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Microscopic quantum interference in excitonic condensation of Ta2NiSe5
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The microscopic quantum interference associated with excitonic condensation in Ta2NiSe5 is studied in a
BCS-type mean-field approximation. We show that in ultrasonic attenuation the coherence peak appears just
below the transition temperature Tc, whereas in NMR spin-lattice relaxation the rate rapidly decreases below Tc;
these observations can offer a crucial experimental test for the validity of the excitonic condensation scenario in
Ta2NiSe5. We also show that excitonic condensation manifests itself in a jump of the heat capacity at Tc as well
as in a softening of the elastic shear constant, in accordance with the second-order phase transition observed in
Ta2NiSe5.
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A prediction was made about half a century ago that, in
a semimetal or a narrow-gap semiconductor, electrons in a
conduction band (CB) and holes in a valence band (VB)
form pairs called excitons, and the system spontaneously goes
into a state of quantum condensation with macroscopic phase
coherence [1–7]. The state leads to the opening of a band
gap in semimetals or to the flattening of the band edges in
semiconductors, and is called the excitonic insulator state.
The phase of such states may generally be referred to as
the excitonic phase. A recent development in experimental
techniques, in particular, angle-resolved photoemission spec-
troscopy (ARPES), enables one to observe the changes in the
band structure due to possible excitonic condensation in some
materials [8–12]. Thereby, the excitonic phases have attracted
renewed attention in recent years [13].

Here, we focus on a candidate material Ta2NiSe5 [11],
which is a narrow-gap semiconductor undergoing a structural
transition from an orthorhombic to monoclinic phase at
Tc = 328 K [14,15]. The flat band was observed in the
ARPES experiment [11,12,16], which was interpreted to be
due to excitonic condensation; i.e., a mean-field analysis
of the proposed three-chain Hubbard model with electron-
phonon coupling explains the simultaneous occurrence of
excitonic condensation and structural transition [17], and a
variational-cluster-approximation calculation of the extended
Falicov-Kimball model well reproduces the ARPES spectral
weight observed experimentally [16]. However, a “smoking
gun” experiment that determines whether Ta2NiSe5 is really
in the excitonic phase is still lacking.

In this Rapid Communication, we challenge this issue; i.e.,
we will argue that the presence/absence of the coherence peak
caused by microscopic quantum interference in the state can
provide a crucial experimental test for the validity of the
excitonic condensation scenario in this material. In the case
of superconductivity, it is known that the coherence factors
appearing in ultrasonic attenuation and nuclear-magnetic-
resonance (NMR) relaxation rates played an essential role in
confirming the validity of the BCS theory [18,19]. We apply
this concept to the case of excitonic phases, whose state can
be written in terms of a BCS-type wave function as well. We
thereby present how the microscopic quantum interference
of the state can give rise to either a coherence peak or a rapid
decrease in the temperature dependence of these rates, of which

not much is known so far, except for a simple model calculation
of the ultrasonic attenuation rate [20,21].

In what follows, we will first introduce a three-chain
Hubbard model with electron-phonon coupling that describes
the low-energy electronic states of Ta2NiSe5, and present some
generalization of the mean-field calculations of Kaneko et al.
[17], demonstrating an excitonic and structural phase transition
[22]. We will then calculate the temperature dependence of
the ultrasonic attenuation and NMR spin-lattice relaxation
rates and demonstrate that the coherence peak appears in the
ultrasonic attenuation rate due to constructive interference,
while there occurs a rapid decrease in the NMR relaxation
rate due to destructive interference, the behaviors of which
are in contrast to those of BCS s-wave superconductivity.
We will also carry out the calculations of thermodynamic
quantities, such as heat capacity and elastic constant, and
show that a jump is observed in the specific heat at the phase
transition and that elastic softening relating to the structural
phase transition is observed in the elastic shear constant. Our
theoretical predictions are in fair agreement with available
experimental data obtained so far for Ta2NiSe5, which we
hope will encourage further experimental studies to provide
the proof that Ta2NiSe5 is in the excitonic phase.

To be quantitative, let us introduce the three-chain Hubbard
model with electron-phonon coupling used in Ref. [17], which
consists of a doubly degenerate CB of two Ta 5d chains
and a nondegenerate VB of a Ni 3d chain, as is illustrated
schematically in Fig. 1. We define cj,α,σ (c†j,α,σ ) to be an
annihilation (creation) operator of a CB electron at site j

with spin σ on the chain α (= 1,2) and fj,σ (f †
j,σ ) to be

an annihilation (creation) operator of a VB electron at site
j with spin σ . It was shown [17,22] that the BCS-type
mean-field approximation to this model successfully describes
the simultaneous occurrence of excitonic condensation and
structural transition from the orthorhombic to monoclinic
phase of Ta2NiSe5. The diagonalized mean-field Hamiltonian
HMF reads

HMF =
∑
k,σ

∑
ε=c,±

Ek,εγ
†
k,ε,σ γk,ε,σ + Nε0, (1)

where Ek,ε,σ is the quasiparticle energy, γk,ε,σ (γ †
k,ε,σ ) is

an annihilation (creation) operator of the quasiparticle with
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FIG. 1. (a) Noninteracting band structure of our model with
hopping parameters tc = −0.8 and tf = 0.4 eV and band gap D =
0.2 eV. Also shown are the schematic representations of the lattice
structures of (b) the orthorhombic and (c) monoclinic phases. We
assume the on-site Coulomb repulsion Uc on c and Uf on f sites
and intersite Coulomb repulsion V between the c and f sites. We set
V = 0.6 eV and Uc = Uf = 4 V . The electron-phonon coupling of
strength λ = 0.01 eV is assumed unless otherwise stated. The order
parameters are defined for the excitonic condensation as �α,β and for
the structural distortion as δ.

band index ε, wave number k, and spin σ , and Nε0 is a
constant term in the mean-field Hamiltonian. N is the number
of the unit cells in the system. The quasiparticle satisfies
ck,μ,σ = ∑

ε ψk,σ ;μ,εγk,ε,σ , where ψk,σ ;μ,ε is the Bogoliubov
transformation coefficient and fk,σ = ck,3,σ . Details of our
mean-field analysis are given in the Supplemental Material
[22].

First, let us discuss the ultrasonic attenuation rate. Defining
Aq,α = aq,α + a

†
−q,α using the phonon annihilation (creation)

operator aq,α (a†
q,α) on the Ta chain α, we write the Matsubara

phonon Green’s function as

Dα(q,τ ) = −〈TτAq,α(τ )A−q,α(0)〉, (2)

where Aq,α(τ ) = e−ωqτ aq,α + eωqτ a
†
−q,α is the Heisenberg

representation of Aq,α at imaginary time τ and phonon wave
number q with a phonon dispersion ωq . Using the Fourier

coefficient Dα(q,iωn) = ∫ β�

0 dτ Dα(q,τ )eiωnτ , the phonon
Dyson’s equation is given as

Dα(q,iωn) = D(0)
α (q,iωn) + D(0)

α (q,iωn)α(q,iωn)

×Dα(q,iωn), (3)

where α(q,iωn) is the self-energy of the phonon Green’s
function. The ultrasonic attenuation rate is then given by the
imaginary part of the retarded self-energy [23] as

αq,α = 1

τq,α

= −2 Im R
α (q,ωq + iη), (4)

where τq,α is a relaxation time of the phonon and η is an
infinitesimal value.

We consider the lattice oscillation corresponding to the
distortion in the structural phase transition, i.e., an ultrasonic
shear wave for the transverse acoustic mode that propagates
along the direction perpendicular to the chains [see Fig. 2(d)].
The perturbation Hamiltonian of the phonons coupled with

α
ω

α
ω

α
ω

FIG. 2. Calculated ultrasonic attenuation rate normalized by the
ultrasonic frequency ωph. We assume Mcf

0 = 1 eV with (a) Mcc
0 = 0

eV, (b) Mcc
0 = 1 eV, and (c) Mcc

0 = 5 eV. (d) Schematic representation
of the oscillation of the ultrasonic shear wave that propagates along the
direction perpendicular to the chains. Also shown are the calculated
NMR relaxation rates at (e) Ta and (f) Ni sites. The red solid line
(E) is for the excitonic phase and the blue dashed line (N) is for the
normal phase.

electrons is given by

H′ =
∑
k,q,σ

2∑
α=1

{
Mcc

−qA−q,αc
†
k−,α,σ ck+,α,σ

−Mcf
−qA−q,α(c†k−,α,σ fk+,σ + f

†
k−,α,σ ck+,σ )

}
, (5)

with k± = k ± q

2 . The first term represents the coupling
between the phonon and charge density of the CB electrons
with a coupling constant Mcc

−q , and the second term represents
the hybridization between the conduction and valence bands by

the phonon with a coupling constant Mcf
−q =

√
Kλ�

Mcωq
, where Mc

is the mass of a Ta ion, K is the spring constant of the lattice
harmonic oscillators, and λ is the electron-phonon coupling
strength [17,22]. The coupling between the phonon and charge
density of the VB electrons is ignored as being irrelevant to
the present instability mode. Equation (5) then reads

H′ =
∑
k,q,σ

2∑
α=1

3∑
μ=1

Wα,μ(−q)A−q,α

× (c†k−,α,σ ck+,μ,σ + c
†
k−,μ,σ ck+,α,σ ), (6)
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with Wα,μ(q) = ( 1
2Mcc

q δα,μ − Mcf
q δμ,3).

We adopt the second-order perturbation theory for the
phonon self-energy. Since the ultrasonic wave number q is
small enough, we may assume q � 0 in Eq. (4). We then
obtain

αq=0,α = 2πωph

∑
k,σ

∑
ε1,ε2

β

4 cosh2[β(Ek,ε1 − μ)/2]

× δ(Ek,ε1 − Ek,ε2 )
∑
μ,ν

Wα,μWα,ν{2�α,α;ε1 (k,σ )

×�μ,ν;ε2 (k,σ ) + �ν,α;ε1 (k,σ )�μ,α;ε2 (k,σ )

+�α,μ;ε1 (k,σ )�α,ν;ε2 (k,σ )}, (7)

with �ν,κ;ε(k,σ ) = ψk,σ ;ν,εψ
∗
k,σ ;κ,ε and the ultrasonic fre-

quency ωph.
The calculated results for the temperature dependence of

the ultrasonic attenuation rate are shown in Figs. 2(a)–2(c). We
find the following: In the normal state (obtained with vanishing
order parameters), thermally excited electrons are scattered by
phonons via the coupling with charge density, resulting in
the behavior α ∝ (Mcc

0 )2. The Mcf
0 term does not contribute

here. In the excitonic phase, a large coherence peak appears
due to the phonon-induced c-f hybridization (Mcf

0 ), which
is, however, overwhelmed by the charge-density term (Mcc

0 ) at
Mcc

0 � Mcf
0 , where the increase in the band gap suppresses the

thermal excitation of electrons, resulting in a rapid decrease in
the rate α. However, in the ultrasonic attenuation experiment
using the transverse sound mode, the coupling between the
phonon and charge density of electrons does not contribute to
the rate, and therefore we have the situation shown in Fig. 2(a).
The experimental observation of the coherence peak in the
ultrasonic attenuation rate should thus be realizable.

Next, let us discuss the NMR spin-lattice relaxation rate,
which may be written [24] as

1

T1,μ

∝ −kBT

�ωμ

∑
q

Im χR
+−,μ(q,ωμ), (8)

using the transverse dynamical spin susceptibility

χR
+−,μ(q,ωμ) = −i

∫ ∞

−∞
dt eiωμt 〈[S+

q,μ(t),S−
−q,μ(0)]〉θ (t),

(9)
where we define S+

q,μ = ∑
k c

†
k−,μ,↑ck+,μ,↓ and S−

q,μ =∑
k c

†
k−,μ,↓ck+,μ,↑, and ωμ is a resonant frequency of nuclear

spins (μ = 1,2 for Ta and μ = 3 for Ni). Using the mean-field
approximation and assuming a small ωμ value compared to
typical energy scales of the system, we may rewrite Eq. (8) as

1

T1,μ

∝ π
∑
k,q

∑
ε1,ε2

�μ,μ;ε1 (k−, ↑)�μ,μ;ε2 (k+, ↓)

× 1

4 cosh2[β(Ek−,ε1 − μ)/2]
δ(Ek−,ε1 − Ek+,ε2 ).

(10)

The calculated results for the temperature dependence of
the NMR relaxation rate are shown in Figs. 2(e) and 2(f) for
Ta and Ni nuclear spins, respectively. We find that, in contrast
to the typical s-wave superconducting phase [19], there appear

no characteristic peaks in the rate of the excitonic phase but
the rate simply drops just below Tc. Thus, the behavior of the
NMR relaxation rate in the excitonic phase is similar to that of
an ultrasonic attenuation rate in the s-wave superconducting
phase. We point out that a recent NMR experiment on Ta2NiSe5

[25] suggests the behavior of the rate consistent with our
theoretical prediction.

Here, we briefly mention the nuclear-quadrupole-resonance
(NQR) relaxation rate. We first note that the quadrupole
interaction in NQR is the BCS case I interaction (without spin-
flip processes) [26] while the spin-lattice relaxation in NMR is
the BCS case II interaction (with spin-flip processes) [18,27].
Because the electron-phonon interaction in the ultrasonic
attenuation is the case I interaction as well, we may expect
that the NQR relaxation rate should behave similarly with the
ultrasonic attenuation rate where the coherence peak rapidly
grows below Tc, as we have shown above. However, because
the nuclear-quadrupole interaction comes not only from the on-
site anisotropic charge distribution (which does not cause the
coherence peak) but also from the intersite quadrupole inter-
action and the latter is not easy to evaluate, here we only
suggest the possibility that the coherence peak can appear in
the NQR relaxation rate, just as in the ultrasonic attenuation
rate shown in Figs. 2(a)–2(c). Experimental studies are desired.

Finally, let us demonstrate that the excitonic condensation
manifests itself in some thermodynamic quantities, such
as heat capacity and elastic constant, which will provide
additional experimental support for the validity of the excitonic
condensation scenario in Ta2NiSe5. Let us first discuss the heat
capacity, which may be calculated from the mean-field free
energy [22] as

C = −T
∂2F

∂T 2
=

∑
k,ε,σ

(Ek,ε − μ)
∂f (Ek,ε)

∂T
, (11)

where f (E) is the Fermi distribution function. The calculated
result is shown in Fig. 3(a), where we find that the jump at
Tc associated with the second-order phase transition is clearly
visible, satisfying the entropy balance. The jump is given by
(CE − CN)/CN � 0.20 for the parameter values appropriate
for Ta2NiSe5, where CE and CN are the heat capacities in the
excitonic and normal phases, respectively, at Tc. This value
is much smaller than the value 1.43 (a universal constant) in
the BCS superconductivity and depends strongly on the model
parameters used; its λ dependence, e.g., is shown in Fig. 3(b).
Such a difference in the magnitude of the jump comes mainly
from the difference in the normal phase: It is a band insulator
in the present excitonic condensation while it is a metal in
superconductivity. We also note in Fig. 3(b) that the jump in
the heat capacity and the value of Tc increase monotonically
as λ increases, indicating that the larger values of the order
parameters in the excitonic phase lead to the larger jump in
the heat capacity. We point out that a recent specific heat
measurement on Ta2NiSe5 [28] reveals a behavior consistent
with our theoretical prediction.

The elastic shear constant may also be calculated from the
mean-field free energy [22] as

Cshear = ∂2F

∂δ2
, (12)
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δ

δ

λ

FIG. 3. (a) Calculated temperature dependence of the heat capac-
ity per unit cell, where the red solid line is for the excitonic phase
and the blue dashed line is for the normal phase. (b) Calculated
λ dependence of the jump in the heat capacity (red squares) and Tc

(blue circles). (c) Calculated temperature dependence of the elastic
shear constant per unit cell (red solid line) and that of the lattice
distortion δ (green dashed line).

where we assume the lattice distortion of the transverse acous-
tic phonon mode in the long wavelength limit, corresponding
to the observed structural phase transition [see Fig. 2(d)]. The
calculated result is shown in Fig. 3(c), where we actually
find the elastic softening at Tc, leading to the structural phase
transition. We observe a Curie-Weiss-like behavior 1/Cshear =
1/C∞

shear + A/(T − Tc) at T > Tc with 1/C∞
shear = 0.094 eV

and A = 0.546 eV K. A recent experimental observation of
the diffuse x-ray scattering [29] suggests the presence of the

soft phonon mode, which is consistent with our theoretical
prediction. The calculated lattice distortion δ at T < Tc is also
consistent with the observed temperature dependence of the
monoclinic angle of the lattice [14].

In summary, we have studied the microscopic quantum in-
terference associated with excitonic condensation in Ta2NiSe5

using the BCS-type mean-field approximation for the three-
chain Hubbard model with electron-phonon coupling. We
have calculated the temperature dependence of the ultrasonic
attenuation and NMR relaxation rates, and have shown that
the coherence peak can appear in the ultrasonic attenuation
rate just below Tc. In the NMR relaxation rate, on the other
hand, no characteristic peak appears in 1/T1 but it simply
drops just below Tc, in agreement with recent NMR data
for Ta2NiSe5 [25]. The direct observation of the coherence
peak in the ultrasonic attenuation rate will then provide a
crucial experimental test for the presence of the excitonic
phase in Ta2NiSe5. We have also demonstrated that the heat
capacity exhibits a relatively small jump at Tc and the elastic
shear constant indicates a softening when the temperature
approaches Tc, both of which are consistent with recent
experimental observations for Ta2NiSe5 [28,29]. We therefore
hope that our theoretical predictions made here will encourage
further experimental studies to provide proof that the excitonic
condensation actually occurs in Ta2NiSe5.
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and L. Patthey, Phys. Rev. B 79, 045116 (2009).

[10] C. Monney, G. Monney, P. Aebi, and H. Beck, Phys. Rev. B 85,
235150 (2012).

[11] Y. Wakisaka, T. Sudayama, K. Takubo, T. Mizokawa, M. Arita,
H. Namatame, M. Taniguchi, N. Katayama, M. Nohara, and H.
Takagi, Phys. Rev. Lett. 103, 026402 (2009).

[12] Y. Wakisaka, T. Sudayama, K. Takubo, T. Mizokawa, N. L.
Saini, M. Arita, H. Namatame, M. Taniguchi, N. Katayama, M.
Nohara, and H. Takagi, J. Supercond. Novel Magn. 25, 1231
(2012).

[13] T. Kaneko, B. Zenker, H. Fehske, and Y. Ohta, Phys. Rev. B 92,
115106 (2015), and references therein.

[14] F. J. Di Salvo, C. H. Chen, R. M. Fleming, J. V. Waszczak,
R. G. Dunn, S. A. Sunshine, and J. A. Ibers, J. Less-Common
Met. 116, 51 (1986).

[15] E. Canadell and M. H. Whangbo, Inorg. Chem. 26, 3974
(1987).

[16] K. Seki, Y. Wakisaka, T. Kaneko, T. Toriyama, T. Konishi, T.
Sudayama, N. L. Saini, M. Arita, H. Namatame, M. Taniguchi,
N. Katayama, M. Nohara, H. Takagi, T. Mizokawa, and Y. Ohta,
Phys. Rev. B 90, 155116 (2014).

[17] T. Kaneko, T. Toriyama, T. Konishi, and Y. Ohta, Phys. Rev. B
87, 035121 (2013); 87, 199902(E) (2013).

[18] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).

[19] L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959).
[20] K. Maki and K. Nakanishi, J. Low Temp. Phys. 5, 1 (1971).

041105-4

http://dx.doi.org/10.1080/14786436108243318
http://dx.doi.org/10.1080/14786436108243318
http://dx.doi.org/10.1080/14786436108243318
http://dx.doi.org/10.1080/14786436108243318
http://dx.doi.org/10.1016/0022-3697(65)90153-8
http://dx.doi.org/10.1016/0022-3697(65)90153-8
http://dx.doi.org/10.1016/0022-3697(65)90153-8
http://dx.doi.org/10.1016/0022-3697(65)90153-8
http://dx.doi.org/10.1103/PhysRev.158.462
http://dx.doi.org/10.1103/PhysRev.158.462
http://dx.doi.org/10.1103/PhysRev.158.462
http://dx.doi.org/10.1103/PhysRev.158.462
http://dx.doi.org/10.1103/RevModPhys.40.755
http://dx.doi.org/10.1103/RevModPhys.40.755
http://dx.doi.org/10.1103/RevModPhys.40.755
http://dx.doi.org/10.1103/RevModPhys.40.755
http://dx.doi.org/10.1088/0953-8984/27/33/333201
http://dx.doi.org/10.1088/0953-8984/27/33/333201
http://dx.doi.org/10.1088/0953-8984/27/33/333201
http://dx.doi.org/10.1088/0953-8984/27/33/333201
http://dx.doi.org/10.1103/PhysRevLett.99.146403
http://dx.doi.org/10.1103/PhysRevLett.99.146403
http://dx.doi.org/10.1103/PhysRevLett.99.146403
http://dx.doi.org/10.1103/PhysRevLett.99.146403
http://dx.doi.org/10.1103/PhysRevB.79.045116
http://dx.doi.org/10.1103/PhysRevB.79.045116
http://dx.doi.org/10.1103/PhysRevB.79.045116
http://dx.doi.org/10.1103/PhysRevB.79.045116
http://dx.doi.org/10.1103/PhysRevB.85.235150
http://dx.doi.org/10.1103/PhysRevB.85.235150
http://dx.doi.org/10.1103/PhysRevB.85.235150
http://dx.doi.org/10.1103/PhysRevB.85.235150
http://dx.doi.org/10.1103/PhysRevLett.103.026402
http://dx.doi.org/10.1103/PhysRevLett.103.026402
http://dx.doi.org/10.1103/PhysRevLett.103.026402
http://dx.doi.org/10.1103/PhysRevLett.103.026402
http://dx.doi.org/10.1007/s10948-012-1526-0
http://dx.doi.org/10.1007/s10948-012-1526-0
http://dx.doi.org/10.1007/s10948-012-1526-0
http://dx.doi.org/10.1007/s10948-012-1526-0
http://dx.doi.org/10.1103/PhysRevB.92.115106
http://dx.doi.org/10.1103/PhysRevB.92.115106
http://dx.doi.org/10.1103/PhysRevB.92.115106
http://dx.doi.org/10.1103/PhysRevB.92.115106
http://dx.doi.org/10.1016/0022-5088(86)90216-X
http://dx.doi.org/10.1016/0022-5088(86)90216-X
http://dx.doi.org/10.1016/0022-5088(86)90216-X
http://dx.doi.org/10.1016/0022-5088(86)90216-X
http://dx.doi.org/10.1021/ic00271a003
http://dx.doi.org/10.1021/ic00271a003
http://dx.doi.org/10.1021/ic00271a003
http://dx.doi.org/10.1021/ic00271a003
http://dx.doi.org/10.1103/PhysRevB.90.155116
http://dx.doi.org/10.1103/PhysRevB.90.155116
http://dx.doi.org/10.1103/PhysRevB.90.155116
http://dx.doi.org/10.1103/PhysRevB.90.155116
http://dx.doi.org/10.1103/PhysRevB.87.035121
http://dx.doi.org/10.1103/PhysRevB.87.035121
http://dx.doi.org/10.1103/PhysRevB.87.035121
http://dx.doi.org/10.1103/PhysRevB.87.035121
http://dx.doi.org/10.1103/PhysRevB.87.199902
http://dx.doi.org/10.1103/PhysRevB.87.199902
http://dx.doi.org/10.1103/PhysRevB.87.199902
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.113.1504
http://dx.doi.org/10.1103/PhysRev.113.1504
http://dx.doi.org/10.1103/PhysRev.113.1504
http://dx.doi.org/10.1103/PhysRev.113.1504
http://dx.doi.org/10.1007/BF00628225
http://dx.doi.org/10.1007/BF00628225
http://dx.doi.org/10.1007/BF00628225
http://dx.doi.org/10.1007/BF00628225


RAPID COMMUNICATIONS

MICROSCOPIC QUANTUM INTERFERENCE IN EXCITONIC . . . PHYSICAL REVIEW B 93, 041105(R) (2016)

[21] R. E. Amritkar and N. Kumar, Solid State Commun. 26, 627
(1978).

[22] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.93.041105 for details of the mean-field
calculations.

[23] S. Hershfield and M. Y. Reizer, Phys. Rev. B 43, 9475 (1991).
[24] T. Moriya, J. Phys. Soc. Jpn. 18, 516 (1963).

[25] S. Lee, Y. Kobayashi, and M. Itoh (unpublished).
[26] R. H. Hammond and W. D. Knight, Phys. Rev. 120, 762 (1960).
[27] M. Tinkham, Introduction to Superconductivity (McGraw-Hill,

New York, 1975).
[28] Y. F. Lu, H. Takagi et al. (unpublished).
[29] N. Katayama and H. Sawa (private communication).

041105-5

http://dx.doi.org/10.1016/0038-1098(78)90094-7
http://dx.doi.org/10.1016/0038-1098(78)90094-7
http://dx.doi.org/10.1016/0038-1098(78)90094-7
http://dx.doi.org/10.1016/0038-1098(78)90094-7
http://link.aps.org/supplemental/10.1103/PhysRevB.93.041105
http://dx.doi.org/10.1103/PhysRevB.43.9475
http://dx.doi.org/10.1103/PhysRevB.43.9475
http://dx.doi.org/10.1103/PhysRevB.43.9475
http://dx.doi.org/10.1103/PhysRevB.43.9475
http://dx.doi.org/10.1143/JPSJ.18.516
http://dx.doi.org/10.1143/JPSJ.18.516
http://dx.doi.org/10.1143/JPSJ.18.516
http://dx.doi.org/10.1143/JPSJ.18.516
http://dx.doi.org/10.1103/PhysRev.120.762
http://dx.doi.org/10.1103/PhysRev.120.762
http://dx.doi.org/10.1103/PhysRev.120.762
http://dx.doi.org/10.1103/PhysRev.120.762



