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Semimetal with both Rarita-Schwinger-Weyl and Weyl excitations
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A relativistic spinor with spin 3/2 is historically called a Rarita-Schwinger spinor. The right- and left-handed
chiral degrees of freedom for the massless Rarita-Schwinger spinor are independent and are thought of as the
left and right Weyl fermions with helicity ±3/2. We study three orbital spin-1/2 Weyl semimetals in the strong
spin-orbital coupling limit with time reversal symmetry breaking. We find that in this limit the systems can be a
Jeff = 1/2 Weyl semimetal or a Jeff = 3/2 semimetal, depending on the Fermi level position. The latter near Weyl
points includes degrees of freedom of both Rarita-Schwinger-Weyl and Weyl. A nonlocal potential separates
the Weyl and Rarita-Schwinger-Weyl degrees of freedom, and a relativistic Rarita-Schwinger-Weyl semimetal
emerges. This recipe can be generalized to a mulit-Weyl semimetal and Weyl fermions with pairing interaction
to obtain high monopole charges. Similarly, a spatial-inversion-breaking Raita-Schwinger-Weyl semimetal may
also emerge.
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I. INTRODUCTION

In 1936, eight years after derived his famous relativistic
electron equations of motion, Dirac generalized these equa-
tions to higher spin relativistic particles [1]. The first important
example was the recovering of Maxwell’s equations. The next
simplest particle except the electron and the photon is of spin
3/2 and obeys so-called Rarita-Schwinger (RS) equations
[2]. This fermonic field later played an important role in
supergravity theory, and is known as the superpartner of the
graviton, the gravitino [3].

Electrons and photons are particles accompanying us in
daily life, while the RS particles are not found even in
experiments of high energy physics or in cosmology obser-
vations. Recently, the interplay between high energy physics
and condensed matter physics supplied a new framework to
the relativistic systems: e.g., Dirac semimetals in graphene
[4] and three dimensions [5–7], topological insulators [8,9],
supersymmetric systems [10–13], and the newly proposed [14]
and discovered [15–21] Weyl semimetal. To our knowledge,
the RS physics was not relevant in the condensed matter and
cold atom context. Can we expect a RS or RS-Weyl semimetal
in this new framework?

The RS spinor can consist of the product of a spin-1 vector
and a spin-1/2 Dirac spinor. The product can be decomposed
into spin-3/2 and spin-1/2 irreducible representations of a
Lorentz group. After projecting to the spin-3/2 representation,
this is the RS theory. The massless relativistic systems with
spin > 0 possess only two physical degrees of freedom: the
highest and lowest helicity states [22]. The Maxwell field with
only transverse components is a well-known example. There
are also only two independent solutions of the massless RS
equations: the right- and left-handed chiral modes associated
with helicity ±3/2. This is a result of the Lorentz invariance
and gauge invariance of the massless relativistic theory with
spin > 1/2.

Emergent Weyl fermions in condensed matter systems were
first recognized in the fermionic spectrum of superfluid 3He-A

and also in the core of quantized vortices in 3He-B [23]. The
earlier theoretical prediction of a Weyl semimetal was based
on the Jeff = 1/2 states in iridates [14] which belong to a
large class of 4d and 5d transition metal oxides with a strong
spin-orbital coupling. When the d orbitals are below 2/3 filling,
the crystal field projects the electron configurations to the
t2g orbitals. When the strong spin-orbital coupling dominates,
the electrons fill the Jeff = 1/2 or Jeff = 3/2 band depending
on the filling factor. For iridates, the 5d5 electrons occupy
all Jeff = 3/2 states and half fill the Jeff = 1/2 orbitals [24].
For d1,2 electrons, they quarter or half occupy the Jeff = 3/2
states. The representatives of these Jeff = 3/2 materials are
the ordered double perovskites with the chemical formula
A2B

′BO6, where B ′ ions are commonly 4d1,2 and 5d1,2

transition metals, e.g., Mo+5, Re+6, Os+7 for d1 and Re+5,
Os+6 for d2. Several exotic magnetic phases and a quadrupolar
phase were presented in these strongly correlated materials
[24–26]. Such Jeff = 3/2 systems may also exist in p-orbital
electrons of antiperovskites materials, A3BX [27], as well as
in cold atom systems [28].

We do not yet know in what kind of materials or cold
atom systems the RS physics can exist. In this paper, we
present a recipe to realize the RS-Weyl semimetal from three
orbital Weyl semimetals with a strong on-site spin-orbital
coupling. Each copy of the Weyl semimetal breaks time
reversal symmetry (TRS) and possesses helicity, say 1/2 at
a right-handed Weyl point. We consider a large spin-orbital
coupling limit of our model in order to understand the RS
physics included in this system. In this limit, the on-site
spin-orbital coupling is taken as an unperturbed Hamiltonian,
and the zero-order states are the eigenstates of the total
on-site angular momentum J. There is a large energy gap
between the J = 3/2 and 1/2 states. Projecting the three
copies of a Weyl semimetal to J = 1/2, we have a single
copy of the Weyl semimetal with opposite helicity. Projecting
to J = 3/2, there are two pairs of linear dispersions with
different Fermi velocities. The steeper dispersion is |P| while
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the flat dispersion is |P|/3. Their helicities are 3/2 and 1/2
and yield the RS-Weyl and Weyl excitations, respectively. The
Berry phases of helicity 3/2 and 1/2 states possess topological
monopoles with charges C = 3 and C = 1, respectively, for an
original C = 1 Weyl point. To split the degeneracy between the
RS-Weyl degrees of freedom with helicity 3/2 and the Weyl
degrees of freedom with helicity 1/2, a nonlocal potential
is needed. A RS-Weyl semimetal emerges in the helicity 3/2
band. Two generalizations directly follow: we can apply
this recipe to double Weyl fermions [29–31] and to 3He-A
with a triplet p wave pairing [23,32]. We also study a
RS-Weyl semimetal model with space inversion symmetry
(SIS) breaking. Projecting to Jeff = 3/2, we find the same
projected model as that in the TRS breaking systems.

This paper was organized as follows. In Sec. II, we will
give a recipe for a RS-Weyl semimetal with TRS breaking. In
Sec. III, the generalizations and similarity with SIS breaking
mentioned in the preceding paragraph are studied. Section IV
contains our conclusions and discussions.

II. RECIPE FOR A Jeff = 3/2 SEMIMETAL WITH TRS
BREAKING

In this section, we study a RS-Weyl fermion with TRS
breaking.

A. Rarita-Schwinger equations

We briefly introduce the RS equations. The RS equations
for a sixteen-component vector-spinor field ψμα in 3+1
dimensions are given by

(iγ μ∂μ − m)ψν = 0, (1)

χ = γ μψμ = 0, (2)

where the conventions we use are as follows: μ = 0,a (a =
1,2,3) denote the time-space indices with flat metric η00 =
η00 = 1 and ηaa = −ηaa = −1; α = sσ for s = R,L and σ =
↑,↓ are chiral and spin indices, respectively. γ μ are the gamma
matrices. In Eq. (2), the four-vector indices are summed over
so that χ is a pure Dirac spinor. χ = 0 projects out the spin-1/2
sector and leaves only the degrees of freedom of the spin-3/2
sector. It is known that, if m �= 0, there will be fermonic modes
with superluminal velocities if the RS field couples to the
external electromagnetic field in a minimal way [33,34]. A
massless RS theory is gauge invariant under ψμ → ψμ + ∂με

for an arbitrary spinor ε. The gauge invariance of massless
RS theory allowed us to take the ψ0 = 0 gauge, like taking
the A0 = 0 gauge for the electromagnetic field. Also similar
to Maxwell’s theory, only the transverse fields are physical
degrees of freedom, namely, ∂iψ

i = 0. These transverse spinor
fields are the right-handed (left-handed) fields with helicity
3/2 (−3/2) [22,35]. We call them the right-handed (left-
handed) RS-Weyl fields caR(L)σ if we write the four-component
spinor ψ

†
a = (c†aLσ ,c

†
aRσ ). Fourier modes of ψa are denoted as

(c±3/2,pUaR(L)σ ,d
†
±3/2,pVaR(L)) where c±3/2,p and d

†
±3/2,p are

the particle and antiparticle modes with helicity ±3/2. UR(L)a

and VR(L)a are two-component spinors for a given a; they
are normalized by Ua†

L σ bUaR = Va†
L σ bVaR = −pb/p0 and

Ua†
R(L)VaR(L) = 0. Notice that U and V are not independent but

are related by the charge conjugation. The dispersions of these
traverse modes are linear, i.e., E = p0 = |p|, as expected [22].

B. Recipe for Jeff = 3/2 semimetal with TRS breaking

We now dispense a recipe for the RS-Weyl semimetal from
a three orbital Weyl semimetal, with help of a strong on-site
spin-orbital coupling. The Hamiltonian describes three copies
of a Weyl semimetal on a three-dimensional lattice, i.e.,

H =
∑

abcσσ ′p

c†apσ

[
Pc(p)δabσcσσ ′ − λLc

abσcσσ ′
]
cbσ ′p, (3)

where the on-site orbital angular momentum matrix is de-
fined by L1 = T 1, L2 = −T 2, and L3 = −T 3 with T c

ab =
−iεabc; the second term in (3) is the on-site spin orbital
coupling. We here assume λ > 0. For any given a, P(p) · σ

in (3) describes a spin-1/2 Weyl semimetal with the TRS
breaking in a condensed matter or cold atom system [14].
Namely, near any right- or left-handed chiral Weyl point pw,
P · σ ≈ ±vF (p − pw) · σ . For example, P 1 = t sin p1, P 2 =
t sin p2, P 3 = 2t(cos p3 − cos p0) + m(2 − cos p1 − cos p2),
which describe the Weyl semimetal in iridates A2Ir2O7 [36].
Equation (3) is a single-particle Hamiltonian and can be
diagonalized. The dispersions of six branches are given by

E = ±|P| − λ, (4)

E = 1
2 [±

√
9λ2 + 4(P2 ± λ|P|) + λ]. (5)

The spin-orbital coupling lifts the degeneracy of the three
identical Weyl semimetals while the Weyl points are the same
as those in a single copy of the Weyl semimetal. For a vanishing
spin-orbital coupling, i.e., λ < 1/L where L is the system size,
(5) reduces to ±|P| + O(1/L). Each copy of the semimetal
contributes a monopole charge C = 1 of the Berry phase
of the wave function surrounding a right-handed chirality
Weyl point. However, the vanishing spin-orbital coupling is
an isolated point. For any finite λ, i.e., λ > 1/L, the energy of
two branches of (5) near the Weyl points rises by 2λ, while
the energy of the other two branches lowers by −λ, the same
as that in (4). We calculate the monopole charges by using
P a in [36]. For a right-handed Weyl point (0,0,p0), instead
of C = 1 when pz ∈ (−p0,p0), the charge corresponding to
(4) becomes C = 3. A C = ±1 monopole-antimonopole pair
develops, corresponding to (5). The antimonopole has a higher
energy, 2λ, while the monopole with C = 1 has the same
energy as that with C = 3. If λ is larger enough, say, the order
of the bandwidth, the C = 1,3 branches and C = −1 branches
are separated into two bands: a lower band and a upper band,
respectively.

The monopole charges of a Weyl point for a finite λ can be
determined in the large-λ limit, which is not model dependent.
One can also see the RS degrees of freedom in this limit.
We take the spin-orbital coupling term as the unperturbed
Hamiltonian, denoted as H0, and the Weyl semimetal part in
(3) as the perturbed Hamiltonian H1. The total on-site angular
momentum matrix Jaσ,bσ ′ = Labδσσ ′ + 1

2δabσ σσ ′ commutes
with the unperturbed Hamiltonian matrix H0 = −λLc

abσcσσ ′ .
The unperturbed wave functions are then the eigenstates of |J|.
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The eigenvalues of |J| are J = 1/2 and 3/2 and the basis of
unperturbed state spaces is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣ 1
2 , 1

2

〉
∣∣ 1

2 ,−1
2

〉
∣∣ 3

2 , 3
2

〉
∣∣ 3

2 , − 3
2

〉
∣∣ 3

2 , 1
2

〉
∣∣ 3

2 , − 1
2

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1√
3

0 i√
3

1√
3

0
1√
3

0 −i√
3

0 0 1√
3

−1√
2

0 −i√
2

0 0 0

0 1√
2

0 −i√
2

0 0

0 −1√
6

0 −i√
6

√
2
3 0

1√
6

0 −i√
6

0 0
√

2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

|1, ↑〉
|1, ↓〉
|2, ↑〉
|2, ↓〉
|3, ↑〉
|3, ↓〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

The unperturbed energies are 2λ and −λ, corresponding to
J = 1/2 and J = 3/2, respectively. In the large-λ limit, there
is a large energy gap ∼ 3λ between the J = 1/2 upper band
and the J = 3/2 lower band. The projected matrices of any
6 × 6 matrix O are defined by

O1/2 = P†
1/2OP1/2, O3/2 = P†

3/2OP3/2, (7)

where the project matrices are given by

P1/2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1√
3

1√
3

0

0 i√
3−i√

3
0

1√
3

0

0 1√
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P3/2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1√
2

0 0 1√
6

0 1√
2

−1√
6

0
i√
2

0 0 i√
6

0 i√
2

i√
6

0

0 0
√

2
3 0

0 0 0
√

2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)

Projecting to Jeff = 1/2, we have an effective Weyl semimetal
described by the Hamiltonian

H1/2 = 1

3

[ −P3 P−
P+ P3

]
. (9)

It is a single copy of the Weyl semimetal with opposite helicity
to the original Weyl semimetal. If we neglect the second-order
correction O(|P|2/λ), the spectrum of the Jeff = 1/2 system
is simply

E1/2,±1/2 = ±|P|/3 + 2λ.

Projecting to Jeff = 3/2, one finds that L3/2 =
P†

3/2(Labδσσ ′)P3/2 obeys the commutation relation

[
3

2
La

3/2,
3

2
Lb

3/2

]
=

3∑
c=1

iεabc 3

2
Lc

3/2.

That is, J a
eff = 3

2La
3/2 are the SU(2) Jeff = 3/2 generators. In

fact, the projected orbital and spin matrices are equal,

P†
3/2(Labδσσ ′)P3/2 = P†

3/2(δabσ σσ ′)P3/2. (10)

Namely, the projected effective total on-site angular momen-
tum matrix is given by

J3/2 = P†
3/2(Labδσσ ′)P3/2 + 1

2P
†
3/2(δabσ σσ ′)P3/2

= 3
2P

†
3/2(Labδσσ ′)P3/2 = 3

2 L3/2. (11)

This exactly gives rise to J3/2 = Jeff , and the projected
Hamiltonian H3/2 = P†

3/2H1P3/2 reads

H3/2 = P · L3/2 = 2

3
P · J3/2 =

⎡
⎢⎢⎢⎢⎣

P3 0 P−√
3

0

0 −P3 0 P+√
3

P+√
3

0 P3
3

2P−
3

0 P−√
3

2P+
3 −P3

3

⎤
⎥⎥⎥⎥⎦

(12)

where P± = P1 ± iP2.
Neglecting the higher order correction, the dispersions of

H3/2 + H0 are given by

E3/2,±3/2 = ±|P| − λ, (13)

E3/2,±1/2 = ±|P|/3 − λ. (14)

We see that the Weyl points are not shifted.

C. Helicity and RS-Weyl semimetal

The large-λ perturbed dispersions E1/2,±1/2, E3/2,±3/2, and
E3/2,±1/2 are of course consistent with the exact results (4)
and (5). However, the simple Hamiltonians in the large λ limit
may explicitly give rise to more information. The gapless linear
dispersions imply that theeigen states are not the eigenstates
of Jeff : they are the eigenstates of the helicity operator. For
Jeff = 1/2, the helicity operator is the same as that of the usual
Weyl semimetal. Here we consider the case of Jeff = 3/2. We
define an operator h = P̂ · J with P̂ = P

|P| . Projecting to Jeff =
3/2, the projected helicity operator is h3/2 = P3/2P̂ · JP3/2 =
P̂ · J3/2, i.e., the projected helicity operator matrix is given by

h3/2 = 3

2|P|H3/2. (15)

This means that the projected helicity operator commutes with
the Hamiltonian H3/2. The states with dispersion E = ±|P| are
the helicity eigenstates with h3/2 = ±3/2, while the states with
E = ±|P|/3 have helicity ±1/2. The corresponding monopole
charges then are C = 3 and C = 1 for the right-handed Weyl
point, recovered in our calculation before. The total monopole
charge in the Jeff = 3/2 band is C = 4.

The helicity ±3/2 states give the RS-Weyl degrees of
freedom in the Jeff = 3/2 band. Since C = 4 is a topologically
invariant, any local perturbation cannot split the helicity 1/2
sector from the 3/2 sector in the lower band. One can add a
nonlocal potential to lift this degeneracy, e.g.,

V = U
∑
p,ij

c†ph
2
3/2(p)cp ∝

∑
p,ij

PaPb

|P|2 c
†
ip

[
J a

3/2J
b
3/2

]
ij
cjp,

where U is a constant; i and j label four states with J z
eff =

±1/2, ± 3/2. This potential lifts the energy E3/2,±3/2 →
E3/2,±3/2 + 9U/4 and E3/2,±1/2 → E3/2,±1/2 + U/4. There-
fore, if λ > |U | > bandwidth, the lower band is separated
into a h3/2 = ±1/2 sub-band and a h3/2 = ±3/2 sub-band.
When the Fermi energy is in the band of helicity ±3/2, the
low-lying excitations near each Weyl point can be thought
of as the particles, say c

†
3/2,p and antiparticle d

†
3/2,p; i.e., an
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emergent RS-Weyl semimetal. The physical origin of the
nonlocal potential (16) needs to be further studied. It may
come from a long-range interaction.

In sum, we have offered a recipe for a RS semimetal. The
candidates of possible materials are the condensed matter or
cold atom systems in which the on-site spin and orbital degrees
of freedom are strongly coupled.

III. GENERALIZATIONS TO WEYL FERMIONS WITH SIS
BREAKING, THE MULTIDEGENERACY, AND PAIRED

WAVE FUNCTION

We now study the generalizations of our recipe to other
systems: the Weyl fermions with SIS breaking, the multide-
generacy, and paired wave function.

A. With SIS breaking

The Weyl semimetal breaks either TRS or SIS. We can
also start from a SIS breaking Weyl semimetal. We study the
Hamiltonian

H ′
1 =

∑
abcσp

c†aσpL
c
abPccbσp. (16)

Instead of Pauli matrices in H1, which breaks the TRS, L
connects the different orbital degrees of freedom in H ′

1 and
then breaks SIS. The model H0 + H ′

1 can also be analytically
solved. The spectra read

E = ±|P| − λ, (17)

E = 1
2 [λ + |P| ±

√
9λ2 + 2λ|P| + P2], (18)

E = 1
2 [λ − |P| ±

√
9λ2 − 2λ|P| + P2]. (19)

λ = 0 is also an isolated point. We are interested in finite
λ as well. In the strong coupling limit, one has the dis-
persions E = ±|P| − λ with C = 3, E = ±|P|/3 − λ with
C = 1, and E = ±2|P|/3 + 2λ with C = −1. The physics
in each projected band is the same as the cases with TRS
breaking.

While there are already several models with TRS breaking
[14,36], we here give a toy model for H ′

1 + H0 in a cubic
lattice. The possible physical systems are cold atom gas with
p-orbital coupling to pseudospin or 4d1 and 5d1 electrons
with t2g orbital degrees of freedom. The Hamiltonian we are
studying is

H = − t
∑
iσ

(±c
†
2iσ c3,i±δxσ ± c

†
1iσ c2,i±δ3σ

± c
†
1ic3,i±δyσ ) + H.c. + H0, (20)

where δx,y,z are the lattice vectors in the positive directions.
The hopping term is between the different orbitals in dif-
ferent directions. Furthermore, the hopping in the negative
δi direction carries a phase π while carrying no phase
in the positive direction. After Fourier transformation, we
have

Pa = t sin pa.

 

 

−0.4

−0.3

−0.2

−0.1

0

0

π

π−π−π
0

FIG. 1. The dispersions and the Fermi arcs in the [110]-surface
Brillouin zone for t = 1.Upper: Images of the Weyl points with
charges ±1 (red and blue). Lower: The dispersions and the network
of gapless Fermi arcs.

The Weyl points are located in the high symmetric points
{(0,0,0),(π,π,π )}, {(0,π,π ),(π,0,0)}, {(π,0,π ),(0,π,0)}, and
{(π,0,0),(0,0,π )}. At these Weyl points, the effective Hamil-
tonian in the long-wavelength limit is exactly the gravitino
Hamiltonian in supergravity theory [3].

We study the surface states of this model and consider
a surface Brillouin zone with the normal vector along the
(n1,n2,n3) direction. The bulk Weyl points are projected onto
this surface. A set of the Weyl points may have the same
image. The charge of the image is defined by the sum of the
winding numbers of these Weyl points in this set divided by
the number of the points. It is easy to see the charges of all
images are zero if n1 + n2 + n3 is odd, while the charges of
the images are ±1 if n1 + n2 + n3 is even. For a given surface,
these images form a lattice. For a lattice where all sites are zero
charged, there is no reason to see the Fermi arc connecting any
pair of images, while the Fermi arcs may appear between the
positively and negatively charged images in a charged site
lattice. In Fig. 1(upper), we sketch the image network for
an even surface, the [110] surface. The red and blue spots
correspond to the images with charge ±1. We numerically
calculate the surface states of the [001], [111], and [110]
surfaces. We see that there is no gapless state for [001] and
[111]. The dispersions of the surface states for the [110] are
shown in Fig. 1(lower). As expected, the gapless Fermi arcs
form a rectangular network and the images are the lattice sites
of the network.

045113-4



SEMIMETAL WITH BOTH RARITA-SCHWINGER-WEYL AND . . . PHYSICAL REVIEW B 93, 045113 (2016)

B. Multi-Weyl semimetals

We consider a three-dimensional crystal that is invariant
under an n-fold rotation about the z axis with n = 2,3,4,6. The
Hamiltonian is also invariant under Cm if n/m is an integer.
If the tight-binding Hamiltonian H (p) = P(p) · σ in (3) with
translational symmetry [29], Cm invariance gives

ĈmĤ (p)Ĉ−1
m = Ĥ (Rmp), (21)

where Ĉm is the m-fold rotation operator and Rm is the 3 × 3
rotation matrix. Equation (3) defines three copies of a multi-
Weyl semimetal around a Weyl node through a strong spin-
orbital coupling. After projecting to Jeff = 3/2, we define a
multi-RS-Weyl semimetal. For example, we consider a simple
tight-binding model with C4 symmetry given in [31]. In a given
Weyl point, the multi-Weyl semimetal Hamiltonian is given
by

P · σ = (
p2

x − p2
y

)
σx + 2pxpyσy + pzσz. (22)

In this case, the monopole charge is 2 instead of 1. Substituting
into Eq. (3), we see that, with the help of strong spin-orbital
coupling, three copies of a double Weyl semimetal can also be
projected to Jeff = 1/2 with monopole charge −2 and Jeff =
3/2 with total monopole charge 8. For Jeff = 3/2 states, the
helicity 3/2 state has monopole charge 6 and the helicity 1/2
state has monopole charge 2. If we use the nonlocal potential
(16) in Sec. II C, we obtain a multi-RS-Weyl semimetal with
monopole charge 6.

C. Weyl fermions with paired wave function in 3He-A

The A-phase of Helium 3 superfluid around a Weyl point
can be described by the Bogoliubov—-de Gennes Hamiltonian
[32]

H =

⎡
⎢⎣

pz 0 −p+ 0
0 pz 0 p+

−p− 0 −pz 0
0 p− 0 −pz

⎤
⎥⎦. (23)

There are two degenerate Weyl points with linear dispersion,
and the total monopole charge is 2. This is different from
the case in the preceding subsection where the dispersion is
quadratic in x,y directions. If we couple three copies of this
model by strong on-site spin-orbital coupling as before, the
projected effective Hamiltonian to Jeff = 1/2 states is given
by

H1/2 = 1

3

⎡
⎢⎣

3pz 0 −p+ 0
0 3pz 0 p+

−p− 0 −3pz 0
0 p− 0 −3pz

⎤
⎥⎦. (24)

This has the same monopole charge as Eq. (23), i.e., 2.
Projected to Jeff = 3/2 states, the effective Hamilton is

given by

H3/2 =
[
pzI4 K

K† −pzI4

]
, (25)

where I4 is a 4 × 4 unit matrix and

K =

⎡
⎢⎢⎢⎢⎣

0 0 0 p+/
√

3

0 0 −p+/
√

3 0

0 −p+/
√

3 −2p+/3 0

p+/
√

3 0 0 2p+/3

⎤
⎥⎥⎥⎥⎦. (26)

This Hamiltonian is block-diagonal and describes RS fermions
with pairing between (3/2, − 1/2) and (−3/2,1/2). The

eigenenergies are still linear: ±|p| and ± 1
3

√
9p2

z + p2
x + p2

y ,

and the monopole charge is 4. Since the paired wave
functions are no longer the eigenstates of the helicity, we
cannot separate these four dispersions by adding a non local
potential (16).

IV. CONCLUSIONS AND DISCUSSIONS

We have given a recipe for realizing the RS-Weyl
semimetals from multiple copies of spin-1/2 Weyl
fermion matter. Jeff = 3/2 chiral fermions are also of
two components with helicity ±3/2. It was easy generalize
to the multi-RS-Weyl and paired RS fermions and to obtain
higher monopole charge Weyl points.

We did not study the RS or RS-Weyl fermions in 2+1
dimensions. We offer a simple discussion here and leave
this to further study. First, the massless RS equations in
2+1 dimensions have a trivial solution. In 2+1 dimensions,
the RS spinors ψμ (μ = 0,1,2) have two components, and
the gamma matrices consist of Pauli matrices: γ 0 = β =
σ z, γ 1 = σ zσ x = iσ y , and γ 2 = σ zσ y = −iσ x . Solving the
supplementary conditions, one has

ψ0 = −σxψ1 − σyψ2, ψ0 = i

E
(∂1ψ1 + ∂2ψ2). (27)

Due to the gauge invariance, we can take the ψ0 = 0 gauge.
Thus, if ψa = ( cχa

ξa
), then

ξ2 = iξ1, χ2 = −iχ1,

∂1χ1 + ∂2χ2 = 0, ∂1ξ1 + ∂2ξ2 = 0.
(28)

Thus, ξ1 = ξ1(z) is holomorphic and χ1 = χ1(z̄) are antiholo-
morphic because

∂χ1 = 0, ∂̄ξ1 = 0.

On the other hand, the Dirac equation for ψ1 gives

Eχ1(z̄) = ∂ξ1(z), Eξ1(z) = ∂̄χ1(z̄), (29)

and then ψ1 = 0. Finally, we conclude that ψμ = 0 and there
is only a trivial solution of RS-Weyl equations.

The massive RS equations in 2+1 dimensions, especially
their behavior in an external magnetic, field are nontrivial [37].
We will study this in a separate work [38].
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