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Bias-driven spontaneous spin-valley polarization in monolayer transition-metal dichalcogenides
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A physical mechanism that may enable electrical control of carrier spin-valley polarization is theoretically
examined in a monolayer transition-metal dichalcogenide (TMD) structure. The idea is based on the interplay
between the strongly spin-orbit coupled nature of the TMD band structure and the exchange interaction with a
proximate magnet that can spontaneously lift the valley degeneracy when the carrier density exceeds a certain
threshold. The analysis based on the free energy of the system clearly illustrates the desired spin-valley polarization
in the TMD layer as well as the accompanying rotational phase transition in the magnetization. Numerical
estimates utilizing the WS2 parameters as an example indicate a sharp transition in the spin-valley polarization
over tens of percent at room temperature with only a modest change in the electrochemical potential of a few
meV via electrostatic bias. Detection of the predicted phenomenon is expected to be straightforward through the
corresponding modification in the TMD channel conductance.
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Atomically thin two-dimensional (2D) layered materials
offer a number of unique opportunities that the quasi-2D
structures of conventional bulk crystals cannot access. One
such example is the recently proposed concept of valleytronics
in the crystals of honeycomb lattice symmetry that often
possess two equivalent energy bands at the corners of the
Brillouin zone [1]. Similar to other internal degrees of freedom
with binary states (e.g., electron spin), valley polarization
can lead to a host of novel physical phenomena and provide
the basis for practical applications including information
processing. In this regard, transition-metal dichalcogenides
(TMDs) have become a focus of attention for their finite band
gaps as well as the possibility to lift the valley degeneracy via
the opposite spin symmetry of the valleys [1,2]. Nonetheless,
achieving sufficient valley polarization remains a challenge at
room temperature. The obvious approach through an external
magnetic field, as it turns out, requires an extreme field
strength [3–6]. An alternative attempt based on the optical
Stark effect appears to suffer from a similar debacle as it
needs a very large electric field (excited by circularly polarized
radiation) for a sizable valley splitting [7].

A potential solution to the problem may reside in the
phenomenon of the proximity interaction with an adjacent
magnet. As in other materials with 2D surface states such
as graphene [8–10] or topological insulators [11–13], the
spin properties of free carriers in the TMDs can be strongly
influenced by the exchange field whose strength may actually
exceed the effect of external magnetic fields [14]. It is
evident that the proximate magnet would break time-reversal
symmetry, potentially leading to different valley-associated
spin splitting and valley polarization even without an external
magnetic field or optical pumping. Moreover, the valley
polarization could be sensitive to the magnetization direction.
Indeed, the in-plane magnetization is likely to have no impact
on the energy degeneracy of the valley band structure, while
the out-of-plane component is expected to shift the valley
extrema in opposite ways, i.e., enhancing the effect of spin-
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orbital splitting in one valley and diminishing it in the other.
Accordingly, the ability to modulate the magnetization proves
to be crucial in the application of the valleytronics concept.

At first glance, only multiferroic or magnetoelectric mate-
rials can achieve electrical control of magnetization rotation.
However, careful scrutiny reveals an alternative mechanism
that can be triggered self-consistently by spin-polarized
carriers, i.e., by means of the reciprocal influence of the carrier
spin polarization on the magnetization. The spin-valley inter-
locked band structure of monolayer (ML) TMD is favorable
for realizing the in-plane to the out-of-plane magnetization
switching in the form of a rotational phase transition as the
imbalance in the valley (hence, spin) population can induce an
effective exchange field in an adjacent magnetic layer along
the latter (i.e., out-of-plane) direction through an interplay.

The purpose of this investigation is to theoretically examine
the feasibility of the envisioned physical process under a
simple electrical control. The result demonstrates that the
strength of the exchange effective field, under a sufficiently
large carrier density, can indeed exceed the in-plane magnetic
anisotropy field and stabilize the net carrier spin-valley
polarizations along with the reoriented magnetization [see the
schematic illustrations of Figs. 1(a) versus 1(b)]. A quanti-
tative description of such spontaneous polarization driven by
electrical biases is provided below by using ML WS2 as an
example for the numerical estimates.

The specific structure under consideration, as shown in
Fig. 1, consists of a thin dielectric (or insulating) ferromagnet
(FM) on top of a sheet of TMD monolayer that is followed by
the gate electrode. The in-plane dimensions of the magnet
are selected to be sufficiently small to ensure a uniform
magnetization M and yet are larger than the carrier mean
free path of the TMD layer. The dielectric nature of the
magnet permits the use of the given TMD dispersion relation
without the concern of significant band modification. The
electrochemical potential μ of the system is controlled by the
doping as well as the applied gate bias. The entire structure
is placed on a substrate for structural integrity. For simplicity,
only the TMD region in direct contact with the magnet is
considered with no regard to the fringing field.
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FIG. 1. Schematic illustration of the TMD-FM structure for
the electrically controlled spin-valley polarization accompanied by
magnetization rotation. (a) At low carrier densities, both K and K ′

valleys are symmetrically occupied (thus, no net spin polarization in
the out-of-plane z direction) and the FM magnetization is along the
easy plane. (b) When the carrier density increases, the spontaneous
spin polarization induced by the interplay with the magnet may
eventually exceed the magnetic anisotropy field and stabilize the
net carrier spin-valley polarization along with the magnetization
reoriented in the z direction. The K and K ′ bands are plotted from the
perspective of electrons (or holes) for the n-type (or p-type) cases,
respectively.

In the analysis, the governing Hamiltonian accounts for
the electrostatic energy including the Coulomb repulsion that
counterbalances the accumulation of charges in a small region.
This term is usually obtained from the Poisson equation, but an
accurate calculation requires a host of additional details, such
as the actual geometry of the structure, the dielectric constant
of each material, etc. To avoid unnecessary complexities,
a semiquantitative treatment is adopted instead, where the
Coulomb force inside the small contact region (of size A0)
is approximated by the number of charged particles times a
constant Cq that is inversely proportional to

√
A0. With N

carriers and N0 oppositely charged dopants, the electrostatic
energy caused by charging/discharging the area can then be
simply expressed as CqN (N − N0) [15]. A more precise
evaluation is not essential for the present investigation.

The corresponding Hamiltonian of the system including
the contributions from the exchange field G and the magnetic
energy Em of the magnet becomes

H0 =
∑

γ,σ,σ ′,k

[(εγ,σ,k − μ + Cq�N )δσ,σ ′

+ G(M) · sσ,σ ′]a†
γ,σ,kaγ,σ ′,k + Em(M), (1)

where �N = N − N0. The index γ = ±1 indicates the K and
K ′ valleys, respectively, with the corresponding momentum
vector γ K from the zone center; σ,σ ′ = ±1 denote spin
up and spin down along the z axis; and k is the carrier
(electron or hole) wave vector, all for the TMD mono-
layer. Note that this work adopts the notations either in
the electron or the hole picture depending on the sample
types (i.e., n or p type, respectively). As such, the carrier

energies are generally described by positive values. Then,
the first term in Eq. (1) accounting for the electron/hole
energy spectrum in the γ valley of the intrinsic TMD is
given as

εγ,σ,k = �
2(k − γ K)2

2m∗ + (1 − γ σ )�SO, (2)

where m∗ is the effective mass and 2�SO gives the spin-
orbital splitting [16]. While convenient, this is an approxi-
mate expression valid only near the conduction/valence band
extrema. The second term in the square brackets of Eq. (1)
defines the exchange interaction of TMD carriers with the
proximate magnet via the effective field G(M) = Gm, where
m = M/|M| and s represents the Pauli matrices. Then, a

†
γ,σ,k

and aγ,σ,k are the usual creation and annihilation operators.
As such, n̂ = ∑

γ,σ,k a
†
γ,σ,kaγ,σ,k is the operator for the total

number of particles with the mean value 〈̂n〉 = N . The last
term in Eq. (1) accounts for the magnetic energy that depends
on the intrinsic anisotropy as well as the size and the shape
of the magnet. Referring to the detailed analysis of these
dependencies in the literature (e.g., Ref. [17]), we approximate
the magnetic energy by the axial anisotropy term in the form
Em(θ ) = V0Ka sin2 θ , where V0 = A0d is the volume of the
magnet (with the thickness d). The anisotropy constant Ka

(> 0) establishes the vertical (z) direction as the hard axis and
the x-y as the easy plane; θ denotes the angle of M deviation
from the easy plane (toward the hard axis).

Supposing the controllability of μ by the gate bias,
the valley polarization and the corresponding magnetization
would feed the minimum of the thermodynamic potential
�c(θ ) of the carriers that is partly counteracted by the increase
in Em(θ ). Diagonalization of the spin-dependent part in Eq. (1)
redefines the valley extrema and their spin splitting as

Ec
γ,σ (θ ) = �SO − γ σ

√
G2 + �2

SO − 2γ�SOG sin θ. (3)

It is evident that the in-plane orientation of M (i.e., θ = 0)
retains the energy degeneracy between the conjugated spin
states in the K and K ′ valleys with some lowering of ground
energies (� −G2/2�SO if G � �SO) due to the mixing with
the excited spin states by the exchange field. On the other
hand, a canting magnetization lifts the degeneracy such that
the previously identical ground state energies of the two valleys
[i.e., (γ,σ ) = (1,1) vs (−1,−1)] are now separated by as much
as 2G when θ = ±π/2. The resulting asymmetry causes valley
repopulation and a corresponding spin polarization that, in
turn, can reorient the magnetization through a self-consistent
process [see Fig. 1(b)]. The initial trigger (i.e., a slight
deviation from the perfectly in-plane magnetization) can come
from the ubiquitous thermal fluctuation.

To identify the conditions under which the magnetization
rotation leads to a gain in the stability, we need to evalu-
ate the thermodynamic potential of TMD carriers �c(θ ) =∑

γ,σ �γ,σ (θ ) subjected to an exchange field G. The necessary
summation (or integration) over the electronic states k can be
expressed in terms of a polylogarithmic function Li2(x) =∫ 0
x

ln(1 − t) dt
t

and the reduced electrochemical potential
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μ∗ = μ − Cq�N ,

�γ,σ (θ ) = kBT

ζ
Li2

[
− exp

μ∗ − Ec
γ,σ (θ )

kBT

]
. (4)

The conversion to integration can be justified by the stipulation
that the spectrum εγ,σ,k is dense on the scale of thermal energy
kBT , i.e.,

ζ = 2π�
2

m∗A0kBT
� 1. (5)

The mean number of free carriers in the corresponding γ,σ

states can be found from Eq. (4) as

Nγ,σ = 1

ζ
ln

(
1 + exp

μ∗ − Ec
γ,σ (θ )

kBT

)
, (6)

and the total mean number in the region A0 is simply
given by N = ∑

γ,σ Nγ,σ . Strictly speaking, the band shift
induced by the proximity interaction modifies the number
of carriers in the area. However, its impact is very minor
under typical conditions. For instance, the induced variation is
estimated to be less than 1% with the acceptor concentration
of over 2 × 1012 cm−2 and an even smaller fraction in the
corresponding n-type cases, assuming the exchange coupling
constant G of 20 meV. Hence, the analysis can proceed with
an approximation that both �γ,σ (θ ) and Nγ,σ are controlled
by μ but not affected by the proximate exchange field.

Equation (6) along with Eq. (3) clearly show that the
TMD layer acquires spontaneous valley (thus, carrier spin)
polarization at a finite θ , i.e., when magnetization deviates
from its in-plane direction. This magnetization rotation can be
achieved in the manner of orientational phase transition [18,19]
that can be controlled, in turn, by μ. Particular values of μ,
which realize the spin-valley polarization, are defined by the
boundaries of neutral state (with θ = 0) instability. Since the
angle θ plays the role of the order parameter in the Landau
theory of phase transitions, the boundaries of μ correspond to
the curvature sign change of the total energy �c(θ ) + Em(θ )
at θ = 0. An explicit form of the latter condition is

�2
SO

G2 + �2
SO

∑
σ

⎡
⎣ eξ

eξ + eησ
+ σkBT√

G2 + �2
SO

ln(1 + eξ−η−σ )

⎤
⎦

= 
, (7)

where ξ = μ/kBT and ησ = Ec
1,σ (0)/kBT . The parameter


 = 2π�
2Kad

m∗G2
(8)

represents the magnetic stiffness and its reduction due to
the exchange interaction with the proximate TMD carriers.
Equation (7) can be readily solved with respect to ξ in the limit
of large spin-orbital splitting (�SO 	 G, kBT ) that eliminates
the effect of excited spin-orbital split states. Under this
approximation, which is closely relevant to the valence bands
of such TMDs as MoS2 or WS2, the spin-valley polarization
appears when μ > μcr with

μcr = −kBT ln

(
1



− 1

)
. (9)

It is not surprising that spontaneous polarization mediated
by the out-of-plane rotation of M favors a small stiffness,
that is, 
 < 
max, where the absolute upper bound for 
max

is 1 according to Eq. (9). This condition in turn provides
a limit in the strength of the magnetic anisotropy. For
instance, the realistic values of d = 2 nm, G = 20 meV,
and m∗ = 0.34m0 (m0 being the free electron mass) suggest
Ka < 2.4 × 105 erg/cm3—a criterion that can be satisfied by
most known magnetic insulators.

Note that the condition μ > μcr is necessary but not
sufficient in the TMD with a finite spin-orbital splitting since
thermal population of both spin subbands reduces the effect
of the carrier mediated effective field. Increasing the carrier
density juxtaposes the Fermi level with the excited spin-orbital
subband that reduces spin-valley polarization and can finally
return the system to a balanced state with θ = 0. The range
of the electrochemical potential (μ1,μ2) that supports the
spin-valley polarization can be found from the numerical
solutions of Eq. (7) for arbitrary ratios between �SO, G, and
kBT .

For the detailed analysis, a WS2 based structure is used as
a specific example. The corresponding material parameters
adopted in the calculations are �SO = 13.5 and 235 meV
for the conduction and the valence bands, respectively, and
m∗ = 0.34m0, where the small difference between the electron
and hole effective masses is ignored [20]. In addition, the
values for d and G are set to 2 nm and 20 meV, respectively,
as indicated earlier. At a given temperature, this leaves the
magnetic anisotropy (thus, the magnetic stiffness 
) and the
electrochemical potential μ as the two main variables in
solving Eq. (7). Figure 2 provides the resulting calculation
at room temperature (curve 1) for the conduction [Fig. 2(a)]
and the valence [Fig. 2(b)] bands. When 
 (thus, Ka) is below
a certain maximum 
max, two correspondent solutions can be
found for μ, as indicated by the vertical dashed lines (see, for
example, the cases of 
 = 0.01 and 0.3, respectively). It is
the interval between these two μ positions μ1 and μ2 (thus,
the shaded region), where the imbalance in the free carrier
population can be expected between the K and K ′ valleys. This
is a significant departure from the simple picture of Eq. (9),
shown by curve 3 in Fig. 2(b), even for the valence band with
a sizable �SO.

The desired net valley polarization is illustrated by curves
2 as a function of μ in the shaded region. Specifically, this
quantity is defined as Pv(μ) = (Nγ − N−γ )/(Nγ + N−γ ) with
Nγ = ∑

σ Nγ,σ while taking |θ | = π/2 for Ec
γ,σ (θ ) [Eq. (6)].

The corresponding values for spin polarization can be obtained
similarly. The percentage of valley polarization, as shown,
reaches a plateau of around 30% (∼60%) with a low carrier
concentration in the conduction (valence) band, respectively.
The condition of low electron or hole densities, in turn, requires
a small magnetic anisotropy in the magnet (curve 1). This need
for a low magnetic barrier is consistent with the expectation
that the magnetization rotation accompanying the stable spin-
valley polarization must be fulfilled with only a limited number
of available carrier spins. The generally lower values of 
 and
μ for the conduction band, in comparison to the counterparts in
the valence band, can be understood from �SO. The small spin-
orbital splitting energy (27 vs 470 meV) makes the population
imbalance difficult to realize under a degenerate occupancy.
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FIG. 2. Critical values of electrochemical potential (curve 1) as a
function of the magnetic stiffness 
 calculated for (a) n-type and (b)
p-type ML WS2 at room temperature [Eq. (8)]. The shaded region
denotes the conditions under which the spin-valley polarization and
the reoriented magnetization can be observed. Thus, curve 1 can be
viewed as the boundary that separates two different “phases.” Curve
3 in (b) shows the ideal case scenario when the spin-orbital splitting
is very large. The reference of μ (i.e., zero) is set to the bottom of
the conduction band [(a)] and to the top of the valence band [(b)],
respectively. A negative value of μ indicates the electrochemical
potential in the energy gap between the conduction and valence bands
in both cases. Curves 2 shows the percentage of valley polarization
in the shaded region at the corresponding electrochemical potential.
The dashed lines are provided to aid interpretation of the results. With
the magnetic stiffness of 0.01 in (a), for instance, the upper and lower
bounds for the shaded region can be found in terms of μ (curve 1),
which then illustrate the respective valley polarizations of 27% and
12% (curve 2; see thin black arrows). An example of 
 = 0.3 is given
likewise in (b). Note that, while similarly polarized, the percentages
of net carrier spin take different numerical values.

One key question is as follows: Does the magnetization
indeed prefer the 90◦ rotation to the out-of-plane orientation
in the shaded region? To examine this point, it is crucial to trace
the angle θ = θ (μ) that is associated with the minimum of the
total energy �c(θ ) + Em(θ ), as μ varies over the threshold at
μ1 and μ2. The calculations exhibit a sharp change of |θ (μ)|
from 0 (in plane) to π/2 (out of plane) within an interval of
approximately 0.5 meV and back to 0 even more steeply in
only 0.1 meV (see the inset to Fig. 3). The seemingly abrupt
dependence may be due, in part, to the relative simplicity of
the adopted treatment with only the axial anisotropy. When the
higher-order terms of the magnetic anisotropy are present [21],
the process tends to become more gradual with a prolonged
tail end. For instance, an extra account of cubic anisotropy
with a magnitude about 10% of the axial term broadens the
intermediate range to several meV. However, this contribution
is likely rather minor when compared to the practicable range
of μ2 − μ1. Thus, the transition between two magnetization
configurations can indeed be expected via electrical control
in a nearly stepwise manner with a judicious choice of the
magnet.

The combination of Figs. 2 and 3 overviews the possible
scenarios of spin-valley polarization in a biased FM/TMD
structure. At a low “gate” voltage (low μ), the symmetrical
valley band structure is preserved with the in-plane magneti-
zation. Such a balanced state remains immutable under any
bias conditions provided it has a strong magnetic anisotropy
(i.e., 
 > 
max). When the magnetic barrier is sufficiently

FIG. 3. Magnetization orientation as a function of μ illustrating
the rotational phase transition between the in-plane (θ = 0) and out-
of-plane (|θ | = π

2 ) states. The parameters used in the calculation are
identical to those of Fig. 2(b) with 
 = 0.3 (i.e., the valence band in
a p-type sample). The inset provides a more detailed picture of the
transition around μ1.

low, on the other hand, the system can be driven out of the
stability, via an appropriate gate bias (with μ1 < μ < μ2),
into an alternative state with out-of-plane magnetization and
spin (and valley) split subbands (hence, polarization). A further
increase in the voltage (μ > μ2) diminishes the net difference
in the carrier population of the different spin subbands and
the necessary interplay with the magnetization, leading to
the recovery of easy-plane orientation and the symmetrical
band structure. The transitions between the two regimes (i.e.,
symmetric versus spin-valley polarized) can occur steeply
across the boundary at μ1 or μ2, requiring only a small swing
in the external voltage.

Another interesting aspect of the spontaneous spin-valley
polarization and the accompanied electronic band modification
is the impact on the conductance G(θ,μ) of the TMD region
under the gate. Assuming the relaxation time approximation
(i.e., the diffusive regime), the channel conductance can be
estimated in terms of the key functional dependencies as

G(θ,μ) � const
∑
γ,σ

∫
τγ,σ,kv

2
x(γ,σ,k)

(
− ∂f

∂εγ,σ,k

)
dk,

(10)

where τγ,σ,k is the carrier relaxation time, vx(γ,σ,k) the
group velocity along the channel direction (e.g., x), and f

the Fermi-Dirac distribution function [22]. Subsequently, the
magnetoresistive effect can be gauged by simply taking the
ratio between the values for the in-plane and out-of-plane
magnetization. Strictly speaking, the θ = 0 and |θ | = π

2
configurations require disparate electrochemical potentials.
However, they can be chosen sufficiently close to each other
(i.e., only a few meV apart by taking advantage of the very
steep transition discussed above) such that the difference can
be ignored for the purpose of the conductance calculation at
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FIG. 4. Magnetoresistance of n-type (blue, dashed) and p-type
(black, solid) ML WS2 mediated by the rotational phase transition in
the magnetization (from the in-plane to the out-of-plane state). For
each value of μ, it is assumed that the system meets the conditions
specified by curve 1 in Fig. 2(b). The reference point (μ = 0) is at the
bottom of the conduction band (n type) and at the top of the valence
band (p type), respectively, as described before.

room temperature. Then, the desired magnetoresistance can
be approximated as [G(θ = 0,μ)/G(|θ | = π

2 ,μ)] − 1, where
μ follows the rotational phase transition boundary defined by
curve 1 in Fig. 2.

For a numerical evaluation, details on the carrier scattering
processes are required. In the present analysis, we focus on
the intrinsic, unavoidable interaction with the lattice. More
specifically, the energy-dependent carrier-phonon scattering

rates are taken from the first principles calculations [20], which
are then approximated by a series of step functions in each spin-
valley subband. The obtained magnetoresistance is plotted
in Fig. 4. The result clearly illustrates that the spontaneous
spin-valley polarization can lead to modulation of the channel
resistance by as much as approximately 40% in the p-type
samples (i.e., the valence band, solid curve) via a small change
in the applied electrostatic bias. The effect is most prominent
when the transition occurs with the electrochemical potential
near the valence band edge. The correspondent outcome in
the n-type cases (i.e., the conduction band, dashed curve) is
substantially weaker due to the small spin-obit spitting, while,
at a few percent, it is still experimentally detectable.

In summary, we propose and theoretically demonstrate
the possibility of spontaneous spin-valley polarization in a
strongly spin-orbit coupled TMD monolayer that is mediated
by the orientation phase transition in an adjacent magnet.
The analysis illustrates that a large spin-orbital splitting and a
strong proximity exchange interaction are the key conditions
necessary to overcome the magnetic anisotropy of a hard
magnet. The consequential valley (as well as spin) separating
phase transition can be driven electrically through a rather
modest change in the carrier densities, which can then be
detected rather straightforwardly through an accompanying
modification in the TMD channel conductance. The predicted
nonlinear response to an electrical bias can have a major
implication in prospective valleytronic applications in logic
and memory [23,24]. The polarization effect may become even
more pronounced in magnetically doped TMDs.

This work was supported, in part, by FAME (one of six
centers of STARnet, a SRC program sponsored by MARCO
and DARPA).

[1] For a recent review, see X. Xu, W. Yao, D. Xiao, and T. F. Heinz,
Nat. Phys. 10, 343 (2014).

[2] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R.
Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E.
Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson,
R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M.
Terrones, W. Windl, and J. E. Goldberger, ACS Nano 7, 2898
(2013).

[3] Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D.
Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J.
Hone, Z. Li, D. Smirnov, and T. F. Heinz, Phys. Rev. Lett. 113,
266804 (2014).

[4] D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos,
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