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Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to
exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We
examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven
by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine
the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors
including the appearance of subgap density of states as the temperature increases. These subgap states should
have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc

electric field.

DOI: 10.1103/PhysRevB.93.045110

I. INTRODUCTION

The charge-density-wave (CDW) ordered state possesses a
static periodic redistribution of the electronic charge density
across the underlying lattice. Originally, it was derived
theoretically as the ground state of a one-dimensional metallic
chain [1], where it is known as the Peierls distortion. Later,
experiments found static CDW order occurs in materials such
as the transition-metal di- and trichalcogenides at nonzero
temperatures. Most of these compounds display either quasi-
one-dimensional (NbSe3) or quasi-two-dimensional (TaSe,
or TbTes) order [2-4]; examples of quasi-three-dimensional
compounds are the bismuthates BaBiO3 and Ba,; _, K, BiO3 [5].

The CDW electronic charge redistribution is always ac-
companied by a lattice distortion. Even though the question
for what is the fundamental principle driving the ordered
phase—be it electron driven via nesting or phonon driven via
mode softening or electron-phonon coupling driven—remains
unsolved, recent experiments on some of these systems
using time-resolved core-level photoemission spectroscopy [6]
indicate an electronic nature to the ordering (in time-resolved
experiments, the short-time behavior is governed by electronic
relaxational processes, while the lattice responds at much
longer time scales). This encourages us to develop the theory
for the CDW phase of a strongly correlated electron material
without including a direct coupling to the lattice.

Because of the extremely short relaxation times of elec-
trons, direct experimental probes of nonequilibrium states
require time resolution into the femtosecond regime or beyond.
Recent experiments on pump-probe spectroscopy [6—11] do
this and display the nonequilibrium melting of the CDW
state, which is manifested by a filling of the gap in the
photoemission spectrum, while the order parameter remains
nonzero. This phenomenon has been theoretically examined
with an exactly solvable noninteracting model [12,13] starting
at zero temperature. While giving insight into the dynamics of a
driven ordered state, a full treatment of driven CDWs involving
dynamic interactions is highly desired to match better with
experiments.
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We choose to examine the Falicov-Kimball model here.
The Falicov-Kimball model is one of the simplest models
[14] that describes the transition to the CDW phase. It has an
exact solution in dynamical mean-field theory [15] (DMFT) in
equilibrium (for a review, see Ref. [16]). For nonequilibrium,
we use the Kadanoff-Baym-Keldysh formalism [17,18]. Since
it was shown by Langreth that many-body perturbation theory
diagrams are identical for both equilibrium and nonequi-
librium cases [19], the expansion for the local self-energy
used in the equilibrium DMFT [20] immediately extends
to nonequilibrium DMFT. Hence, the lattice problem in the
nonequilibrium case is also mapped onto an impurity problem
in a time-dependent field. The difference is that the dynamical
mean field now depends on two time variables and lies on
the Kadanoff-Baym-Keldysh contour. The basic structure of
the iterative procedure to solve the DMFT equations [21]
also continues to hold. These ideas were used in recent
work [22-24] which solved the nonequilibrium DMFT for
the Falicov-Kimball model in the normal phase (for a review,
see Ref. [25]). Here, we generalize this method to the case of
the CDW ordered phase.

The paper is organized as follows: In Sec. II, we de-
scribe a formalism of the CDW phase and define a time-
dependent Hamiltonian of the system. In Sec. III, we derive
the nonequilibrium dynamical mean-field theory to calculate
the lattice contour-ordered Green’s function for the charge-
density-wave system. In Sec. IV, we present our results for
the nonequilibrium dc current and discussion. We conclude in
Sec. V.

II. CDW ORDERED STATE FORMALISM

In a purely electronic theory for CDW order, the ordering
arises from a nesting instability of the Fermi surface. We
examine the case of a two-sublattice CDW, which has one
charge density on the A sublattice and a different charge
density on the B sublattice. In the ordered phase, the
periodicity is doubled and hence the Brillouin zone (BZ) is
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halved (and called the reduced BZ). This scenario is described
either by the nesting of the Brillouin zone at the modulation
vector Q = (7,7, ...) in reciprocal space or by introducing
the two sublattices “A” and “B” in real space. The sublattices
are defined by the modulation vector Q as follows:

‘OR 1 R, €A
iQR;, __ s i
e = {—1, R; € B, M

where R; denotes the position vector for the ith lattice site
(we work on a hypercubic lattice in the limit d — 00). We
use an additional index o = A, B to denote the sublattice, so
the electron annihilation and creation operators are denoted
by

] ]
¢ —> ¢, and ¢ = cj,,

a=A,B. 2)

To describe the ordered phase in momentum space, one has to
also introduce two annihilation and creation operators

Ch=¢ and &, = CkQ» 3)
and
511( = clt and Eik = clt +Q 4)

with the momentum K restricted to the reduced Brillouin zone
(rBZ).

In the uniform (high temperature) phase, the electron
annihilation (creation) operators with momentum k are defined
by Fourier transformation via

1 .
&=y Ze’k'R’Ci, 5)

with N the number of lattice sites. Similarly, exploiting
the condition from Eq. (1), we write down the relations
between annihilation (creation) operators defined in the (A, B)
sublattice basis and in the (1,2) rBZ basis as follows:

V2 KR V2 KR ckA + CkB
Clk = — E R E ¥R, = 22 22

N i€eA N ieB \/5
V2 , V2 .
~ _ Y~ i(k+Q)R; .. ye i(k+Q)R; ..
Crx = NZe c,—i—NZe Ci
i€eA ieB
CkA — CkB

_ kB 6
7 (6)

with Hermitian conjugated relations for the creation operators.
Here, the +/2 factors were chosen to satisfy the standard
commutation relations for the fermionic annihilation and
creation operators

[Entr €0 1s = SiicOmns mon =12 ©)
and
[Cka-Clyp)s = Skidap. . = A.B. ®)

One can rewrite the unitary transformation in Eq. (6) in a
matrix form as follows:

[glk] = l7|:ckA], where U =
Cok CkB

Sl-

©))

S Si-
S
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This matrix form is convenient if we need to convert from
one representation to another, and we use both the (A, B)
sublattice and the (1,2) rBZ bases here. Accordingly, any
quantity constructed from one creation and one annihilation
operator, e.g., the single-particle Green’s function, is a 2 x 2
matrix in the ordered state. The connection between the real
space (A, B) sublattice representation

OK) = |0 p®Il, @.p=A,B, (10)
and the reciprocal space (1,2) rBZ representation
Ok) = 10,0, m.n=12, (1n
follows from the aforementioned unitary transformation via
Ok) = UO&U . (12)

Keeping in mind all the above descriptions of the ordered
state, we write down the time-dependent Hamiltonian of the
system

H) =Y HE = 1P 0)ck,e5p. (13)
io ijap
where the local term is equal to
HY = Unf‘dn;"f — undy, (14)

with the number operators of the itinerant and localized
electrons given by n¥;, = cja Ciq andnj, = fll f;» respectively.
We choose different chemical potentials u4 and u? for the
different sublattices, which allows us to work with a fixed
order parameter Any = (n? —n ?) /2, rather than iterating the
DMFT equations to determine the order parameter (which is
subject to critical slowing down near T, [26]). The equilibrium
state is achieved when the solution to the equations produces a
uniform chemical potential throughout the lattice (14 = u?).
We work in units where h =c=e=a = 1.

The system is placed into a uniform external electric field
that interacts with the charged fermions. We assume that the
field is spatially uniform and ignore all magnetic field and rel-
ativistic effects. This allows us to describe the electric field via
a time-dependent vector potential in the Hamiltonian gauge:

d
E(r) = _EA(I)' (15)

To describe an interaction with the external field in Eq. (15),
we exploit a Peierls’ substitution to the kinetic-energy term
of the Hamiltonian. Hence, the Hamiltonian depends on time
solely through the time-dependent vector potential as follows:

Rj s
(1) = tif';ﬂexp(—i/R A@) - dr>7 (16)

i

where tg-ﬁ is the noninteracting hopping matrix.

The nonlocal kinetic-energy term in Eq. (16) of the Hamil-
tonian is off-diagonal in the (A, B) sublattice representation
since the hopping is between sites that belong on different
sublattices for nearest-neighbor hopping. The local part of the
Hamiltonian is diagonal. In the (1,2) rBZ representation it is
vice versa: the nonlocal kinetic-energy part is diagonal and the
local interaction U term is off-diagonal.
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In momentum space, the time-dependent kinetic-energy term has the form

Hain® =Y [ el
k

el Jetk— A(t)][

CkB

& Jétk— A [g“‘], 17

2k

i| = ;[Eik

where €[k — A(#)] is the generalized band energy [24] that is off-diagonal in the (A, B) sublattice basis

e[k — A()] = 0

e(k)cos [A(?)] + €(k) sin[A(?)] 0

e(Kk) cos [A(1)] + &(K) sin [A(1)] H (18)

and by performing the unitary transformation in Eq. (9), we obtain an extended band energy é[k — A(¢)] in the (1,2) rBZ

representation that is diagonal:

Ek—AWN)]=Uéelk— AU =

where we have chosen the electric field (and the vector
potential) to lie along the diagonal (1,1, ..., 1) direction. Here,
the generalized band energies are equal to

d

—t*

€(k) = lim cosk, and
d—00 \/E r2=1:

d
_ . —tF .
ék) = dlin;o NZi E_l sin k, (20)

and we apply the same scaling of the hopping term as in
equilibrium DMFT.

Within DMFT, we take the limit where d — oo and the
self-energy becomes local. It is represented by a diagonal
matrix in the (A, B) sublattice representation. Alternatively,
the nonequilibrium noninteracting Green’s function becomes
diagonal in the (1,2) rBZ basis. Below, we combine these
two representations in order to obtain a self-consistent set of
DMEFT equations in nonequilibrium.

III. CONTOUR ORDERED GREEN’S FUNCTION
IN THE CDW PHASE

In the presence of an electric field, the Hamiltonian depends
explicitly on time and we must employ the Kadanoff-Baym-
Keldysh formalism to describe the nonequilibrium behavior of
the system. This approach was already used to solve for the
nonlinear response of the Falicov-Kimball model [23] in the
normal state. We show here how this approach generalizes to
the ordered phase.

We begin with the contour-ordered Green’s function defined
on the Kadanoff-Baym-Keldysh contour in Fig. 1:

Gi(t.t) = —i{T (Dep(t))). 2

where (O(z)) = Trexp[—BH(t — —00)]O(z)/Z and the par-
tition function is Z = Trexp[—BH(t — —o0)]. Here, 8 =
1/T isthe inverse of the initial equilibrium temperature that the
system started with, and we assume the Hamiltonian becomes
time independent at early times. Because the momentum
dependence of the Green’s function depends only on the two
band energies when the field is in the diagonal direction, we

€(K) cos[A(?)] + &(k) sin[A(7)] 0

) 19)

—e(K) cos[A(1)] — E(k) sin[A(1)]

(

also use the following notation for the momentum-dependent
Green’s function: Gy (¢,t") = G¢ .(t,t"). Note that in the above
definition, the Green’s function is a “block scalar,” and it
corresponds to the normal-state equation. In the ordered phase,
the Green’s function picks up a block 2 x 2 matrix structure, as
expected, because the momentum is “associated” with either
the A or the B sublattices, and the band structure becomes an
off-diagonal matrix.

Indeed, in the (A, B) sublattice representation, the lattice
Green’s function is a 2 x 2 block matrix (denoted by the hat)

Gothary  GEPar)

G (t.t) =
’ Go2P(t,1)

, (22)

Ge'(u.r)
that satisfies Dyson’s equation
{9, + )T — e[k — ADOI}GE (1.1

_ / TGS (1) = 8.0, 23)
c

where the integral is over the contour. The self-energy is a
diagonal matrix because it is local in DMFT:

TeAt,t) 0

Leen = H 0 s (24)

Here we use a shorthand notation for é[k — A(¢)], which is
defined in Eq. (18). A formal solution for the lattice Green’s
function in Eq. (23) yields

Gy =[(GePn) T =) . @5)

tmin tmax
D

A

tmin' |B

FIG. 1. Kadanoff-Baym-Keldysh time contour, which runs from
a minimum time to a maximum time along the real time axis, then
backwards to the minimum time, and then along the imaginary axis
for a length given by the inverse of the initial equilibrium temperature.
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where the noninteracting Green’s function G¢'2*"(7,1') is the ~ energy é[k — A()] is not diagonal [see Eq. (18)], but the

solution of the Dyson’s equation without interactions: noninteracting Green’s function does become block diagonal
conon g, s o in the (1,2) rBZ representation:
{(zat + u)l —é[k — A(1)] }G (t,t") = 6.(¢,t) (26)
A.c,non Go non(t t ) 0
for the case where the field is turned on at 7 = 0. Gz (1) = 0 genn ol @D
—€ —€(t7t )

AsAwe mentioned above, the noninteracting Green’s func-
tion G¢z"(z,¢') defined by Eq. (26) is not diagonal in the ~ The analytical expression for G¢z”"(¢,1’) is known from the
(A, B) sublattice representation, because the generalized band  uniform solution [22-24] and is equal to

J

GE™ ¢ty = il fe — 1) — ec(t’[/)]ei,u(tft’)e{fifll, di({O(=D)+0(D) cos[ ADN}e+0(D) sin[ A1)} (28)

Since the noninteracting Green’s function is known, we solve for the lattice Green’s function using Eq. (25) in the (1,2)
rBZ representation instead of the (A, B) sublattice representation. Applying the unitary transformation in Eq. (9), we find the

self-energy f]"(t,t’) becomes

s A N 1 [ZC‘A + EC’B]([ t/) [EC,A _ EC,B](t [/)
c _ c 1 _ = B 5
)y (tvﬂ =UX (tvﬂU - 2 H[EC,A _ EC’B]([,Z‘/) [EC’A + EC’B](I,[/) . (29)
Then, the solution for the lattice Green’s function, in Eq. (25) and in the (1,2) rBZ basis, is equal to
_ -1
. / c(l 1)(t I) Gc(l 2)(t l) [(Gz‘rglon) 1 _ = A;E B](Z‘,I,) _x A;E E(l,l‘/)
G:f(t’t )= c(2 1) c(z 2) P LI cnon \—I _ yedqpypes ’ (30)
.ty GEP.r) —EE () [(Got) ™ — 2.1

The Kadanoff-Baym-Keldysh formalism uses continuous matrix operators of two time variables defined on the contour. In the
numerical computation, we need to discretize these operators into ordinary matrix operators and then extrapolate to the continuum
limit. The procedure is to solve the discretized problem with different time steps and then extrapolate to the continuum limit
using a nonlinear extrapolation based on a Lagrange interpolation formula. Since the components in Eq. (30) are matrices of two
time variables, we apply the block matrix pseudoinverse formula to find the Green’s function:

A B
. ’ o

- 55! —A~'BSy!
-D7'csy! syt

where Sy = D — CA~'B and Sp = A — BD!C. Using this formula, we write down the components of the Green’s function
in the (1,2) rBZ basis G¢ .(1,1) as follows:

EC,A E(‘,B EC,A _ EC’B _ EC,A EC,B -1 EC'A _ EC’B -1
c(l 1)(t t) {( cnon) 1 + _ > |:(Gc,non_) 1 _ + ] > } (tvt/)9 (32)

) —€,—& )
—1 -1
c 2 ) N 1 EC,A + EC,B ZC,A _ ZC,B N - EC,A + ZC,B EC,A _ EC,B ,
@2, 1y = {(G_?OEG) SRR RO R gy - S ; ). (3
seA B -1 neAd _ yeB
c(l 2)(t l‘) ( G© non) I + C(2 2)(t ¢ ) (34)
2 2
_ EC,A EC,B -1 EC,A _ EC,
GVt = {(G‘_Z"L) = er } > GV, (35)

where all inverses are with respect to the time structure of the matrices.
In the case of a CDW-ordered state, it is more convenient to work in the (A, B) sublattice basis. Hence, we apply the inverse
transformation from Eq. (9) to convert from the rBZ to the sublatice representation:

G (1,6 = U7 G (1,0 (36)

Then, we obtain the new Green’s function as follows:

Gy = G ) + GEFP 1) + GELP ) + GE2 V1), (37)
(,(B B)([ t) %[ c(l ])(t t)+GL(22)(t t) c(l 2)(t [) c(2 ])(t Z)] (38)
c(A B)(”) %[ Gl 1)(”) dzz)(tt)—i—G”(z 1)(”) c(l 2)(”)]7 39)

045110-4



NONEQUILIBRIUM RESPONSE OF AN ELECTRON- ... PHYSICAL REVIEW B 93, 045110 (2016)

c(B A)(t ) = %[ G 1)(”) 5(22)0 t)—i—GC(l 2)(t ¢y —

using the results from Eqs. (32)-(35).

In DMFT, we need to solve the many-body problem on an impurity which mimics the behavior of the lattice (and yields
the same local self-energy). This requires us to map the lattice problem onto an impurity problem. To do so requires us to first
determine the local Green’s function by summing the €,é-dependent functions over the generalized band energies weighted by
the appropriate joint density of states. This must be done for the two local Green’s functions (one for each of the A and B

GV, (40)

sublattices) and becomes a double integral given by

GSA@,t) 0
tty= | de | d G (1,1 loc 12 . 41
Gttt = [ de [ de pleréc ) = ” 0" et (41)
(
where the joint density of states is a Gaussian in each variable ~ The effective medium is then expressed as follows:

for the hypercubic lattice [24] given by A ) A .

Go(t,t")y = [(i9,° + p)dc(r.t)y — 254 1)]
o(€,&) = —em B 47)

Gyl ) = [(10, + w)sc(r,1) = 292, 1)] ™,

Substituting the components from Eqgs. (37)-(40) into
Eq. (41), we obtain an expression for the components of the
local Green’s function for each sublattice as follows:

GuAt) = // dedé p(e,)[ + AX][I — KZAX] 'K

Gl ) = // de dé p(e,&)[I — AX][I — KZAZ] 'K
(42)

where we introduced shorthand notations for K, A, and X,
which satisfy

EC‘A ZC‘B -1
;} (t l,)

~{ieeem - 255

EC’A EC‘B -1
;} (t l/)

c¢,non -1 _
a=feem) !

EC,A _ EC.B
Y= ——F——(t,1). 43)
2
When there is no CDW order, we have X%A(r,¢) =
s¢B(t,t") = £t,t'), and the above formulas reduce to the
known result for the uniform phase GloC (t,t) =Gy B(t,t/) =

loc
G (1,1) = [[ de d& p(e,©){(GEE™\(t,1)) — =(t,1")} .

In order to determine and then solve the associated impurity
problem, we first exploit Dyson’s equation to extract an
effective medium G{(¢,¢') (all terms are block 2 x 2 matrices):

Sict.t) = [(G5) ™ = £ ) = 6o tt). (44

In the (A, B) sublattice representation, the effective medium
G{(t,t') is block diagonal and its components are equal to

Gorary = [(G5) T + 294 @),
Gt =[(Gp8) "+ = ). @)

The effective medium can also be found from Dyson’s
equation, which defines an effective dynamical mean field
AS(t,t) via

(i3, + n)Gg(t.t) — /dt_iC(t,t_)Gf)(t_,t’) =68.(t,1")[. (46)
c

in terms of the dynamical mean fields. Inverting these relations
allows us to determine the dynamical mean fields directly:

KoM = (10, + 1)oe(t,1) — (GE™) et
= (i3 + )81, — (G (1,6 — B4,

ACB@ 'y = (18, + p)det,t) — (G5°)~ Y1)
= (i3 + )s.(t,1") — (GSEY 0.1y — 2B (1,1,
(48)

which are the effective time-dependent fields for the associated
nonequilibrium single-impurity problems.

The final step is to solve each impurity problem for the
impurity Green’s function in terms of the dynamical mean
field. The result, for the Falicov-Kimball model is

Godt.t) = (1 —n})GA.t) + nt GTA.t),

imp
49)
Gob(t.t)y = (1 —nf)GgP(t.t)) +nfG P (2.1,
where
Gotty = {[1 - G5*UT 'G5 )1, a=A,B, (50)

where n% is the density of the heavy electrons on each
sublattice (which is set by the equilibrium value and does not
change when the field is applied because it does not directly
couple to the field) and U is the Falicov-Kimball interaction
times the identity matrix.

In summary, the nonequilibrium DMFT algorithm is as
follows: First, we solve the equilibrium problem to determine
n% and p for the given values of the interaction parameters
and the temperature. This then determines the order parameter
value Any = (n}‘ — n?)/Z (which runs from 0 at 7, to 0.5
at T = 0). Next, using the equilibrium results for 22, and
)y fq as the initial guess for the nonequilibrium self-energy, we
determine G¢ 7™ (7,t') and GZ72°"(¢,1'), and then calculate the
local Green’s functions G10C (t,t") and Gloc (t,1") via Eq. (42).
Third, we extract the dynamical mean fields A““(¢,¢’) and
A& B(¢,t") by employing the Dyson equation in Eq (48). Then
we calculate the effective mediums GB A(t t, G0 (z,t") from
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Eq. (46) and G$*(t,1'), G$P(t,1') from Eq. (50). Fourth,

we solve for the impurity Green’s functions Gi”r;f}‘)(t,t’) and

G5 (1.1") from Eq. (49). Finally, we set G{, (1,1') = G{a(1.,1)
and extract a new self-energy 3:¢(z,t’) from Eq. (48). We repeat
these steps iteratively until the solutions have converged to
the desired accuracy. Note that this procedure describes how
the problem is solved for a particular discretization of the
Kadanoff-Baym-Keldysh contour. Using a range of different
discretizations, we then extrapolate the results of at least three
different discretizations to determine the continuum limit (we
demonstrate this in Ref. [27]).

The formalism developed here is a fully general formalism
that can be applied to other models that also display CDW
order, like the attractive Hubbard model or the Holstein model.
The only difference is how the impurity Green’s function
is determined from the effective medium, which is given
here explicitly for the Falicov-Kimball model, but needs to
be solved approximately for other models (or with more
sophisticated numerical techniques).

As a check of our numerical results, we have verified the
spectral moment sum rules which continue to hold in the
ordered phase and in nonequilibrium. The moments are defined
to be

1 00 00 )
Mf’a(l‘ave) = __/ dw Im/ dtrelelwlrelin
T J_ —00
9"

X 87(;Ie’01(1‘avevtrel)v (51)
with o« = (A,B) and with the retarded Green’s function
expressed in terms of the Wigner coordinates f,,e = (¢ + t')/2
and ft =1t —t. We have calculated the zeroth, first, and
second moments which satisfy [28]

M(I;,Ol(T) — 17 (52)
up(T) = —p+ Un, ©3)
w (1) = 5+ W = 2Wpn§ + UG, (54)

where n? =1/2+ Any and n? = 1/2 — Any. For different
time discretizations, higher accuracy occurs for larger average
time and smaller interaction U. We find the results for the
extrapolated moments agree with the exact results to high
accuracy for all parameters presented in this work.

We end with a discussion of the order parameters. There
are two different ones that can be chosen. One is the order
parameter of the heavy electrons, which we introduced above,
and it is the difference of the heavy electron filling on the A
and B sublattices. The order parameter An s starts at O at T
and increases all the way to 1/2 at T = 0. This order parameter
remains unchanged as the field is applied, because the heavy
electrons do not couple to the external electric field, since they
are localized. The other order parameter is the difference in
the conduction electron filling on the two sublattices. This
order parameter can change as the field is applied, because the
field does cause motion of the conduction electrons. Even in
equilibrium, this order parameter is distinct from the heavy
electron order parameter; it starts at 0 at 7, but it generically

PHYSICAL REVIEW B 93, 045110 (2016)
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0
3
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o
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3 T T
wal An=0,T=0.08
O “[ an=0.2, 7=0.07
01

0 a 0 1 2
Frequency [t*]

FIG. 2. Equilibrium density of states for different values of
interaction U: (a) U = 0.5 corresponds to a metal in the normal state
and an insulator in the ordered phase (7. = 0.0336); (b) U = 0.86
corresponds to a metal in the normal state and a quantum-critical
case in the ordered phase (7, = 0.055); (c) U = 1.4 corresponds to
a semiconductor in normal state and a strongly correlated insulator
in the ordered phase (7. = 0.0727). Different curves correspond to
different temperatures as marked by the arrows.

does not go to 1/2 as T — 0. Indeed, it can even change sign
when the system is pumped by an external electric field.

IV. RESULTS

We show our results for the concentration of the conduction
electrons and for the current in nonequilibrium when a uniform
dc electric field is suddenly switched on at time ¢t = 0. The
conduction electron filling is determined by the imaginary part
of the lesser Green’s function G (f,t) at equal times, which
is extracted from the contour-ordered Green’s function. The
current is calculated in the Hamiltonian gauge by evaluating
the operator average

@) =—i Z vik + 0(1)Et1G (¢,1), (55)

k

where the velocity component is vi(k) =
limg_, oo t* sin(k;)/ Jd (note that the final result for the
current, which is an observable, is gauge invariant). The field
magnitude is set to £ = 1.

In Fig. 2, we plot the equilibrium density of states (DOS)
for different values of the interaction U and for different
temperatures. By decreasing the temperature, we push the
system into the CDW ordered phase with a gap in the DOS,
which equals U at zero temperature. For nonzero temperatures,
the gap is partially filled with subgap states which can affect
transport properties of the system in equilibrium [29]. Here
we are interested in how these peculiarities of the equilibrium
DOS are modified in the nonequilibrium case.

InFig. 3, we plot the current at U = 0.5, which corresponds
to a metal in the normal state, and a weakly correlated CDW
insulator in the ordered phase. Different curves correspond
to different temperatures starting from above the critical
temperature (7, = 0.0336) and running down to 7 = 0.0178,
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FIG. 3. Current for U = 0.5 (T, = 0.0336) with an electric field
E = 1. Different curves correspond to different initial temperatures
and correspondingly different initial order parameters.

where the order parameter is nearly maximal (Any = 0.49).
If there is no interaction and the external electric field is
constant, we expect a permanently oscillating current called a
Bloch oscillation. But in the case of an interacting system,
the oscillations are damped at long times. In the absence
of order, the current amplitude decays relatively slowly but
as the order parameter increases (Any = 0.2), the current
amplitude decays faster because of the presence of a gap in
the equilibrium single-particle density of states. But as the
temperature is lowered further, and one of the sublattices
becomes almost fully occupied by the f electrons (and the
other becomes nearly empty), the oscillations in the current
become long lived since the scattering is sharply reduced (and
ultimately vanishes at 7 = 0). This low-temperature behavior
agrees well with the zero-temperature results solved with a
completely different method [13].
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osf— ==
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FIG. 4. Concentration of conduction electrons on the A sublattice
for U = 0.5 (T, = 0.0336) with an electric field E = 1. Different
curves correspond to different initial temperatures.
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FIG. 5. Current for U =0.86 (7. =0.055) with electric
field E = 1. Different curves correspond to different initial
temperatures.

Figure 4 plots the conduction-electron filling for the same
parameters. When the field is initially turned on, the value
of the electron filling changes dramatically (even to the point
of inverting the conduction electron CDW order parameter)
but for longer times it settles into a reduced order parameter,
which has complex oscillations. The conduction electron order
parameter can be read off of this plot because p4 + pp = 1 and
the order parameter is py — pp = 2p4 — 1. Hence the order
parameter changes sign when the conduction electron density
on the A subattice crosses 0.5.

Next, we examine the quantum-critical case with interaction
U = 0.86 in Figs. 5 and 6. The CDW for this U value is in
the quantum critical metallic CDW phase, where the density
of states fills in at w = 0 for all finite 7" and hence will have
metallic conduction for all finite 7. The current in Fig. 5
behaves similar to the previous case of U = 0.5, since the
system is also a metal in the uniform phase. Two differences
appear in the figures: the current has a lower magnitude and

0.6 An=02,T=0.053  An=0.T=0.06 2

05F~ 7,74 TN ——~—_—_——

0.4
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Time [1/t*]

o
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FIG. 6. Conduction electron filling on the A sublattice for
U = 0.86 (T, = 0.055) with electric field E = 1. Different curves
correspond to different initial temperatures.
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FIG. 7. Current for U =14 (T, =0.0727) with elec-
tric field E = 1. Different curves correspond to different
temperatures.

approaches the steady state faster. For the filling in Fig. 6, we
see a similar scenario, namely, the concentration of conduction
electrons reaches the steady state more rapidly. The lowest
temperature case shows an odd reversal of the order parameter
at long times as well.

In Fig. 7, we show the results for the current for U = 1.4(~
V/2) which is at the metal-insulator transition and corresponds
to the strongly correlated CDW. Because of the fact that the
system is at the metal-insulator transition, the amplitude of the
current, even above the critical temperature, is half the size of
the metallic case with U = 0.5. This is due to the fact that in the
uniform phase, the Mott gap starts to develop at U = V2, 50
the normal-state density of states already shows a pseudogap
(see Fig. 2). Additionally, the oscillations damp faster. As
the temperature dips below the critical temperature, these
effects are initially enhanced due to the CDW gap formation.
Lowering the temperature further, one starts to see the damping
disappear as the ordered phase has less and less scattering as
T — 0.

In Fig. 8, we show results for the filling of the conduction
electrons on the A sublattice. Once the field is turned on, the
conduction electron filling is sharply changed, but not enough
to reverse the order as it did previously. The damping of the
oscillations is very rapid when the order parameter is small and
there is significant scattering. When the order parameter gets
large, the oscillations survive for a long time and are irregular.
At the longest times, the system approaches a steady state,
similar to the one seen at zero temperature [13].

One of the interesting observations that can be seen in
this data is that the weakly correlated CDW states seem to
lose the CDW order parameter for the conduction electrons
very easily, while in the insulating phase, the order remains
more robust, and does not get reduced as rapidly or as much
(compare Fig. 4 to Fig. 8). Another is that the oscillatory
behavior in the current often becomes out of phase as the order
parameter increases at lower temperatures. In this model, the
system becomes noninteracting at zero temperature, because
all scattering is suppressed. Nevertheless, complex time traces
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FIG. 8. Filling of conduction electrons on the A sublattice for
U = 1.4 (T. = 0.0727) with electric field E = 1. Different curves
correspond to different initial temperatures.

develop when one is nearly fully ordered, which are indicative
of the behavior seen in Mott insulators in the normal phase
(such as the irregular oscillations in the current or in the order
parameter). It is curious that such behavior survives, even as
the system has less and less scattering due to the increased
order.

V. CONCLUSIONS

In this work, we described the general formalism for how
to solve nonequilibrium DMFT in an ordered CDW phase. For
concreteness we chose to examine the Falicov-Kimball model.
We derived analytical expressions for the time-dependent
lattice Green’s functions defined on the contour by general-
izing the results for the paramagnetic phase [23,24] to the
two-sublattice case. We studied the simplest time dependence
of the external field with a constant field £ = 1 turned on at
t = 0. Of course, other temporal field profiles can also be used
within this formalism.

We showed how the current and the filling of the conduction
electrons behave in the CDW phase when the system is
driven into nonequilibrium by a large dc electric field. We
examined cases with different interactions U corresponding
to a metallic phase (U = 0.5), to a quantum critical point
(U = 0.86), and to a critical Mott insulator (U = 1.4). The
Bloch oscillations of the current, which decreased smoothly
in the normal state, initially vanish more rapidly in the
CDW phase. As T — 0, the current demonstrates complex
oscillations and indicates the possible formation of a steady
state.
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