Only a nonlocal (but still few-body) Hamiltonian
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could possibly maintain a gap throughout the phase transition,
but if the nonlocality can be approximately confined within A,
then we may still prove a strong result. Evolving for a finite
time with the quasiadiabatic generator K(η) still generates a
unitary which maps ground states to ground states, but now
this unitary will be nonlocal within region A. However, outside
of region A the unitary will again be quasilocal, so if ∂ηH (η)
is confined near region A, then we can prove that the state
of regions far from A are approximately preserved by the
evolution.

One obstruction to the existence of such a gapped nonlocal
Hamiltonian interpolating between two gapped local Hamil-
tonians is if the initial and final ground state degeneracies are
different. This is expected to be a concern if we are effectively
changing the topology or changing the system size in an s > 1
fixed point with ground state degeneracy which depends on
system size. In the examples we understand, e.g., the layer
construction and Haah’s code, the boundary conditions far
away are indeed provably irrelevant. In the layer construction
this is trivial, while in Haah’s code it follows because the
Hamiltonian consists of commuting projectors.

There may be other obstructions and we do not give a
general prescription for finding such a nonlocal Hamiltonian.
However, one idea is to force all pairs of local operators
to have their correction expectation values, e.g., Hnonlocal ∼∑

x,y,α,β (Ox,αOy,β − 〈Ox,αOy,β〉)2.
An example where the limited nonlocal approach does

work is in the gluing together of two disks of integer
quantum Hall fluid. The difficult step is to exhibit a nonlocal
gapped Hamiltonian whose ground state is a d = 1 Fermi gas.
Consider fermions at half-filling on a one-dimensional lattice
of length L. It is convenient to work in momentum space with
states labeled by k ∈ [−π,π ). The desired Hamiltonian can be
constructed by demanding a single particle energy spectrum
ε(k) which is given by

ε(k) =
{
�/2, k ∈ [−π, − π/2) ∪ [π/2,π )

−�/2, k ∈ [−π/2,π/2).
(A2)

Then, the free fermion ground state with states k ∈
[−π/2,π/2] filled is an exact ground state and the Hamiltonian
is gapped. The real space hopping amplitudes which produce
such a single particle spectrum may be found by Fourier
transform and decay as one over distance. We can further
modify this Hamiltonian to adiabatically continue it to a local
insulating Hamiltonian, thus producing a gapped path from a
product state to the fermion gas ground state.

We use the various physical properties just reviewed
throughout the paper. For example, we assume some ability
to place phases on different types of geometries. If the phase
can be represented as a Hamiltonian motif which only assigns
terms to links on a graph, then we can place such a phase on
any type of geometry. More generally, at least some freedom
is required to proceed with our results, e.g., we need tori and
open regions of various sizes. We also use the ideas of sta-
bility, local indistinguishability, and insensitivity to boundary
conditions repeatedly. An important statement following from
insensitivity to boundary conditions is that the entanglement
entropy S(R) of a region of linear size R is independent of L

for R 
 L. However, when we give theorems we endeavor to
state the mathematically precise assumptions.

APPENDIX B: ADIABATIC PERTURBATION THEORY

Suppose we have a Hamiltonian H (t) which depends on
time. Let the instantaneous energy eigenstates and energies be
given as

H (t)|n,t〉 = En(t)|n,t〉. (B1)

We start evolving at t = 0 from |ψ(0)〉 = ∑
n cn(0)|n,0〉 and

expand the time dependent state as

|ψ(t)〉 =
∑

n

cn(t)e−i
∫ t

0 En(t ′)dt ′ |n,t〉. (B2)

|ψ(t)〉 obeys the Schrödinger equation i∂t |ψ(t)〉 = H (t)|ψ(t)〉
which we want to convert into an equation for the cn.

Taking the time derivative of |ψ(t)〉 we obtain three terms:

i∂t |ψ(t)〉 =
∑

n

(
En(t)cne

−i
∫ t

0 En(t ′)dt ′ |n,t〉)
+

∑
n

(
(i∂t cn)e−i

∫ t

0 En(t ′)dt ′ |n,t〉

+ cne
−i

∫ t

0 En(t ′)dt ′ i∂t |n,t〉). (B3)

The first term containing En cancels with H (t)|ψ(t)〉, so we
have

0 =
∑

n

(
i∂t cne

−i
∫ t

0 En(t ′)dt ′ |n,t〉 + cne
−i

∫ t

0 En(t ′)dt ′ i∂t |n,t〉).
(B4)

We take a derivative of the eigenvalue equation for |n,t〉 to find
an equation for ∂t |n,t〉. First, since 〈n,t |n,t〉 = 1 it follows that
〈n,t |∂t |n,t〉 = 0. Then, we obtain for ∂t |n,t〉 the equation

i∂t |n,t〉 = −i(H − En)−1(∂tH )|n,t〉, (B5)

where it is understood that the singular term in the inverse is
omitted. Expanding the time derivative of |ψ(t)〉 in the |n,t〉
basis we find (with some relabeling of n and m)

(i∂t cn)e−i
∫ t

0 En(t ′)dt ′ =
∑
m�=n

ie−i
∫ t

0 Em(t ′)dt ′

En − Em

〈n,t |∂tH |m,t〉.

(B6)

We can simplify this equation to

∂tcn =
∑
m�=n

e−i
∫ t

0 [Em(t ′)−En(t ′)]dt ′

En − Em

〈n,t |∂tH |m,t〉. (B7)

See [133,134] for a recent general analysis of this formula and
[135] for rigorous results; our needs are simpler.

Suppose we have a single unique ground state separated
at all times by a gap of at least � from the rest of the
spectrum. We wish to estimate the probability to remain
in the ground state using perturbation theory assuming that
∂tH (t) is a smooth function which vanishes for t outside [0,τ ].
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We have

c0(τ ) − c0(0)

=
∫ τ

0
dt

∑
m�=0

e−i
∫ t

0 [Em(t ′)−E0(t ′)]dt ′

E0 − Em

〈0,t |∂tH |m,t〉,

(B8)

and upon taking absolute values and using the triangle
inequality we obtain

|c0(τ ) − c0(0)|

�
∑
m�=0

∣∣∣∣∣
∫ τ

0
dt

e−i
∫ t

0 [Em(t ′)−E0(t ′)]dt ′

E0 − Em

〈0,t |∂tH |m,t〉
∣∣∣∣∣. (B9)

This expression is a sum of Fourier transforms of the matrix
elements of ∂tH times a function of the energy differences.

To complete the analysis, define δEn(t) = En(t) − En(0)
and note that Em − E0 � � for all m. Then we may write

|c0(τ ) − c0(0)| �
∑
m�=0

∣∣∣∣
∫ τ

0
dt

e−i(Em−E0)t

�

× [
e−i

∫ t

0 [δEm(t ′)−δE0(t ′)]dt ′ 〈0,t |∂tH |m,t〉]∣∣∣∣.
(B10)

The function in brackets is smooth and has rapidly vanishing
Fourier transform; call the Fourier transform Hm(ω). Then we
have the bound

|c0(τ ) − c0(0)| � 1

�

∑
m�=0

|Hm(Em − E0)|. (B11)

Assuming Hm(ω) decays like Je−(ωτ )1−δ

and assuming the
number of nonvanishing matrix elements of ∂tH between
excited states and the ground state is not too large, we find
a bound like

|c0(τ ) − c0(0)| � J

�
e−(�τ )1−δ

. (B12)

If we are considering a Hilbert space of bounded dimension,
then this bound follows immediately, and if the Hilbert space
dimension is large, then we need a bound on the number of
matrix elements going like poly[log(D)] for a Hilbert space of
dimension D.

The probability for the ground state to decay is Pdecay = 1 −
|c0(τ )|/2 [with the initial condition cn(0) = δn,0]. The above
bound implies that |c0(τ )| � 1 − J

�
e−(�τ )1−δ

and hence

Pdecay � 2
J

�
e−(�τ )1−δ

.

APPENDIX C: CONTROLLING THE RENYI ENTROPY

A unitary U acting on a Hilbert spaceV1 ⊗ V2 of dimension
D2 (assume for simplicity that D1 = D2 = D) can only
increase the Schmidt rank of a state by a factor of D2.
This may be proven by noting that U may always be

decomposed as

U =
D2∑
i=1

O1iO2i (C1)

since U is a vector in the space (V1 ⊗ V∗
1 ) ⊗ (V2 ⊗ V∗

2 ). If
V1 and V2 are parts of larger systems, V1E1 = V1 ⊗ VE1 and
V2E2 = V2 ⊗ VE2 , then this bound remains true. In fact, the
bound may be saturated by applying a swap operator which
exchanges 1 and 2 to an initial state in which 1 is maximally
entangled with E1 and 2 is maximally entangled with E2.

Applying this simple fact to the case where 1E1 = A

and 2E2 = Ā with 1 and 2 small regions neighboring ∂A,
the Schmidt rank of ρA can change by at most a fac-
tor of min(D2

1,D2
2). Having approximated the sequence of

quasilocal unitaries with a sequence of circuits acting on
�d ∼ logd(1+δ)(L) degrees of freedom at a time, the total
Schmidt rank of a region A in d > 1 can bounded by
estimating the number of such circuit chunks acting across
∂A. A simple counting argument shows that this number is
Nchunks ∼ |∂A|/�d−1 in d > 1. Since the Hilbert space of a
block of size �d has dimension of order ec�d

, it follows that
the state built from the sequence of circuits has Schmidt rank
across ∂A bounded by eNchunks�

d = ec|∂A|� ∼ ec|∂A| log1+δ(L). This
bound is independent of d and provides a better bound than
PEPS constructions. Recall that the resulting state is also
within ε ∼ L−q of the true ground state. Thus, there is an
approximation to |ψL〉 with limited Schimdt rank for any
region A.

However, this does not imply that |ψL〉 has limited
Schmidt rank. Indeed, the Schmidt rank is badly discontinuous.
Furthermore, all Renyi entropies Sn with n < 1 are only barely
continuous. The Renyi entropy is defined as

Sn(ρA) = 1

1 − n
log

[
tr
(
ρn

A

)]
, (C2)

where S1 = −tr[ρA log(ρA)] is the usual entanglement en-
tropy. For n = 1 we have the Fannes-Audenaert inequality
[86,87]: if 1

2‖ρ − σ‖1 = T � 1 is the trace distance and if ρ

and σ are defined on a space with dimension D, then

|S1(ρ) − S1(σ )|
� T log(D − 1) − T log(T ) − (1 − T ) log(1 − T ). (C3)

The inequality is saturated for

ρ = diag(1, 0, . . .︸ ︷︷ ︸
D−1

) (C4)

and

σ = diag[1 − T , T /(D − 1), . . .︸ ︷︷ ︸
D−1

] (C5)

with S1(ρ) = 0 and S1(σ ) = T log(D − 1) − T log(T ) − (1 −
T ) log(1 − T ).

Given the same two states ρ and σ , an elementary exercise
gives Sn(ρ) = 0 and

Sn(σ ) = 1

1 − n
log((1 − T )n + (D − 1)1−nT n). (C6)
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To have Sn(σ ) of order ε, we must take T ∼ ε1/nD− 1−n
n which

is much smaller than the T ∼ ε
log(D) needed for n = 1. Since

D grows exponentially with system size, we need states to be
exponentially close to bound the Renyi entropy for n < 1, and
hence the Renyi entropy is effectively discontinuous.

We still conjecture that the Renyi entropy of s = 1 fixed
points |ψL〉 obeys an area law in keeping with the analysis
of [115], but our results here are insufficient to prove this.
We have shown that there is an approximate state with Renyi
entropy which can at most modestly violate the area law.

APPENDIX D: DILUTE ARRAY OF
NON-ABELIAN ANYONS

Suppose we have an array of N non-Abelian anyons
a in d = 2 dimensions with quantum dimension da > 1.
Associated with these anyons is a nonlocal fusion space V of
dimension dim(V) ∼ dN

a . If we distribute the anyons roughly
equidistant from each other (with pinning potentials, say),
then the spacing between anyons will be roughly n−1/2 where
n = N

L2 is the anyon density. Since the underlying topological
phase is gapped with correlation length ξ , the states in V are
locally coupled with strength Ja ∼ e−n−1/2/ξ . The total spectral
width of the anyon Hamiltonian is then of order NJa and hence
if n−1/2 increases as Lα , then all dN

a states are essentially only
exponentially split.

Given a finite region of size R, the number of anyons
contained within it is nR2, so unless n approaches a constant in
the thermodynamic limit L → ∞, the number of anyons in a
finite region approaches zero. Then, even if we imagine sitting
in a highly entangled state in V , the extra entanglement in a
region of size R will be negligible as L → ∞. This conclusion
is slightly delicate since the states in V are not strictly labeled
by local data, but if no anyons are present in a region, then
the state of the system will be the same as in the ground state
which obeys the area law.

Thus, while this is an interesting case (and clearly permits
highly entangled states to be formed, e.g., as in a topological
quantum computation), there are states in V which are lightly
entangled. In any event, the setup violates our assumptions.

APPENDIX E: TOPOLOGICAL ENTANGLEMENT
ENTROPY IS RG INVARIANT

In this appendix we use the s-sourcery to give an argument
that the topological entanglement entropy (TEE) is a well-
defined property of an s = 1 fixed point, that is, it is preserved
under the s = 1 RG step we have defined. This argument
is complementary to an argument for universality given in
[84,136] and provides a check on our methods.

The TEE can be defined [84,136] as γ in

2γ ≡ SAB + SBC − SB − SABC

with regions A,B,C as in the figure. We assume A,B,C have
linear size much larger than �, the range of the quasilocal
unitary (small disks in Fig. 9). We will restrict the discussion
to d = 2, but believe that the argument extends to the
generalization to arbitrary dimensions given in [137].

The s = 1 RG step acts on a copy of the system tensored
with a collection of decoupled ancillas; the subspace labeled

FIG. 9. A,B,C label regions used in the definition of the
topological entanglement entropy. The ancillas which are unentangled
before the action of the quasilocal unitary are not pictured. The gray
disks represent regions of linear size �̂, on which a single layer of the
staggered circuit representations of the quasilocal unitary has support,
as in Fig. 6.

A includes both the system Hilbert space associated to region
A and the accompanying ancillas which will be intercalated
by the RG step. We need to show that a quasilocal unitary of
range �, acting on the system at size L times these ancillas,
preserves the combination γ , up to corrections polynomial in
1/L.

For any region R, the change in its entanglement entropy
produced by such a quasilocal unitary can be approximated as

�SR =
∫

∂R

dσs(σ ) +
∑

corners,α

c(θα), (E1)

where s is a smooth geometric function localized to the
boundary of R, and c(θα) is the contribution from a corner of
∂R which makes an angle θα . This formula is similar in spirit
to the formula of [137] for the whole entanglement entropy for
regions of topological quantum liquids. The precise �SR is
a Riemann-sum approximation to such an integral, with error
determined by �̂.

To accomplish this, approximate the quasilocal unitary by
a staggered circuit as in Sec. IX B and in particular Fig. 6
(the support of one layer of the circuit is depicted by the gray
disks in Fig. 9). The error in the entanglement entropy from
this circuit approximation is usefully bounded by using the
Fannes-Audenaert inequality again; a useful approximation
requires ε ∼ L−q as before. The contributions to the change
in entanglement entropy of any region R from each layer of
the circuit come only from disks which intersect the boundary.
Away from corners of the region (red disks in Fig. 9), these
contributions can be represented by a derivative expansion in �

times local geometric functionals of the shape of the boundary,
as in [137]:

s(σ ) = a0 + a2�κ
2 + a3�∂σ κ + · · · ,

where κ is the extrinsic curvature of the boundary and the
ellipsis represents terms suppressed by more powers of �.
Terms in this expansion which are odd under exchanging the
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inside and outside of region R vanish because the whole system
is in a pure state [137].

Corners, where the shape of the boundary is not smooth,
even at the scale �, must be treated specially. The only property
of the corner contribution c(θ ) we require is that it depends
only on the angle between the edges which enter and exit the
corner disk (θ = π is no corner).

Adding up the contributions in the form (E1) to �γ , the
area law contributions proportional to a0L

1 cancel by design,
leaving behind terms proportional to �

L
. (This step of the

argument is identical to that of [137], with � here playing the
role of the correlation length there.) The corner contributions
also directly cancel in pairs. In the thermodynamic limit,
therefore, we find �γ = 0.

APPENDIX F: COMMUTING PROJECTOR
HAMILTONIANS

Here we review prior work on commuting projector
Hamiltonians as a simple illustration of the frustration free
setting. Many workers have extensively developed this ma-
chinery (see, e.g., [105–107,138,139]).

Suppose H = ∑
x Px is a sum of commuting projectors

with Px |g〉 = 0 for all locally indistinguishable ground states
|g〉. It has already been proven that the ground states of such
Hamiltonians obey the area law. Our aim is to use this case
to illustrate our alternative approach. However, let us first
establish the area law using an argument similar to that in
[15].

Consider the ground state projector Pg which can be
obtained thermodynamically as

Pg = lim
β→0

e−βH . (F1)

Because H is a sum of commuting projectors, the thermal
state of H is a quantum Markov chain for all β [139]. For our
purposes this means that the conditional mutual information
I (A : C|B) = S(AB) + S(BC) − S(B) − S(ABC) vanishes
whenever B isolates A from C. Since the Markov property
holds for all β, it also holds for the normalized ground state
projector. Furthermore, provided we work locally, local indis-
tinguishability implies that the conditional mutual information
in the ground state projector is the same as in any particular
ground state.

Hence, we have that I (A : C|B) = 0 whenever B isolates
A from C in every ground state. Let A be any simply connected
region of linear size R, let B be a strip of width W bordering
A, and let C be the rest of the system. Then we have

0 = I (A : C|B) = S(AB) + S(BC) − S(B) − S(ABC),

(F2)

but because the state of ABC is pure we have S(ABC) = 0,
S(AB) = S(C), S(BC) = S(A), and S(B) = S(AB). Then we
also find that

0 = S(C) + S(A) − S(AC), (F3)

which states that the mutual information I (A,C) vanishes.
Thus, we have

S(A) = S(AC) − S(C) = S(B) − S(AB) � 2S(B) − S(A)

(F4)

by the Araki-Lieb inequality [140] S(AB) � |S(A) − S(B)|.
Since the size of B is bounded by Rd−1W and since the mutual
information vanishes once W is greater than the range of the
Hamiltonian, we immediately find

S(A) � WRd−1 (F5)

which is the area law.
The Markov property also implies that we can reconstruct

states of subregions using only local data [105,106]. In terms of
our previous variables, σA = ρA for quantum Markov chains.
Furthermore, σA is given by

σA = Pg,A

G(HA)
, (F6)

where Pg,A is the ground state projector for HA, the Hamil-
tonian truncated to region A. (The formula for SA used
in Sec. VII B is a consequence of this relation.) Because
commuting projector Hamiltonians cannot support protected
edge states, there is another commuting projector Hamiltonian
ȞA which has a full gap except for locally indistinguishable
ground states. These two Hamiltonians differ only in boundary
terms localized near A. The ground state degeneracy of HA

is then bounded by the ground state degeneracy of ȞA plus
an area law piece. The ground state degeneracy of ȞA is
something we can relate to s using the RG framework, so
we have precisely the situation discussed in Sec. VIII.
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