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Asymptotics of surface-plasmon redshift saturation at subnanometric separations
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Many promising nanophotonics endeavors hinge upon the unique plasmonic properties of nanometallic
structures with narrow nonmetallic gaps, which support superconcentrated bonding modes that singularly
redshift with decreasing separations. In this Rapid Communication, we present a descriptive physical picture,
complemented by elementary asymptotic formulas, of a nonlocal mechanism for plasmon redshift saturation at
subnanometric gap widths. Thus, by considering the electron-charge and field distributions in the close vicinity
of the metal-vacuum interface, we show that nonlocality is asymptotically manifested as an effective potential
discontinuity. For bonding modes in the near-contact limit, the latter discontinuity is shown to be effectively
equivalent to a widening of the gap. As a consequence, the resonance-frequency near-contact asymptotics are
a renormalization of the corresponding local ones. Specifically, the renormalization furnishes an asymptotic
plasmon-frequency lower bound that scales with the 1/4 power of the Fermi wavelength. We demonstrate these
remarkable features in the prototypical cases of nanowire and nanosphere dimers, showing agreement between
our elementary expressions and previously reported numerical computations.
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Introduction. There is currently great interest in the underly-
ing physics and nanotechnological applications of plasmonic
light confinement in gaps separating nearly touching metal
nanostructures down to nanometric separations and below
[1–3]. For such close separations, the “bonding” surface-
plasmon modes redshift with decreasing separations and
become highly localized [4–6]. Theoretical approaches go-
ing beyond the classical electromagnetic formulation have
included ab initio quantum-mechanical formulations [7,8],
and phenomenological hydrodynamic [9–13] and quantum-
corrected models [14]. In particular, numerical simulations
and approximate analytic analyses of the hydrodynamic
Drude model [15–19], which in many cases qualitatively
captures nonlocality [20], reveal that the plasmon-frequency
redshift saturates with decreasing particle separation; this is
not captured by a purely local description of the dielectric
response, yet can be relatively easily inferred via monitoring
light scattering from a metal nanoparticle in near contact
with a plane substrate [2]—a surprising far-field optical
manifestation of a quantum effect. Here, we apply scaling
and asymptotic arguments to arrive at an intuitive physical
picture, complemented by asymptotic formulas, of a nonlocal
mechanism underpinning the redshift saturation.

Local description. We begin with a discussion of the
surface-plasmon redshift in the local approximation. For
specificity, consider a dimer nanometallic structure comprising
two identical convex metal particles surrounded by vacuum
(characteristic particle size a, minimal separation d). In
the quasistatic approximation [21], the electric near field
is derived from potentials ϕ̄ and ϕ respectively satisfying
Laplace’s equation within and outside the metal, along with
the interfacial conditions

ϕ = ϕ̄,
∂ϕ

∂n
= ε

∂ϕ̄

∂n
, (1)

where ∂/∂n denotes the outward normal derivative, and ε is
the relative dielectric function of the metal. A surface-plasmon
mode with eigenvalue ε corresponds to a nontrivial solution

of the above problem with ϕ attenuating at large distances.
The plasmon frequencies ω are obtained by inverting ε(ω);
assuming a Drude metal,

ε(ω) = 1 − ω2
p

ω2 + iγ ω
, (2)

where ωp = e
√
Ne/ε0m is the plasma frequency (e being

the electron-charge magnitude, Ne the equilibrium electron
density, and m the effective electron mass) and γ the collision
frequency. Strictly speaking, since ε eigenvalues are real
and negative [22], surface modes exist when γ = 0 (and
ω < ωp). For 0 < γ � ω, however, a damped resonance
occurs for external forcing having appropriate symmetries,
wherein surface modes are excited with an amplification factor
inversely proportional to Im[ε] ≈ ω2

pγ /ω3.
The symmetry of the dimer configuration implies that

surface-plasmon eigenpotentials are either symmetric or anti-
symmetric about the plane bisecting the gap. Our interest is in
the antisymmetric “bonding” modes, where the polarization-
charge distribution on one side of the gap is opposite to that
on the other, implying a gap field that becomes dominantly
transverse with decreasing separation (see Fig. 1). Henceforth
we shall be interested in the asymptotic near-contact limit
where d/a � 1. Given the local paraboloidal [or parabolic,
in two dimensions (2D)] geometry of the gap, the potential
ϕ rapidly varies in the transverse direction over distances
O(d)—approximately linearly, as a leading-order balance of
Laplace’s equations reveals— and in directions tangent to the
bisecting plane over distances O(

√
ad). Continuity in potential

across the gap boundary suggests that ϕ̄ too varies rapidly over
O(

√
ad) tangential distances. Owing to the symmetry of the

Laplace operator, and the apparent unboundedness of the metal
domain away from the gap boundary on such small scales, ϕ̄

must vary over comparable distances also in the transverse
direction.

The above description implies that bonding modes have
their field more strongly localized on the vacuum side than on
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FIG. 1. Schematics of the fundamental axisymmetric “bonding”
mode of a metal nanosphere dimer in the local approximation. The
inset zooms in on the gap and metal-pole regions wherein the potential
varies rapidly. The plasmon eigenvalue ε is negative and O(

√
d/a)

large in order to allow displacement continuity.

the metal side; it is this property that allows a strong redshift
as d/a → 0. In fact, we readily deduce a scaling relation in
this limit by invoking electric-displacement continuity. If the
potential in the gap region is O(ϕg), say, then the transverse
field there is O(ϕg/d), whereas in the metal the field is
O(ϕg/

√
ad). The scaling result (see also Refs. [23,24])

ε(ωres) ∼ −α(d/a)

(
a

d

)1/2

as d/a → 0, (3)

then follows, where α > 0 is an O(1) prefactor dependent on
the specific geometry and mode number; henceforth we shall
simply write ε for ε(ωres). More subtle scaling considerations
show for planar cases that α is a constant governed solely by
the local gap morphology, whereas in three dimensions (3D) α

is a weak logarithmic function of d/a that additionally depends
on certain integral features of the particle-scale geometry [25].

In the case of a circular nanowire dimer (radius a),

α = 1

n + 1
, n = 0,1,2, . . . . (4)

One way to derive (4) is by asymptotically reducing exact
analytical solutions based on transformation optics [5] or
separation of variables in bipolar coordinates [26] (see, e.g.,
Ref. [27]). A powerful alternative developed in Ref. [24],
not requiring an analytic solution, is an ab initio singular
perturbation analysis of the plasmonic eigenvalue problem in
the near-contact limit; the surface-plasmon modes emerge by
matching relatively simple leading terms of spatially overlap-
ping asymptotic expansions, and the method is essentially a
detailed version of the scaling arguments given earlier. In the
significantly more complicated case of a sphere dimer, this
approach yields [24]

α = 2

2ñ[n, ln(d/a)] + 1
, n = 0,1,2, . . . (5)

(axisymmetric bonding modes); for each n = 0,1,2, . . .,
ñ[n, ln(d/a)] is the root of the transcendental equation
2�(−ñ) = ln(a/4d) that approaches n as d → 0 [28], with
� being the digamma function [29].

Nonlocal description. For a Drude metal (2), the singular
scaling (3) implies a plasmon-frequency redshift such that

ω/ωp = O[(d/a)1/4]. The local model (1) underlying (3)
breaks down, however, when d becomes comparable to the
subnanometric Fermi wavelength λ = β/ωp (β is a parameter
characterizing nonlocality; for ω � γ , β is

√
3/5 times the

Fermi velocity [13]). The finite dispersion of the electron-
density deviation from the equilibrium value Ne becomes
important, and we explore how the asymptotic result (3) is
modified by invoking the hydrodynamic Drude model; the
electron-density deviation N is solved for in conjunction with
the potential ϕ̄ within the metal, which is now associated with
a microscopic rather than a macroscopic electromagnetic field.
As reviewed in Ref. [13], the governing equations in the metal
are obtained by linearizing the electron-density continuity
equation and a Navier-Stokes equation governing the electron-
gas flux per unit density. In the quasistatic approximation,
and suppressing a time harmonic dependence of the form
exp(−iωt), one finds

λ2∇2N = ε

ε − 1
N , ε0∇2ϕ̄ = eN , (6)

where ε is given by (2). The vacuum potential ϕ is still
governed by Laplace’s equation. The model is supplemented
by the interfacial conditions

ϕ = ϕ̄,
∂ϕ

∂n
= ∂ϕ̄

∂n
,

mβ2

eNe

∂N
∂n

= ∂ϕ

∂n
, (7)

the first two being the standard microscopic electromagnetic
conditions, while the third dictates a vanishing electron-
density flux through the interface (neither electron spill-out
nor tunneling are accounted for).

The nonlocal model is apparently a significant compli-
cation, but the disparity between the subnanometric Fermi
wavelength λ and the characteristic scale a can be exploited.
For ω < ωp, ε is negative and the first of (6) is a modified
Helmholtz equation, implying that electron-density deviations
decay exponentially over an O(λ) distance away from the
interface. In the bulk metal outside the latter electron-charge
“boundary layers,” N /Ne is exponentially small in λ/a,
whereby the second of (6) reduces to Laplace’s equation. This
suggests carrying out a zoomed-in analysis of the boundary
layers to arrive at an effective coarse-grained model relating
the vacuum and bulk-metal potentials.

Before we return to discuss the near-contact limit, let us
consider for a moment a smooth metal particle or structure
characterized by a single length scale. It is then evident that
changes in potential over the interface are slow relative to
the rapid variations in the boundary layer. Further assuming a
locally flat interface, an approximate solution of (6) is readily
obtained as

N
Ne

≈ eλ

mβ2

∂ϕ

∂n

(
ε − 1

ε

)1/2

exp

[(
ε

ε − 1

)1/2
x

λ

]
,

ϕ̄ − ϕ ≈ x

ε

∂ϕ

∂n

+λ

{
exp

[(
ε

ε − 1

)1/2
x

λ

]
− 1

}(
ε − 1

ε

)3/2
∂ϕ

∂n
,

(8)
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FIG. 2. Quasi-one-dimensional potential and electron-density
perturbation profiles in the vicinity of a metal-vacuum interface.
The electron-charge boundary layer can be effectively replaced by
a potential jump proportional to the interfacial normal field.

where x denotes distance from the interface (x > 0 is vacuum),
and ϕ and ∂ϕ/∂n are evaluated at the interface (see Fig. 2).
The quasi-one-dimensional (1D) solution (8) implies that
nonlocality can be approximately accounted for through
effective interfacial conditions,

ϕ − ϕ̄ ∼ λ

(
ε − 1

ε

)3/2
∂ϕ

∂n
, ε

∂ϕ̄

∂n
∼ ∂ϕ

∂n
, (9)

where ϕ̄, now representing the bulk-metal potential, satisfies
Laplace’s equation. For the single-scale particle, the effective
potential discontinuity in (9) results in a small O(λ/a)
correction to ε, corresponding to a small O(λ/a) blueshift
of ω/ωp from values based on the local model. A more
systematic derivation of (9) based on the method of matched
asymptotic expansions [30], for a generic smoothly curved
interface, reveals that (9) is indeed asymptotic to O(λ/a) but
is corrected by additional effective terms at O(λ2/a2).

We now return to the case of a dimer in the near-contact
limit d/a � 1. Evidently, for d � λ, the local picture is
approximately correct. When d = O(λ), however, nonlocality
is an appreciable effect. Indeed, we previously saw that the
transverse field in the gap is O(ϕ/d) large, whereby the
potential jump suggested by (9) is upgraded to leading-order
status. In studying the near-contact limit we shall focus on
the leading-order behavior, disregarding small corrections;
then, the quasi-one-dimensional solution (9) remains relevant
towards describing the gap region (while tangential variations
are rapid in the near-contact limit, they are still less rapid than
the transverse variations in the charge boundary layer). Subject
to a posteriori verification, we still expect |ε| � 1, hence a
uniformly valid leading-order macroscale model reads

ϕ − ϕ̄ ∼ λ
∂ϕ

∂n
, ε

∂ϕ̄

∂n
∼ ∂ϕ

∂n
. (10)

Note that, away from the gap, the potential varies over O(a)
distances and hence the effective potential jump is negligible
in the present leading-order scheme.

λ

λ
∂ϕ

∂n

N

1 ∂ϕ

∂n

ϕ

ϕ̄
| 1

FIG. 3. Quasi-one-dimensional electron-density perturbation and
potential profiles characteristic of a gap bonding mode. When the
separation is O(λ), nonlocality is appreciable; the macroscale bound-
ary conditions (10) governing the leading-order large eigenvalue −ε

feature an effective potential jump that can alternatively be interpreted
as a transverse inward shift by λ of the metal boundary.

We can now make a key observation: The effective model
(10) is, to leading order, equivalent to a shift of the metal
boundary by λ in the inward normal direction. In fact, since
in the vicinity of the gap the normal vector is approximately
transverse, the nonlocal effect can be interpreted simply as a
widening of the gap (see Fig. 3). Remarkably, these asymptotic
analogies imply that the nonlocal ε asymptotics are simply a
renormalization of the local result (3),

ε ∼ −α

(
d + 2λ

a

)(
a

d + 2λ

)1/2

, (11)

where α is the same O(1) constant (in 2D) or logarithmic
function (in 3D) as in the local theory. We note that (11) can
be alternatively derived, in the spirit of Ref. [24], by a direct
singular perturbation analysis of the original nonlocal model
(6) or either of the reduced models (9) and (10).

Predictions of Eq. (11) for the zeroth mode of gold
nanowire and nanosphere dimers are depicted by the blue
dashed lines in Figs. 4 and 5, respectively. Also shown are
the following: (i) black solid lines—local theory (analytic
solution for wires [26] and a seminumerical method for spheres
[24]); (ii) black dashed lines—local near-contact asymptotics
(3); and (iii) numerical results reported in Refs. [18,31]—red
square symbols represent a fully retarded nonlocal simulation
whereas the red dashed lines are fitted solutions of a reduced
dielectric-layer model, which we shall discuss later. There is
satisfying agreement with the numerical data of Refs. [18,31],
which smoothly connect the local approximations at d � λ

with our renormalized asymptotics at d = O(λ), especially
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FIG. 4. Resonant-frequency condition for the fundamental bond-
ing mode of a gold circular nanowire dimer of radius a, Drude
dielectric function ε(ω) [cf. (2)], and Fermi wavelength λ =
0.215 nm. Black solid: Local analytical solution [26]. Black
dashed: Local near-contact asymptotics (3) and (4). Blue dashed:
Renormalized nonlocal near-contact asymptotics (11). Red square:
Fully retarded nonlocal simulation reported in Ref. [18]. Red
dashed: Calculations for the fitted dielectric-layer model reported in
Ref. [18].

given the O(1) error, small compared to
√

a/d , involved in
(11).

The saturation of ε observed in Figs. 4 and 5 is evident in
(11). Indeed, for d � λ we find

ε ∼ −α(2λ/a)

(
a

2λ

)1/2

. (12)

Formally, ω/ωp � 1 when |ε| � 1, and hence the leading-
order asymptotic saturation frequency corresponding to (12)
is

ω/ωp ∼ (2λ/a)1/4/[α(2λ/a)]1/2. (13)

For example, in the case of a circular nanowire dimer,
substituting (4) into (13) furnishes the asymptotic lower bound
ω/ωp ∼ (2λ/a)1/4.

Luo et al.’s dielectric-layer model. We have shown that
nonlocality can be asymptotically accounted for in terms of an

d/(2a)
10-4 10-3 10-2 10-1 100 101

−
(ωε

re
s)

100

101

102

local asymptotics

nonlocal asymptotics

Luo et al. PNAS 2014
a = 5 nm

a = 30 nm

local

FIG. 5. Same as Fig. 4 but for a gold nanosphere dimer. Black
solid: Local seminumerical solution [24]. Black dashed: Local near-
contact asymptotics (3) and (5). Blue dashed: Renormalized nonlocal
near-contact asymptotics (11). Red square: Fully retarded nonlocal
simulation reported in Ref. [31]. Red dashed: Calculations for the
modified dielectric-layer model reported in Ref. [31].

effective potential jump, and in some cases also as an inward
shift of the metal-vacuum boundary. Previous local-analog
models [16,18,31], underlined by physically intuitive rather
than asymptotic arguments, involve a degree of freedom
allowing to fit numerical computations. In particular, Luo et al.
[18] suggested to account for nonlocality by replacing a thin
layer of metal of thickness ld adjacent to the interface with a
dielectric material of relative permittivity εd . By requiring the
reflection and transmission coefficients in a planar geometry
to be a consistent solution of the nonlocal model, Luo et al.
derived an expression for the ratio ld/εd , which in our notation
reads

ld/εd = λ

(
ε − 1

ε

)3/2

. (14)

Under certain restrictions, condition (14) is consistent with
our model (9), and with (10) in particular. To see this, consider
yet again our quasi-one-dimensional approximation, this time
for a triple-layer system comprising a local metal (x < −ld ),
a dielectric layer (−ld < x < 0), and vacuum (x > 0). It is
immediate to write down equations connecting the potentials
and fields at the boundaries of the dielectric layer:

ε
∂ϕ̄

∂x

∣∣∣∣
−ld

≈ ∂ϕ

∂x

∣∣∣∣
0

, ϕ|0 − ϕ̄|−ld
≈ ld

εd

∂ϕ

∂x

∣∣∣∣
0

. (15)

It may naively appear that by substituting (14) we find the
asymptotic macroscale model (9) for any fitting choice. It
should be noted, however, that while in the asymptotic model
(9) the conditions apply at the true interface, here the metal
variables are evaluated at a distance of ld from the interface.
For single-length-scale structures this generally carries an
O(λ/a) relative error, whereas the error in (9) is smaller.
This implies the fitting constraint ld � λ, which might explain
why in Ref. [18] fixing εd = 1 did not give a good prediction
of high-frequency surface-plasmon polaritons (as ω → ωp,
ε becomes small and hence ld � λ). This constraint is less
important in the near-contact scenario, where the effect of
nonlocality is dominant and the error associated with the small
geometric shift is negligible. Indeed, fixing εd = 1 gave rather
good results in Ref. [18] for nearly touching nanoparticles,
especially around the fundamental plasmon frequency. These
remarks are consistent with the discussion in Ref. [31], where
a modification of (14) involving a nonuniform dielectric-layer
thickness is employed.

Conclusions. We provide an intuitive description of a
nonlocal mechanism of redshift saturation captured by an
elementary renormalization of the local near-contact asymp-
totics. For general metal nanostructures with small separations,
the theory presented herein can be adopted with minor
changes related to having different metals and the identification
of the bonding modes. Recent studies [7,32] show that
quantum tunneling, disregarded in the hydrodynamic model,
dominates at separations � 0.5 nm. While the saturation
studied herein is fully realized only at smaller saturations,
nonlocality, as described by our renormalization (11), ap-
preciably modifies the plasmonic response already at larger
separations.
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