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Floquet topological insulators are systems in which the topology emerges only when a time-periodic
perturbation is applied. In these systems one can define quasienergy states which replace the equilibrium stationary
states. The system exhibits its nontrivial topology by developing edge-localized quasienergy states which lie in
a gap of the quasienergy spectrum. These states represent a nonequilibrium analog of the topologically protected
edge states in equilibrium topological insulators which exhibit an edge conductance of 2e2/h. Here we explore
the transport properties of the edge states in a Floquet topological insulator. In stark contrast to the equilibrium
result, we find that the two-terminal conductivity of these edge states is significantly different from 2e2/h. This
fact notwithstanding, we find that for certain external potential strengths the conductivity is smaller than 2e2/h

and robust to the effects of disorder and smooth changes to the Hamiltonian’s parameters. This robustness is
reminiscent of the robustness found in equilibrium topological insulators. We provide an intuitive understanding
of the reduction of the conductivity in terms of a picture where electrons in edge states are scattered by photons. We
also consider the Floquet sum rule [A. Kundu and B. Seradjeh, Phys. Rev. Lett. 111, 136402 (2013)], which was
proposed in a different context. The summed conductivity recovers the equilibrium value of 2e2/h whenever edge
states are present. We show that this sum rule holds in our system using both numerical and analytic techniques.

DOI: 10.1103/PhysRevB.93.045121

I. INTRODUCTION

Over the past decade topological insulators have become
well known for their novel transport properties. The hallmark
of these systems is their linearly dispersing, in-gap states.
These states correspond to counterpropagating, helical edge
modes. In a two-dimensional geometry these edge modes
represent one-dimensional channels and lead to specific
transport properties.

One example is a two-terminal device, where a source and
drain are attached to the left and right of a sample and a bias
voltage is applied across these terminals. The conductivity
when these Fermi energies are placed in the gap (where the
edge states live) is σ = 2e2/h [1–3]. In a six-terminal, or
Hall-bar, geometry specific values of multiterminal resistances
are expected [1–3] and these resistances are unique to
counterpropagating, helical edge modes.

Although the number of confirmed topological insulators is
ever increasing, materials with the correct physical parameters
to support this state of matter are hard to come by. This has
led many authors to consider ways in which to drive a material
without any topological properties into a topological state.
When a time-periodic potential is used to accomplish this
task the resulting nonequilibrium topological state is called
a Floquet topological insulator.

The field of Floquet topological insulators (and Floquet
topological superconductors) has produced many interesting
results of late [4–22]. The introduction of a time-periodic
potential into the system breaks continuous time-translational
invariance and so one must dispense with the notion of an
energy spectrum. A time-periodic field does have discrete
time-translational invariance and therefore one has the ability
to define an analogous concept called the “quasienergy”
spectrum [23]. In Floquet topological insulators one uses
an externally applied time-periodic field of carefully chosen
parameters to drive the system into its topological phase. The
topology is manifest in in-gap, edge modes which are created

in the quasienergy spectrum. Such a system then represents a
nonequilibrium analog of topological insulators, but with the
added flexibility of an external periodic potential.

In this work we study the transport properties of Floquet
edge states. Our goal is to test whether transport through the
edge modes of a two-dimensional Floquet topological insulator
is quantized and robust as in the case of equilibrium topological
insulators. We initially focus on a two-terminal geometry and
then move on to consider a six-terminal setup. We expect the
results and intuition developed here to be readily generalizable
to other geometries. In general we find that the two-terminal
conductivity of the Floquet edge states is significantly different
from the typical equilibrium value of 2e2/h and can be either
larger or smaller than this distinctive value depending on how
the strength of the external field is tuned. The same holds
true for the resistance measurements typical of a topological
insulator in a six-terminal setup.

The main results of this paper may be summarized as fol-
lows. The existence of quasienergy edge states in the Floquet
topological insulator is accompanied by a conductivity of σ <

2e2/h, when the chemical potential lies in the quasienergy
gap. In addition, the value of 2e2/h is obtained as a sum rule
when the conductivity is summed over all “sidebands,” i.e.,
over all energies which differ from a particular energy in the
gap by an integer number of photon energies. Physically, the
result σ < 2e2/h for nonequilibrium edge states corresponds
to the presence of photons inhibiting access to the topologically
protected edge states of the system [24].

Moreover, in regions where the conductivity is smaller than
2e2/h, we find that the calculated values are robust to the
effects of disorder, system size, and changes to the Hamiltonian
that maintain the energy gap. Such behavior is reminiscent of
topologically protected edge states in equilibrium topological
insulators and we indeed find that for the external potential
strengths where we see this robustness there exist linearly
dispersing, in-gap edge states in the quasienergy spectrum.
In regions where the conductivity is larger than 2e2/h no
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robustness exists and the gap is closed; hence we are probing
bulk effects.

The reduction of the topologically protected conductivity
away from 2e2/h can be intuitively understood by borrowing
some machinery from the field of photon-assisted tunneling
(PAT) [25]. Namely, an electron that would normally tunnel
into the edge states of the system has a finite probability of
absorbing/emitting a photon and being scattered out of the
edge state. From the viewpoint of quasienergy states this comes
from understanding that the definite energy states of the leads
do not perfectly overlap with the quasienergy states of the
Floquet topological insulator [15]. The heuristic description in
terms of scattering of electrons by photons can be applied to ob-
serve a so-called “Floquet sum rule” [4]. In short, the sum rule
recovers all of the conductivity lost from PAT by summing over
lead energies separated by photon energies ��, � being the
frequency of the driving field. We have confirmed this sum rule
using both numerics and an approximate analytic approach.

II. MODEL

Our model Hamiltonian is that of a quantum well het-
erostructure [1] irradiated by linearly polarized light and
subjected to a disorder potential. It is given as follows

HS =
∑

k

ψ
†
k

(
Ĥ (k,t) 0

0 Ĥ ∗(−k,t)

)
ψk −

∑
i,α

wiψ
†
i,αψi,α,

(1)

where ψ
†
k is a four-component creation operator for elec-

trons at momenta k in angular momentum state mJ =
(1/2,3/2, − 1/2, − 3/2) and ψ

†
i is its Fourier transform.

The first term above is the Hamiltonian of the clean, ir-
radiated heterostructure and we have used Ĥ (k) = εkσ0 +
d(k) · σ + 2(V · σ ) cos �t . The second term takes into account
disorder. We have used the standard definitions d(k) =
(A sin kx,A sin ky,M − 4B + 2B(cos kx + cos ky)) and εk =
C − 2D(2 − cos kx − cos ky) and draw the disorder param-
eters, {wi}, randomly from an evenly distributed sample
between −W/2 and W/2.

Following Lindner and coworkers [5], we set C = D = 0,
A = B = 0.2|M| and set |M| = 1 throughout (i.e., all energies
are in units of |M|). To simulate a trivial system we set
M = −1 so that sgn(M/B) = −1 [1,5]. We take V = Vextẑ

for concreteness. Note that the field we consider here, and our
subsequent observations in this paper, is assumed to always
be “on.” We consider a field that was turned on in the distant
past and is not switched off throughout the duration of our
calculations. Furthermore, from this point forward we fix
�� = 2.3|M|.

The goal of this paper will be to understand the transport
properties of the nonequilibrium system described above.
In order to accomplish this we must couple the system to
leads/electrodes. We leave the specifics of this process to the
appendices of this paper and here only discuss the matter at
a high level. We model the leads as being static (in time);
i.e., the time-dependent field abruptly turns off at the leads.
Ultimately the leads result in the system experiencing a
self-energy proportional to �(t)/2 = ∑

λ �λ(t)/2, where
�λ(t) is the contribution of lead λ. In this paper we will work

to simplify our discussion by employing the “wide-band”
approximation. This phenomenological approach assumes
that the density of states of the leads is constant over the
energy scales in which we are interested. This amounts to
assuming that the Fourier transform of the lead operators,
�λ(ε), is independent of ε; i.e., �λ(ε) � �λ.

In the work in Ref. [24] we have studied a system with
sgn(M/B) > 0. In other words, the system we were concerned
with was a topological insulator, more specifically a quantum
spin-Hall insulator, before any periodic perturbation was
applied. Our work was interested in observing the behavior
of the topological edge-states in this system in the presence
of a time-periodic drive. In contrast, our work here is focused
on a system with trivial topology in equilibrium; there are
no edge states without the time dependence. The system
is a true Floquet topological insulator in the sense that its
edge states only develop after a time-periodic perturbation is
applied. These edge states rely crucially on band mixing that
comes from the periodic perturbation being on-resonance [5];
i.e., the quantity �� connects different parts of the band
structure. The work in Ref. [24] only considers off-resonant
light, where �� does not join any existing eigenstates. This is
in contrast to other systems, for example graphene [6–10,26],
where the Floquet topological insulator can be driven using an
off-resonant perturbation [26].

Our understanding relies primarily on Floquet states [23].
Floquet states are the extension of stationary states to time-
periodic systems. In a time-periodic system one deals with
(Floquet) states that solve the Schrödinger equation and are
characterized by a definite quasienergy. These states are
traditionally written as |ψη̃(t)〉 = e−iη̃t/�|φη̃(t)〉, which leads
to the eigenvalue equation [H (t) − i�∂t ]|φη̃(t)〉 = η̃|φη̃(t)〉,
where H (t) is the full Hamiltonian of the system, η̃ are
the quasienergies, and |φη̃(t + T )〉 = |φη̃(t)〉. We note that if
|φη̃(t)〉 is an eigenstate with quasienergy η̃, then ei�t |φη̃(t)〉 is
also an eigenstate but with quasienergy η̃ + ��. Therefore the
quasienergy spectrum is only unique up to integer multiples
of ��. This allows us to define a “Brillouin zone” for the
quasienergies; we will call this the Floquet zone. For this
work we consider 0 � η < ��; we will use the convention
η to denote quasienergies confined to this zone while η̃ above
is unconfined. This reflects the fact that energy in a time-
periodic system is only conserved modulo ��; an electron in a
quasienergy state |φη(t)〉 can always absorb or emit a photon.

III. TWO-TERMINAL CONDUCTIVITY

Let us begin with our results for the two-terminal conductiv-
ity of this system. We calculate the conductivity numerically
using Floquet-Landauer theory [10,26]. In this two-terminal
setup, shown in Fig. 1(a), we consider the leads to be kept
at a voltage such that the Fermi level of both leads, which
we will refer to as the lead energies, takes a value E. We
then apply a (vanishingly) small bias voltage V/e so that the
Fermi energies of the two leads are εL = E + V and εR = E.
We study the differential conductivity at a lead energy of
E = �/2 which is where the edge states are expected to
be found [5]. Referring to our results in Fig. 2(a) we see
that, with the exception of a small area near Vext = 0.3|M|,
the two-terminal conductivity generally decreases with Vext in
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FIG. 1. Two geometries considered in this work. On the top we
have the two-terminal setup with a bias voltage V/e offsetting the two
Fermi energies εL and εR . On the bottom we have the six-terminal
setup with a current I being driven between leads 1 and 4.
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FIG. 2. Two-terminal conductivity in units of e2/h. The top
shows the conductivity at E = �/2 in a two-terminal setup as a
function of external potential strength for various disorder strengths
W and system size L = 20. The bottom is the conductivity for various
values of the system size, L, and the lead coupling parameter � over
a region where edge states are present.

the range of parameters considered. We note that nowhere
do we see a saturation to a value of σ = 2e2/h, nor any
other constant value. This fact notwithstanding, our results
do have the striking feature that after a certain value of Vext

the conductivity becomes insensitive to the effects of disorder;
in that region all of the curves overlap. In Fig. 2(b) we see
that in this same region our results are insensitive to system
length L and to the parameter � which describes the strength
of the coupling to the leads. Thus we note our second result:
for some values of Vext the calculated conductivity is robust in
the same way as for an equilibrium topological insulator.

The robustness in the conductivity coexists with the
presence of edge states in the quasienergy spectrum. To show
this we consider the system in the absence of leads and in a
semi-infinite cylindrical geometry. By semi-infinite geometry
we mean a system with open boundary conditions in the y

direction and periodic boundary conditions in the x direction
The quasienergy for our model appears in Fig. 3 for several
values of the external potential strength Vext. For small driving
strength the gap remains closed, but as the strength is increased
the gap opens up leaving linearly dispersing states. Further
inspection of these states reveals that they reside on the edge
of the system [5]. In general we have found that when this gap
is open and large enough to withstand the effects of disorder or
coupling to the leads, the value calculated for the conductivity
is robust in the same sense as edge states in a topological
insulator.

IV. PHOTON-INHIBITED TRANSPORT
AND FLOQUET SUM RULE

Thus far we have shown that when this system plays host
to edge states the conductivity that we find appears to be
topologically robust. We now address the question of why
it does not have the hallmark value of 2e2/h. For this we
further generalize a technique inspired by photon-assisted
tunneling [25,27] and used in Ref. [24]. In this work it was
shown that for a topological heterostructure the presence of
an external time-periodic field reduces the conductivity away
from 2e2/h. This reduction and other subsequent results can
be accounted for by understanding that the external potential
not only “dresses” the quantum well Hamiltonian but also
splits this dressed system into sidebands [25,27]. The splitting
means that the edge states of the system are only populated
probabilistically, accounting for the reduction in the standard
transport quantities. The specific application of Ref. [24] relied
crucially on the driving potential being off-resonance, i.e.,
that it did not mix portions of the equilibrium band structure.
The current system requires on-resonance light in order to
drive the system into a topological state. In spite of this, our
results are conducive to a similar interpretation in that we see
topologically robust results in Fig. 2 that are different from
2e2/h.

To put this discussion on more general grounds we appeal
to Floquet theory. As discussed previously, in a time-periodic
system the states of interest are the steady-state solutions
|ψη(t)〉 = e−iηt/�|φη(t)〉, where η is the quasienergy and
[H (t) − i�∂t ]|φη(t)〉 = η|φη(t)〉. For periodic dependence in
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FIG. 3. Quasienergy spectrum of a topologically trivial sample at different driving amplitudes in a semi-infinite cylindrical geometry. The
left plot is for Vext = 0.1|M|, the middle Vext = 0.3|M|, and the right Vext = 0.9|M|.

t we are free to define the following decomposition:

|φη(t)〉 =
∑

n

e−in�t |φn〉. (2)

In the literature the states |φn〉 are commonly called sideband
states [28] and are determined as solutions to the eigen-
value equation

∑
n H̄n,m|φm〉 = (η + n��)|φn〉 where H̄n,m =

1
T

∫ T

0 dtei(n−m)�tH (t).
We now calculate the time-averaged expectation value

of the energy in the steady state |ψη(t)〉 which we define
as Ē = 1

T

∫ T

0 dt〈ψη(t)|H (t)|ψη(t)〉. Using the sideband de-
composition in Eq. (2) and the fact that |ψη(t)〉 solves the
Schrödingier equation immediately gives

Ē =
∑

n

(η + ��n)〈φn|φn〉. (3)

Noting that 〈φn|φn〉 � 0 and
∑

n〈φn|φn〉 = 1 (the latter prop-
erty follows from the normalization of |φη(t)〉) allows us to
interpret the above average as follows. In the quantum state
|ψη(t)〉 the energies η + ��n occur with probability 〈φn|φn〉.

We now tie the above statistical interpretation to our obser-
vations of the transport in the Floquet topological insulators.
For the system of interest one can calculate the appropriate
quasienergies 0 � η < �� and their corresponding wave
functions |φη(t)〉; these are the steady states of our sample.
Now, when electrons from the lead are injected into the system
at some definite energy E, as opposed to an equilibrium
case, only a portion of the sample state overlaps with the
definite energy lead state [15]. Physically, we envision this
in terms of electrons being able to absorb or emit photons
once they enter the sample. For lead electrons at an energy
E = η + N�� there is only a probability 〈φN |φN 〉 that the
electron will absorb/emit enough photons to access the sample
state with quasienergy η. This quasienergy spectrum may
contain topologically protected edge states [12–16]. Now,
when we try to access these states from a charge transport point
of view we can only access the state at a certain probability,
because of the possibility to absorb/emit photons. Therefore
expected signatures of these edge states, e.g., σ = 2e2/h

conductance, are probabilistically suppressed.
Note that this argument does not rely on the periodic per-

turbation being on or off resonance; it is simply a consequence
of the discrete time-translational invariance. Therefore, when
one is dealing with Floquet edge states it should be kept in
mind that the weight of these edge states is distributed into
sidebands as discussed above. Indeed in the current system one

can approximately obtain a description of the conductivity at
specific lead energies E + n�� (where the edge states live).
Quoting only the result here (for a detailed derivation please
see the appendices),

σ (E + N��) � 1

2

[
J 2

N

(
2Vext

��

)
+ J 2

N+1

(
2Vext

��

)]
×σ̃ (E,Vext), (4)

where the relevant energy E is chosen to be in the vicinity
of ��/2, where the localized quasienergy states appear.
σ̃ (E,Vext) is a complicated function of the model parameters
and, interestingly, cannot be thought of as the conductivity
of some effective static system. We find numerically that
σ̃ (E,Vext) � 2e2/h when edge states are present in the
quasienergy spectrum. The important implication of the above
formula is that the conductivity can be thought of as an
overall probabilistic factor times a conductivity expression.
The above approximate result compares very well to our
numerical calculations. A plot of this function appears in
Fig. 2(b).

With the intuition for why the conductivity is suppressed
in Floquet topological edge states, let us move on to present
results for how the value of 2e2/h can be recovered. In short,
by setting lead energies at ��/2 + n�� and summing over
all n we should be able to recollect the lost statistical weight
from the photon scattering. Towards this end we consider the
quantity [4]

σ̄ (E,Vext) =
∑

n

σ (E + n��) = σ̃ (E,Vext). (5)

We calculate σ̄ (E � �/2) for various different values of
Vext and also at different disorder strengths. Our results are
presented in Fig. 4. What we see is quite satisfying: for a
window of Vext values we see that σ̄ = 2e2/h. Moreover,
this window corresponds to the same parameter regime where
there are in-gap quasienergy edge states, and insensitivity of
the system to disorder, system size, and other parameters in
Figs. 2 and 3.

We understand the plot in Fig. 4 as follows. For smaller
Vext the external field is not strong enough to open a gap and
“expose” the edge states. Therefore the conduction σ is a result
of bulk processes and thus sensitive to disorder strength. As
Vext gets large enough to open a sufficiently stable gap the
edge states appear in this gap and are unobscured by bulk
states. Here we see σ̄ = 2e2/h and an insensitivity to disorder
strength. Eventually Vext becomes so strong that the gap closes

045121-4



EDGE-STATE TRANSPORT IN FLOQUET TOPOLOGICAL . . . PHYSICAL REVIEW B 93, 045121 (2016)

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14 2
Clean System
W=0.2|M|
W=0.35|M|
W=0.5|M|
W=0.75|M|
Eq. (3)

Vext

1 1.05 1.1 1.15 1.2 1.25 1.3

1.96

1.98

2

2.02

2.04

σ̄

FIG. 4. Results for disorder-averaged summed conductivity, i.e., Eq. (5) in the text, with M = −1 and E = �/2 and in units of e2/h

for various disorder strengths W . The inset shows a zoomed in picture of the first area of conductivity quantization. The disorder plots are
constructed by averaging over 40 randomly drawn collections of disorder potentials while the error bars represent one standard deviation of
these data. Note that some error bars in the insets are too small to see. These data have been obtained from a calculation on a 20 × 20 lattice.

again and bulk states dominate. In this case σ̄ (��/2) > 2e2/h

representing bulk conductivity. When the gap opens again at a
larger external potential we see a reversion back to σ̄ = 2e2/h.

V. HALL-BAR GEOMETRY AND EDGE STATES

Up to now we have presented our findings in a two-terminal
device geometry. We now move on to study a six-terminal
device in an effort to further illustrate that the conductivity
discussed above is indeed a result of conduction along the edge
of the sample, and not some coincidental edge effect. Our setup
is motivated by experiments on Hall-bar systems [2,10,29].
An illustration of the setup that we have in mind appears in
Fig. 1(b).

In the absence of a periodic driving potential the six-
terminal geometry is used as follows. Assuming that all
voltages are close to the Fermi level and that all leads are
identical so that we can drop the pumped current [10], one
approximates Eq. (A5) as

Īλ = −e2

h

∑
λ′

[Tλ,λ′(Ef )Vλ′ − Tλ′,λ(Ef )Vλ], (6)

where λ labels each of the side terminals. For a spin-Hall
insulator dissipationless edge states exist and so one
expects Ti,i+1 = Ti+1,i = 1, where we periodically identify
6 + 1 → 1. Now one imagines driving a current I from
contact 1 to contact 4. We then have I = (I,0,0, − I,0,0)T

where we have defined Ii = Īi . Inverting Eq. (6) one can
find the voltages required to drive such a current. Doing
so gives V1 − V4 = 3h

2e2 I and V2 − V3 = h
2e2 I . Defining

Ri,j = (Vi − Vj )/I as the resistance between terminals i and
j we find R1,4 = 3

2h/e2 and R2,3 = 1
2h/e2. These values are

unique to transport from dissipationless, helical edge states.
Here we will discuss a generalization of this concept to

the effect which we have discussed so far. For our insulator
in the topological regime we find that Ti,j = 0 except for
the off-diagonal elements Ti,i+1 and Ti+1,i , where again we
periodically identify 6 + 1 → 1. In contrast to the equilibrium
observation we find that Ti,i+1 = Ti+1,i = T (n) �= 1 where T (n)

is the tunneling value for the lead Fermi energies near the gap

in the nth Floquet zone. We now again imagine driving a
current I from contact 1 to contact 4 with the bias voltages set
near the middle of the gap in the nth Floquet zone. Defining
R

(n)
i,j = (Vi − Vj )/I as the resistance between terminals i and

j in this case we find R
(n)
1,4 = 3

2T (n) h/e2 and R
(n)
2,3 = 1

2T (n) h/e2.
Note that the signature results in terms of rational fractions of
h/e2 are lost; they have been reduced by a factor of T (n).

Using the above result we can realize two interesting
properties of these Floquet devices. The first is the following:

R
(n)
1,4

R
(n)
2,3

� 3 ∀n. (7)

That is, taking the ratio of these two resistances gives 3
regardless of which Floquet zone the Fermi energies are set
in. Finally, in analogy with how we can retain the quantized
value of σ in the two-terminal device considered above we can
retain the equilibrium result here as follows:

R̄F
1,4 =

(∑
n

1

R
(n)
1,4

)−1

= 3

2
h/e2 (8)

and

R̄F
2,3 =

(∑
n

1

R
(n)
2,3

)−1

= 1

2
h/e2. (9)

These results are consistent with the picture developed above
of edge states that are only occupied in a probabilistic way.
The fact that Ti,j �=i±1 = 0 reflects the edge conductance. The
fact that Ti,i±1 < 1 reflects the fact that in a periodically driven
system electrons entering lead i have a probability to absorb
or emit a photon before reaching terminal i ± 1. Thus Ti,j

is reduced. By summing over all Floquet zones we again
effectively sum over all of these probabilities and retain the
expected equilibrium result.

As a numerical test of the above we calculate Tij

for lead energies (n + 1/2)�� for Vext = 0.675|M|, i.e.,
where we expect to see in-gap edge states. In our cal-
culation we find Tij = 0 for i �= j except when j = i ±
1. We observe that Ti,i±1(n = 0) = Ti,i±1(n = −1) � 0.46,
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Ti,i±1(n = 1) = Ti,i±1(n = −2) � 0.04, and zero for all other
n’s. These numerical values satisfy

∑
n Ti,i+1(n) = 1 and

therefore satisfy the results established in this section.

VI. CONCLUSIONS

We have explored the transport properties of Floquet
topological edge states in a quantum well heterostructure. At
first we took a numerical approach which showed that in the
presence of Floquet edge states in the quasienergy spectrum
the two-terminal conductivity is topologically robust, albeit
not quantized to 2e2/h.

To explain the reduction of the two-terminal conductivity
compared to the equilibrium value of 2e2/h we appealed to an
intuitive description in terms of electrons being scattered by
photons. This picture consists of viewing the Floquet edge
states in the quasienergy spectrum as having their weight
distributed into sidebands of energies η + n��. The result
of this sideband distribution is that as we attempt to inject
an electron from a lead at some energy E there is a certain
probability that it will absorb/emit enough photons to find the
Floquet edge state.

The heuristic picture in terms of scattering by photons
motivated us to propose a means to salvage the equilibrium
conductivity of 2e2/h. This can be done using a recently
proposed Floquet sum rule [4], which in our formalism
has a natural interpretation. In our picture the topological
Floquet states represent a superposition of states in various
sidebands. The different coefficients in the superposition
〈φn|φη〉 determine the overlap. Our Floquet edge states nicely
obey this sum rule showing that a summed conductivity value
of σ̄ = 2e2/h is found when the external field is such that edge
states in the quasienergy spectrum exist. Moreover, the result
σ̄ = 2e2/h is robust to disorder even up to very large disorder
strengths.

Finally, we have extended our results to study a six-terminal,
or Hall-bar, setup. Here the equilibrium signatures of the
quantum spin-Hall effect are several characteristic resistance
measurements. We have shown that these resistances are
increased relative to the equilibrium case. This fact notwith-
standing, following our intuition from the two-terminal results
we have suggested a sum rule for the six-terminal resistance
measurements that recovers the equilibrium result. This sum
rule is also intuitively explained in terms of photon inhibition
of edge states.
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APPENDIX A: FLOQUET-LANDAUER
FORMALISM FOR TRANSPORT

Here we present only the essential aspects of the Floquet-
Landauer formalism. A more detailed description of our

specific approach to this problem can be found in the
Supplemental Material of [24]. Moreover, an excellent review
can be found in Ref. [28].

We begin with a generic Hamiltonian which is given by

H = HS(t) + HL + HC, (A1)

where

HS(t) = c†HS(t)c (A2)

is the Hamiltonian of the sample where c† = (c†1, . . . ,c
†
Ns

) is a
vector containing creation operators for each of the Ns degrees
of freedom in the sample and HS(t) is a Ns × Ns matrix
coupling these degrees of freedom. This matrix contains both
the static properties of the sample as well as the time-dependent
effects of the periodic field. Next,

HL =
∑

λ

b
†
λHL,λbλ (A3)

is the Hamiltonian of all of the leads where b
†
λ =

(b†1,λ, . . . ,b
†
Nl,λ,λ

) is a vector containing creation operators for
each of the Nl degrees of freedom in the lead λ and Hl,λ is an
Nl,λ × Nl,λ matrix coupling these degrees of freedom. Finally,

HC =
∑

λ

(b†λKλc + H.c.) (A4)

is the Hamiltonian coupling the sample to each of the leads.
Kλ is the Nl,λ × Ns matrix that describes these coupling
strengths. The above model is completely general and makes
no specification of band structure or dimension of the system.

The time-averaged current flowing through the sample out
of lead λ can be shown to read as follows:

Īλ = e

h

∑
λ′

∫
dε[Tλ,λ′(ε)fλ′(ε) − Tλ′,λ(ε)fλ(ε)], (A5)

where fλ(ε) = 1
1+exp [βλ(ε−eVλ)] and we have defined the trans-

mission matrices

Tλ,λ′(ε) =
∑

n

Tr[�λ(ε + �n�)G(n)(ε)�λ′(ε)[G(n)(ε)]†],

(A6)
where

G(n)(ε) = 1

T

∫ T

0
ein�tG(t,ε)dt (A7)

and G(t,ε) solves(
i�

d

dt
+ ε − HS(t)

)
G(t,ε)

+ i

∫ ∞

0
eiετ/��(τ )G(t − τ,ε)dτ = INs×Ns

. (A8)

In the above �(t) can be thought of as the self-energy
obtained from integrating out the leads in the system. From
our microscopic Hamiltonian above it is given by

�λ(t) = 1

�
K†

L,λgλ,L(t)KL,λ (A9)

and �(t) = ∑
λ �λ(t). In the above we have also defined

gλ,L(t − t ′) = exp [− i
�
HL,λ(t − t ′)], which is the temporal

Green’s function of the isolated leads. In this paper we will
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work to simplify our discussion by employing the “wide-band”
approximation. This phenomenological approach assumes that
the density of states of the leads is constant over the energy
scales in which we are interested. This amounts to assuming
that the lead operators, �λ(ε), are independent of ε, �λ(ε) �
�λ. Moreover, we make the assumption of identical leads so
that (�λ)i,j = �δi,j δi,xλ

, where xλ are the set of all sample
degrees of freedom connected to lead λ. We note that as we
are dealing with topological transport properties none of these
details should change our results.

In a two-terminal device the sample has leads attached to
its left and right edges. For this type of device we label these
leads as L for left and R for right. By conservation of current
we must have ĪR = −ĪL, since the current entering the right
lead must be equal to the current leaving the left lead. It is
then sufficient to think only of ĪR . We now imagine biasing
our sample so that we have a voltage E/e + V/e on the left
lead and a voltage E/e + 0 on the right lead, where E is the
Fermi level of both leads. We then define the (differential)
conductance as

σ (E) = dĪR

dV

∣∣∣∣
V =0

= e2

h
TR,L(E). (A10)

Thus for this geometry we have the simple result that
the conductivity is simply given by the total transmission
coefficient from the left lead to the right lead.

APPENDIX B: APPROXIMATE RESULT
FOR THE CONDUCTIVITY

Here we detail the steps taken to derive the approximate
result for the conductivity presented in Eq. (4). We begin (in
the wide-band approximation) with the equation of motion for
G(t,ε): (

i�
d

dt
+ ε − HS(t) + i

2
�

)
G(t,ε) = I. (B1)

We note the fact that G(t,ε) explicitly depends on time. This
is in contrast to equilibrium where G(t,ε) → G(ε) has no
time dependence [as HS(t) = HS] and the above simplifies to
[ε − HS(t) + i

2�]G(ε) = I . The remaining time index can be
shown to be periodic in time [28] and therefore we are free to
define

G(n)(ε) = 1

T

∫ T

0
dtein�tG(t,ε). (B2)

It is the above object that we ultimately need to find.
This task is simplified by considering instead the auxiliary

equation(
i�

d

dt
+ ε − HS(t) + i

2
�

)
G(t,t ′,ε) = δ(t − t ′) (B3)

and then noting that

G(t,ε) =
∫

dt ′G(t,t ′,ε). (B4)

We will now focus on Eq. (B3). By writing HS(t) − i
2� =

ĤS + Hext(t) and introducing the rotating-frame picture

G(t,t ′,ε) = UV (t)Ǧ(t,t ′,ε)U †
V (t ′), (B5)

where i� d
dt

UV (t) = Hext(t)UV (t). Then it follows that
Ǧ(t,t ′,ε) is a solution to(

i�
d

dt
+ ε − ĤS(t)

)
Ǧ(t,t ′,ε) = δ(t − t ′) (B6)

with the “rotating” version of ĤS being ĤS(t) =
UV (t)†ĤSUV (t). If the external, periodic potential were some
potential with no internal structure coupling the degrees of
freedom of the system, then we would have ĤS(t) = ĤS

as Hext(t) would commute with all other terms. This would
immediately lead to a static system and a direct analog of
photon-assisted tunneling.

For this particular problem Hext(t) commutes with itself
at different times. As a result UV (t + T ) = UV (t) and it is
useful to define

UV (n) = 1

T

∫ T

0
dtein�tUV (t),

ĤS(n) = 1

T

∫ T

0
dtein�tĤS(t). (B7)

Using all of these ingredients we then have

G(n)(ε) = 1

T

∫ T

0
dtein�t

∫
dt ′UV (t)Ǧ(t,t ′,ε)U †

V (t ′). (B8)

Our task becomes to solve Eq. (B6). We do so by defining

Ǧ(t,t ′,ε) = 1

T

∑
n,m

e−in�t eim�t ′ Ǧn,m(ε), (B9)

which reduces Eq. (B6) to the difference equation

(��� + ε − ĤS(0))Ǧ�,m(ε) −
∑
n�=�

ĤS(� − n)Ǧn,m(ε) = δ�,m,

(B10)

where ĤS(�) is defined in Eq. (B7). All of the Fourier
expansions above when used with Eqs. (B2) and (B4) then give

G(n)(ε) =
∑
�,m

UV (n − �)Ǧ�,m(ε)U †
V (−m). (B11)

We now make note of a symmetry in the difference equation
for Ǧ�,m(ε). Namely we note that simultaneously shifting
� → � − k, m → m − k, and ε → ε + k�� for any integer
k in Eq. (B10) shows that if Ǧ�,m(ε) is a solution then so is
Ǧ�−k,m−k(ε + k��); we thus identify [30]

Ǧ�,m(ε) = Ǧ�−k,m−k(ε + k��). (B12)

From the above one can conclude that all of the relevant
information is contained in Ǧ�,0(ε) ≡ G

(�)
V (ε). The operator

G
(�)
V (ε) solves the equation

(��� + ε − ĤS(0))G(�)
V (ε) −

∑
n

ĤS(� − n)G(n)
V (ε) = δ�,0.

(B13)

We can then write Ǧ�,m(ε) = G
(�−m)
V (ε + m��). Plugging this

in above yields

G(n)(ε) =
∑
�,m

UV (n − �)G(�−m)
V (ε + m��)U †

V (−m) (B14)
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sending m → −m and then � → � − m gives the main result
of this discussion:

G(n)(ε) =
∑
�,m

UV (n + m − �)G(�)
V (ε − m��)U †

V (m). (B15)

We will use the above to find an approximate formula for
the conductivity. We we will develop a few other necessary
relations

So far our discussion has been general with the only
assumption being that [Hext(t),Hext(t ′)] = 0,∀(t,t ′) (a more
general treatment in the absence of this restriction is currently
a work in progress [31]). At this point we specialize to the
quantum well system which has been discussed in the main
text. Our first task is to define the operators UV (m). We are
interested in Hext(t) = 2Vext cos(�t) where Vext = Veσz ⊗ IL,
IL is the identity operator on the lattice and σz acts on spin. This
operator commutes with itself at different times and is diagonal
in “spin-lattice” space. This allows us to easily define the time
evolution operator as follows:

UV (t) = e−i
∫ t

0 dt ′Hext(t ′) = exp

[
−i

2Ve

��
sin(�t)σz ⊗ IL

]
.

(B16)

Note that no time ordering is required in the exponential
because [Hext(t),Hext(t ′)] = 0. Finding the Fourier series of
the above periodic function is made possible by the identity
e−ix sin(�t) = ∑

m Jm(x)e−i�mt where Jm(·) is the Bessel func-
tion of the first kind of order m. We thus have

UV (t) =
∑
m

Jm

(
2Ve

��
σz ⊗ IL

)
e−i�mt . (B17)

We can then read off

UV (m) = Jm

(
2Ve

��
σz ⊗ IL

)
= Jm

(
2Ve

��

)
Sm ⊗ IL

= Jm

(
2Vext

��

)
, (B18)

where Sm = σ0 if m is even and σz if m is odd and the second
and third equality can be established using a series expansion
of the Bessel function. The second relation above comes from
the Bessel function property Jm(−x) = (−1)mJm(x). The third
relation, Jm( 2Vext

��
), is a compact form which will be useful in a

derivation of the transmission elements.
With an explicit formula of UV (m) in hand we proceed to

plug Eq. (B15) for the Green’s function into the formula for
Tλ,λ′ (ε) which gives

Tλ,λ′(ε) =
∑
n,�,m

∑
�′,m′

Tr

[
Jn+m′−�′

(
2Vext

��

)
Jn+m−�

(
2Vext

��

)

×�λG
(�)
V (ε − m��)Jm

(
2Vext

��

)
�λ′Jm′

(
2Vext

��

)

×[
G

(�′)
V (ε − m′

��)
]†]

, (B19)

where we have used the fact that the lead self-energies
commute with Vext (the leads make no distinction between
different spins of particles). The sum over Bessel functions

gives a delta function. After some index relabeling we are left
with

Tλ,λ′(ε) =
∑
�,�′,m

Tr

[
�λG

(�)
V (ε − (m + �)��)�λ′Jm+�

(
2Vext

��

)

×Jm+�′

(
2Vext

��

)[
G

(�′)
V (ε − (m + �′)��)

]†]
.

(B20)

We see that knowledge of G
(�)
V (ε − (m + �)��) will allow

us to find the tunneling matrices and hence the two-terminal
conductivity. Towards this end we now write a formal solution
of the difference equation for G

(�)
V (ε).

To make the notation more compact let us define

H̄� =
{
ĤS(�) : � �= 0,

0 : � = 0.
(B21)

Besides being less cumbersome, this convention allows us
to drop the restrictions on the sums and eventually employ
Einstein summation convention. Starting from Eq. (B10) and
acting on both sides with [��� + ε − ĤS(0)]−1 then gives

G
(�)
V (ε) = (��� + ε − ĤS(0))−1δ�,0

+
∑

n

(��� + ε − ĤS(0))−1H̄�−nG
(n)
V (ε). (B22)

Let us note that gF (ε) = [ε − ĤS(0)]−1 is the Green’s function
of the static system with Hamiltonian ĤS(0). Therefore

G
(�)
V (ε) = gF (ε)δ�,0 +

∑
j

gF (ε + ���)H̄�−jG
(j )
V (ε). (B23)

We now iterate this equation. To do this let us introduce
some notation to extract the useful part of the above. First,
we use implied summation over repeated indices that are not
�. Second, we define gi = gF (ε + i��). This gives

G
(�)
V (ε) = g0δ�,0 + g�H̄�g0 + g�H̄�−j gj H̄j−j ′G

(j ′)
V (ε). (B24)

Repeated iteration of the above difference equation allows us
to write

G
(�)
V (ε) = g0δ�,0 + g�(H̄� + H̄�−j gj H̄j + H̄�−j gj H̄j−j ′gj ′H̄j ′

+ H̄�−j gj H̄j−j ′gj ′H̄j ′−αgαH̄α + H̄�−j gj H̄j−j ′gj ′

×H̄j ′−αgαH̄α−βgβH̄β−σ gσ H̄σ + · · · )g0 (B25)

or

G
(�)
V (ε) = gF (ε)δ�,0 + gF (ε + ���)Ď�(ε)gF (ε), (B26)

where

Ď�(ε) = H̄� + H̄�−j gj H̄j + H̄�−j gj H̄j−j ′gj ′H̄j ′

+ H̄�−j gj H̄j−j ′gj ′H̄j ′−αgαH̄α + H̄�−j gj H̄j−j ′gj ′

×H̄j ′−αgαH̄α−βgβH̄β−σ gσ H̄σ + · · · . (B27)
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The above series can in turn be generated by (restoring the
summation symbols)

Ď�(ε) = H̄� +
∑

j

H̄�−j gj H̄j +
∑
j,j ′

H̄�−j gj H̄j−j ′gj ′Ďj ′(ε).

(B28)

Physically, the Green’s function G
(�)
V (ε) is described by all

possible processes starting at energy ε [indicated by amplitude
gF (ε)] where the electrons absorb/emit a net number of
photons � [indicated by amplitude Ď�(ε)] and then end up
at an energy eigenstate ε + ��� [hence gF (ε + ���)].

We are interested in energies E + N�� where E � ��/2.
Near such energies the Green’s functions we need are then
given by

G
(�)
V (E + (N − m − �)��)

= gF (E + (N − m)��)δ�,0 + gF (E + (N − m)��)

×Ď�(E + (N − m − �)��)gF (E + (N − m − �)��).

(B29)

We now assume that for the parameters we are interested
in the unit of energy �� connects two (and not more) points
on the spectrum of ĤS(0). Namely an energy −�� can move
us from �/2 to −�/2. Any other photon processes are not
possible though. Plotting the spectrum of ĤS(0) reveals this

to be true for the parameters we have considered in the main
text.

The above discussion leads us to make the approximation

gF (E + K��) = δK,0gF (E) + δK,−1gF (−E). (B30)

The motivation for the above approximation is as follows.
gF (ε) is the Green’s function for the system with Hamiltonian
ĤS(0). We are interested in energies ε = E � ��/2, where �

is the driving frequency. Now, owing to the finite bandwidth of
the dressed Hamiltonian ĤS(0), there are no energy eigenstates
at E + N�� for N > 0. There are states at E − �� � −�/2
but none for any �� below this. Thus the above approximation
ignores values of K for which ĤS(0) has no states at
E + K��.

Let us now define

g̃F (E) = gF (E) + gF (E)Ď0(E)gF (E) (B31)

and use the fact that E − �� � −E. We immediately find

G
(�)
V (E + (N − m − �)��)

= δN,m(g̃F (E)δ�,0 + gF (E)Ď1(−E)gF (−E)δ�,1)

+ δN+1,m(g̃F (−E)δ�,0 + gF (−E)Ď−1(E)gF (E)δ�,−1).

(B32)

Plugging this into the transmission matrix formula gives

Tλ,λ′ (E + N��)

= J 2
N

(
2Vext

��

)
{Tr[�λg̃F (E)�λ′ g̃

†
F (E)] + Tr[�λgF (−E)Ď−1(E)gF (E)�λ′(gF (−E)Ď−1(E)gF (E))†]}

+ J 2
N+1

(
2Vext

��

)
{Tr[�λg̃F (−E)�λ′ g̃

†
F (−E)] + Tr[�λgF (E)Ď1(−E)gF (−E)�λ′(gF (E)Ď1(−E)gF (−E))†]}

+ JN+1

(
2Vext

��

)
JN

(
2Vext

��

)
{Tr[�λg̃F (E)�λ′S1(gF (E)Ď1(−E)gF (−E))†] + Tr[�λgF (E)Ď1(−E)gF (−E)�λ′S1g̃

†
F (E)]}

+ JN+1

(
2Vext

��

)
JN

(
2Vext

��

)
{Tr[�λg̃F (−E)�λ′S1(gF (−E)Ď−1(E)gF (E))†]+Tr[�λgF (−E)Ď−1(E)gF (E)�λ′S1g̃

†
F (−E)]},

(B33)

where S1 = σz ⊗ IL. Let us now consider D−1(E). Using our generating function we have

Ď�(E) = H̄� + H̄�−j gj H̄j + H̄�−j gj H̄j−j ′g′
j Ďj ′(E). (B34)

This equation can be solved for both D−1(E) and D1(−E), and the results are

D−1(E) = −[I + H̄1gF (E)H̄1gF (−E)]−1H̄1 (B35)

and

D1(−E) = [I + H̄1gF (−E)H̄1gF (E)]−1H̄1. (B36)

Further let us note that

D0(E) = [I − H̄1gF (−E)H̄−1gF (E)]−1H̄1gF (−E)H̄−1. (B37)

Using this one can show that

g̃F (E) = gF (E) + gF (E)Ď0(E)gF (E) = 1

E − [H̄0 + H̄1gF (−E)H̄−1]
. (B38)

So g̃F (E) is the Green’s function of a system with an effective Hamiltonian H̄0 + H̄1gF (−E)H̄−1. Now let us define

Fup(E) = gF (E)Ď1(−E)gF (−E) = gF (E)H1g̃F (−E) (B39)
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and

Fdown(E) = gF (−E)Ď−1(E)gF (E) = −Fup(−E). (B40)

Using these definitions the tunneling elements can be written

Tλ,λ′ (E + N��) = J 2
N

(
2Vext

��

)
{Tr[�λg̃F (E)�λ′ g̃

†
F (E)] + Tr[�λFup(−E)�λ′F †

up(−E)]}

+ J 2
N+1

(
2Vext

��

)
{Tr[�λg̃F (−E)�λ′ g̃

†
F (−E)] + Tr[�λFup(E)�λ′F †

up(E)]}

+ JN+1

(
2Vext

��

)
JN

(
2Vext

��

)
{Tr[�λg̃F (E)�λ′S1F

†
up(E)] + Tr[�λFup(E)�λ′S1g̃

†
F (E)]}

−,JN+1

(
2Vext

��

)
JN

(
2Vext

��

)
{Tr[�λg̃F (−E)�λ′S1F

†
up(−E)] + Tr[�λFup(−E)�λ′S1g̃

†
F (−E)]}. (B41)

We now note that in our numerical calculations our system
has energy eigenstates distributed symmetrically around E =
0 (as we have taken C = D = 0). In such a system we
must have WHSW

† = −HS where W is some operator.
From this it follows that Wg̃F (−E)W † = −g̃F (E) and also
WFup(−E)W † = −Fup(−E). Using the fact that the leads (and
�λ′S1) also obey this symmetry and inserting the identity in
the form W †W = I in strategic places above leaves

Tλ,λ′(E + N��) =
[
J 2

N

(
2Vext

��

)
+ J 2

N+1

(
2Vext

��

)]

×{Tr[�λg̃F (E)�λ′ g̃
†
F (E)]

+ Tr[�λFup(E)�λ′F †
up(E)]}, (B42)

which we write as

Tλ,λ′ (E + N��) = 1

2

[
J 2

N

(
2Vext

��

)
+ J 2

N+1

(
2Vext

��

)]

×T̂λ,λ′(E,Vext), (B43)

where

T̂λ,λ′(E,Vext)

= 2{Tr[�λg̃F (E)�λ′ g̃
†
F (E)] + Tr[�λFup(E)�λ′F †

up(E)]}.
(B44)

We note that in a two-terminal geometry when there are edge
states in the quasienergy spectrum we find that T̂λ,λ′(E,Vext) =
2. Each of the two terms above looks reminiscent of a
conductivity. The first term looks like a contribution coming
from edge states at an energy E, while the second term
looks like a contribution coming from the edge states at −E

transitioning to E.

1. Expression for the effective Hamiltonian

We close with an expression for a derivation of the
effective Hamiltonian. Recall that ĤS(t) = U

†
V (t)ĤSUV (t)

and that ĤS(n) = 1
T

∫ T

0 ein�t H̄ (t); then by using the Fourier

decomposition of UV (t) we can write

ĤS(n) =
∑
m

U
†
V (m)ĤSUV (m + n). (B45)

If we now recall the relation for the UV operators derived
above, then it immediately follows that

ĤS(n) =
∑
m

Jm

(
2Ve

��

)
Jm+n

(
2Ve

��

)
Sm ⊗ ILĤSSm+n ⊗ IL.

(B46)

Now let us write

ĤS =
∑
α,β

H̄α,βσα ⊗ Rβ, (B47)

where Rβ is a complete set of operators in the space of the
lattice. Then, defining ζ = 2Ve

��
, noting that for α = 1 or 2 one

can show that SmσαSn+m = (−1)mσαSn whereas for α = 0 or
α = 3 they do nothing, and using the Bessel function identities∑

m [Jm(ζ )Jm+n(ζ )] = δn,0 and
∑

m [Jm(ζ )(−1)mJm+n(ζ )] =∑
m [Jm(ζ )J−m+n(ζ )] = Jn(2ζ ), we have

ĤS(m) = δn,0

∑
α=0,3,β

H̄α,β(σα) ⊗ Rβ

+ Jn(2ζ )
∑

α=1,2,β

H̄α,β(σαSn) ⊗ Rβ. (B48)

It is most convenient to write this as

ĤS(m) = δn,0H̄03 + Jn(2ζ )H̄12(n). (B49)

Thus the field does not touch terms in ĤS proportional to σ0

or σ3 and “dresses” the σ1 and σ2 terms.
The Green’s function gF and the transmission matrix

elements T F
λ,λ′ are the result of calculating the Green’s function

and the transport properties of a system described by a static
Hamiltonian ĤS(0). Such a Hamiltonian looks similar to
our original static Hamiltonian (before periodic perturbation)
but with H̄12 renormalized by the Bessel function J0(2ζ ).
Moreover, σ is not simply the static conductivity of H̄03.
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L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318,
766 (2007).

[4] A. Kundu and B. Seradjeh, Phys. Rev. Lett. 111, 136402 (2013).
[5] N. H. Lindner, G. Refael, and V. Galitski, Nat. Phys. 7, 490

(2011).
[6] Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, Phys. Rev.

Lett. 107, 216601 (2011).
[7] T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009).
[8] G. Usaj, P. M. Perez-Piskunow, L. E. F. Foa Torres, and C. A.

Balseiro, Phys. Rev. B 90, 115423 (2014).
[9] H. L. Calvo, H. M. Pastawski, S. Roche, and L. E. F. F. Torres,

Appl. Phys. Lett. 98, 232103 (2011).
[10] L. E. F. Foa Torres, P. M. Perez-Piskunow, C. A. Balseiro, and

G. Usaj, Phys. Rev. Lett. 113, 266801 (2014).
[11] Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik,

Science 342, 453 (2013).
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