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By making use of the generalized Landau level representation (GLLR) for the quasiparticle propagator, we study
the effect of screening on the properties of the quantum Hall states with integer filling factors in graphene. The
analysis is performed in the low-energy Dirac model in the mean-field approximation, in which the long-range
Coulomb interaction is modified by the one-loop static screening effects in the presence of a background
magnetic field. By utilizing a rather general ansatz for the propagator, in which all dynamical parameters
are running functions of the Landau level index n, we derive a self-consistent set of the Schwinger-Dyson
(gap) equations and solve them numerically. The explicit solutions demonstrate that static screening leads to a
substantial suppression of the gap parameters in the quantum Hall states with a broken U(4) flavor symmetry. The
temperature dependence of the energy gaps is also studied. The corresponding results mimic well the temperature
dependence of the activation energies measured in experiment. It is also argued that, in principle, the Landau level
running of the quasiparticle dynamical parameters could be measured via optical studies of the integer quantum
Hall states.
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I. INTRODUCTION

As predicted theoretically more than three decades
ago [1,2], the low-energy excitations in planar graphite (also
known as graphene) are described by (2 + 1)-dimensional,
massless Dirac fermions. Interestingly, the spinor structure
of the corresponding fermion fields has nothing to do with
the usual spin of electrons. It is connected with an effective
“pseudospin” that has its roots in the hexagonal arrangement
of carbon atoms in graphene, which can be viewed as a
superposition of two inequivalent triangular sublattices. At the
same time, the usual spin plays a rather passive role analogous
to an extra “species” degree of freedom.

The Dirac nature of excitations was confirmed experimen-
tally by the observation of the anomalous integer quantum Hall
(QH) effect in Refs. [3,4]. At sufficiently low temperatures,
the measured Hall conductivity revealed a set of well-resolved
QH plateaus at the filling factors ν = ±4(k + 1/2), where
k = 0,1,2, . . . is an integer. One of the signature properties of
the corresponding QH effect is the anomalous shift of 1/2 in
the expression for the filling factor. This measurement appears
to be in perfect agreement with the theoretical predictions of
the low-energy Dirac theory [5–8]. The overall factor of 4 in
the expression for ν is also in agreement with the predicted
fourfold (spin and sublattice-valley) degeneracy of the Landau
levels in the low-energy theory. For reviews of quantum Hall
physics in graphene see Refs. [9–11].

The spin and sublattice-valley degeneracy of the Landau
levels in the low-energy theory of graphene can be associated
with an approximate global “flavor” U(4) symmetry. Strictly
speaking, the symmetry is not exact. There exist several small
explicit symmetry breaking effects that lift the degeneracy
of the Landau levels [12]. The most obvious among them is
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the Zeeman effect that breaks the U(4) symmetry down to
U↑(2) × U↓(2), where Us(2) with s = ↑,↓ is the sublattice-
valley symmetry of quasiparticles with a fixed spin. In practice,
however, the flavor U(4) symmetry could be treated as exact
because, for any realistic value of the magnetic field, the
Zeeman energy is much smaller than the Landau energy scale.
Moreover, the Zeeman energy, as well as all other explicit
symmetry breaking effects are negligible not only compared
to the Landau energy scale, but even compared to the nonzero
(thermal/interaction) widths of the individual Landau levels.
This explains why it is hard to resolve experimentally the QH
plateaus with any filling factors other than ν = ±4(k + 1/2)
that correspond to fully filled fourfold-degenerate Landau
levels.

The subsequent experimental studies revealed that, in
sufficiently strong magnetic fields, additional QH plateaus
at ν = 0,±1,±3,±4 can be resolved [13–25]. As is clear,
the corresponding QH states have fractional fillings of the
low-lying Landau levels. The implication of this is that the
approximate fourfold degeneracy of the Landau levels is truly
lifted. Such new QH states could be explained theoretically if
the electron-electron interaction triggers spontaneous breaking
of the flavor U(4) symmetry. For example, the symmetry
breaking U(4) → U↑(2) × U↓(2) by a dynamically enhanced
Zeeman splitting could potentially explain the origin of the
QH states with ν = 0 and ν = ±4. If realized, such a scenario
would be nothing else, but a textbook example of the QH
ferromagnetism (QHF) [26–31] (see also Ref. [32]).

It should be emphasized, however, that QHF is not the
only possibility. There exist a number of symmetry breaking
mechanisms and residual symmetries consistent with the fill-
ing factors of the additional QH states. One of such alternative
scenarios utilizes the idea of magnetic catalysis (MC) [33–35].
The corresponding order parameters are excitonic (particle-
hole) condensates responsible for the generation of the Dirac
and/or Haldane masses of quasiparticles [6,36–43]. At the
microscopic level, the excitonic condensates corresponds
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to a charge density wave (CDW), or a valley polarized
CDW. Symmetry arguments, as well as direct effective model
studies [40,41] suggest that the order parameters associated
with the MC and QHF scenarios necessarily coexist. Also, in
principle, these two could reproduce all integer QH plateaus
observed experimentally in strong magnetic fields. With that
being said, a number of different types of order parameters are
possible [42–47]. It is also fair to note that the precise nature
of the observed integer QH states is not always unambiguous
from theoretical considerations and not always established
unambiguously in experiment.

From the experimental point of view, a lot of effort was
devoted to revealing the underlying nature of the strongly
insulating ν = 0 QH state, associated with half-filling of the
lowest Landau level [13–25]. The main advances in resolving
the nature of the QH states were made by applying a tilted
magnetic field to high-quality graphene devices, that were
fabricated on a thin hexagonal boron nitride substrate [23,24]
or encapsulated between two layers of hexagonal boron
nitride [25]. In the case of ν = 0 QH state, in particular, a
careful analysis of the conductance and the bulk density of
states [23–25] suggests that the state is not spin polarized when
the magnetic field is perpendicular to the plane of graphene.
This is consistent, for example, with both an antiferromagnet
and a charge density wave. When an in-plane component of the
magnetic field increases, the state gradually transforms into a
fully polarized ferromagnetic state. In the intermediate regime,
a canted antiferromagnetic state is presumably realized [44].
Such an interpretation is supported by the observation of
the bulk gap that does not close and the edge states that
become conducting with increasing of the total magnetic field.
Considering, however, how heavily the arguments rely on the
properties of the edge states, the final conclusions should be
still accepted with a caution.

The high-quality graphene devices in Refs. [23,25] also
reveal a large sequence of integer QH states with ν � 1.
Among these, there are two states associated with quarter
filling of the lowest Landau level, i.e., ν = ±1. The linear
growth of the energy gaps in these two states as a function of
the total magnetic field points to their spin-polarized nature
and the major role played by the Zeeman energy in aligning
the ground state. A similar sensitivity to the Zeeman energy
is also observed for the states associated with half-filling of
higher Landau levels, i.e., ν = 4n, but not for the states with
quarter and three-quarter fillings, i.e., ν = 4n ± 1 [23]. As we
will see, most of these features are reproduced in the model
studied here.

In the mean-field approximation, the role of the long-range
Coulomb interaction and Landau level mixing were studied
in Ref. [48]. By utilizing a rather general combination of
the MC and QHF order parameters, the corresponding study
was able to reproduce all observed QH plateaus (i.e., ν =
0,±1,±3,±4) as well as to suggest that QH plateaus with any
integer filling are possible. The symmetry breaking patterns
of the solutions obtained in the model with the long-range
Coulomb interaction appeared to be similar to those in the
model with local four-fermion interaction in Ref. [41]. The
qualitative effects due to the long-range force were (i) Landau
level mixing and (ii) “running” of all dynamical parameters
(i.e., the wave-function renormalization parameters, the Dirac

and Haldane masses) as functions of the Landau level
index.

In this paper, we extend the study of the abnormal integer
QH effect in the model with the long-range Coulomb inter-
action [48] by including the screening effects and the effects
of nonzero temperature. By making use of a similar mean-
field approximation that neglects the fluctuations of order
parameters, we will derive the full quasiparticle propagators
in the GLLR formalism for all qualitatively different series
of QH states with integer filling factors. (A semirigorous
justification of the approximation used will be provided in
Sec. II C.) As expected, the corresponding results contain not
only the information about the energy gaps at the Fermi level,
but also the complete dispersion relations of quasiparticles
in all Landau levels. The resulting propagators can be used
in transport calculations, predictions of various emission and
absorption rates, etc.

This paper is organized as follows. In Sec. II, we introduce
the model, define the quasiparticle propagator, and derive the
gap equations. In Sec. III, we present our numerical analysis
of the gap equations and classify the main types of solutions.
We also compare our results with those in the previous studies.
The summary of the main results is given in Sec. IV.

II. THE MODEL

Following the same approach as in Ref. [48], in this
study, we will use the language of the low-energy theory
for the description of the QH effect in monolayer graphene.
The low-energy quasiparticle fields are given by the follow-
ing four-component Dirac spinors �s = (ψKAs,ψKBs,ψK ′Bs,

− ψK ′As), which combine the Bloch states on the two different
sublattices (A,B) of the hexagonal graphene lattice in coordi-
nate space. The components labeled by the valley indices K

and K ′ correspond to the Bloch states with the momenta from
the vicinity of the corresponding inequivalent Dirac points
(K or K ′) in the two-dimensional Brillouin zone. The field �s

also carries an additional index that describes the spin state,
i.e., s = ↑,↓.

A. Quasiparticle Hamiltonian

The free quasiparticle Hamiltonian has the following
pseudorelativistic form:

H0 = vF

∫
d2r�̄(γ 1πx + γ 2πy)�, (1)

where vF ≈ 106 m/s is the Fermi velocity, r = (x,y) is the
position vector in the plane of graphene, and �̄ = �†γ 0 is
the Dirac-conjugated spinor. Note that the sum over the spin
states is implicit in Eq. (1). The canonical momentum π =
−i�∇ − eA/c includes the vector potential A that corresponds
to the magnetic field component B⊥ orthogonal to the plane
of graphene. The 4 × 4 Dirac matrices γ ν (with ν = 0,1,2)
are defined as follows: γ ν = τ̃ 3 ⊗ (τ 3,iτ 2, − iτ 1), where
the two sets of Pauli matrices τ̃ and τ act in the valley
(K,K ′) and sublattice (A,B) spaces, respectively. They satisfy
the usual anticommutation relations {γ μ,γ ν} = 2gμν , where
gμν = diag(1, − 1, − 1), and μ,ν = 0,1,2.
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In order to be able to describe QH states with arbitrary
filling factors, we should also allow for a nonzero electron
chemical potential μe. The latter is introduced via an additional
term, −μe

∫
d2r�†�, in the free Hamiltonian in Eq. (1). The

long-range Coulomb interaction is included in the low-energy
Hamiltonian by adding the following term:

HC = 1

2

∫
d2rd2r′�†(r)�(r)UC(r − r′)�†(r′)�(r′), (2)

where UC(r − r′) is the coordinate-space Coulomb potential in
the presence of a constant magnetic field. It is straightforward
to check that the resulting Hamiltonian H = H0 + HC −
μe

∫
d2r�†� is invariant under the flavor U(4) symmetry

that combines the transformations in spin and sublattice-valley
spaces. For the explicit form of the symmetry generators see,
for example, Ref. [6]. Such a flavor symmetry is explicitly
(although weakly) broken by the Zeeman interaction of the
quasiparticle spin with the external magnetic field B. The
additional interaction term in the Hamiltonian is given by∫

d2rμBB�†σ 3�, where B = |B|, μB = e�/(2mc) is the
Bohr magneton, and σ 3 is the Pauli matrix acting in the spin
space. As is easy to check, the Zeeman term breaks the U(4)
symmetry down to the U↑(2) × U↓(2) symmetry.

The complete model Hamiltonian, including the Zeeman
interaction and the electron chemical potential μe, can be
conveniently rewritten in the following quasirelativistic form:

H =
∫

d2r�̄[vF (π · γ ) − μeγ
0 + μBBσ 3γ 0]� + HC.

(3)
This implies that the inverse bare quasiparticle propagator is
defined by the following expression:

iS−1(ω; r,r′) = [(ω + μe − μBBσ 3)γ 0

− vF (π · γ )]δ(r − r′). (4)

Here and below, it is convenient to use a mixed (ω,r)
representation.

Let us note in passing that a certain degree of disorder is
always present in real graphene devices and, in fact, plays a
critical role in the observation of the quantum Hall plateaus.
However, in the model analysis below, which concentrates
primarily on the delocalized quasiparticles states in the bulk
of graphene, it is justifiable to ignore disorder. Indeed, when
the spectrum of the delocalized states is established, a large
number of bulk observables (e.g., symmetry properties of
the QH states, density of states, energy of transitions lines,
activation energies, etc.) will be predicted without much
ambiguity. The corresponding limitation is not so critical also
because of the robustness of the QH effect that stems from its
topological nature.

B. Dynamical symmetry breaking and full quasiparticle
propagator

In order to be able to describe various QH states with integer
fillings factors, we use a rather general ansatz for the full
quasiparticle propagator [48],

G−1(ω; r,r′) = −i[(γ 0ω − vF F̂+(π · γ ) + �̂+]δ(r − r′),

(5)

where F̂+ and �̂+ are operator-valued wave-function renor-
malization and self-energy functions, respectively. For sim-
plicity, here we will assume that the propagator is a diagonal
2 × 2 matrix in the spinor space, or in other words that
the propagator for each of the two spin states looks like
that in Eq. (5). As is clear, such a choice of the ansatz
for the propagator does not allow spin mixing. As a result,
one cannot describe certain types of states (e.g., a canted
antiferromagnetism [44]). Nevertheless, we emphasize that the
ansatz in Eq. (5) is extremely flexible and can describe a large
number of states (with very different symmetry properties) for
each integer filling factor. In the case of filling factor ν = 0,
for example, these include charge and spin density waves, as
well as ferromagnetic and antiferromagnetic states. These are
basically all main options proposed for a configuration with a
magnetic field perpendicular to the plane of graphene.

By construction, both F̂+ and �̂+ are functions of the three
mutually commuting dimensionless operators: γ 0,is⊥γ 1γ 2,
and (π · γ )2l2, where s⊥ = sign(eB) and l = √

�c/|eB⊥| is
the magnetic length. In principle, they could also depend on
the quasiparticle energy ω. Taking into account that (γ 0)2 = I
and (is⊥γ 1γ 2)2 = I, the Dirac structure of the operator-valued
functions F̂+ and �̂+ can be written in the following form:

F̂+ = f + γ 0g + is⊥γ 1γ 2g̃ + is⊥γ 0γ 1γ 2f̃ , (6)

�̂+ = �̃ + γ 0μ + is⊥γ 1γ 2μ̃ + is⊥γ 0γ 1γ 2�, (7)

where f,f̃ ,g,g̃,�̃,�,μ, and μ̃ are functions of only one
operator, (π · γ )2l2. To a large degree the physical meaning
of the corresponding operators should be clear from their
Dirac structure and symmetry properties. In particular, the
eigenvalues of the first four of them (f,f̃ ,g, and g̃) will play
the role of generalized wave-function renormalizations, while
the others will be playing the role of the generalized the MC
and QHF order parameters, i.e., the Dirac (parity-even) and
Haldane (parity-odd) masses (i.e., � and �̃) and chemical
potentials (i.e., μ and μ̃). As we will see, such an interpretation
is also supported by the role of the corresponding parameters in
the dispersion relations of quasiparticles, see Eqs. (13) and (14)
below.

The three mutually commuting operators, γ 0,is⊥γ 1γ 2, and
(π · γ )2l2, allow a common basis of eigenstates, |s0,s12,n〉. The
corresponding eigenvalues are s0 = ±1,s12 = ±1, and −2n =
−(2N + 1 + s⊥s12), respectively, where N = 0,1,2, . . . is the
quantum number of the orbital angular momentum and s12 is
the sign of the pseudospin projection. By making use of the
complete set of eigenstates |s0,s12,n〉, one can derive a very
convenient generalized Landau level representation (GLLR)
of the (inverse) quasiparticle propagator (5). (For details of the
derivation, see Appendix A in Ref. [48].) The final form of the
inverse full propagator is given by

G−1(ω; r,r′) = ei(r,r′)G̃−1(ω; r − r′), (8)

where (r,r′) = −s⊥ (x+x ′)(y−y ′)
2l2 is the well-known Schwinger

phase in an external magnetic field in the Landau gauge A =
(0,Bx). The translation invariant part of the inverse GLLR
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propagator is given by

G̃−1(ω; r) = −i
e−ξ/2

2πl2

∞∑
n=0

∑
s0=±1

∑
σ=±1

{
s0ωLn(ξ )

+ (s0μn,σ + �̃n,σ )
[
δ

s0−σ Ln(ξ ) + δ
s0+σLn−1(ξ )

]
+ i

v2
F

l2
(γ · r)(fn,σ − s0gn,σ )L1

n−1(ξ )

}
Ps0,s0σ ,

(9)

where ξ = r2/(2l2) and Lα
n(ξ ) are the Laguerre polynomials.

(Here, by definition, L0
n(ξ ) ≡ Ln(ξ ) and Lα

n<0(ξ ) = 0.) In
Eq. (9), we also used the following set of eigenstate projectors
in the Dirac space: Ps0,s12 = 1

4 (1 + s0γ
0)(1 + s12is⊥γ 1γ 2),

as well as the following shorthand notations for the linear
combinations of the order parameters:

μn,σ = μn + σμ̃n, �̃n,σ = �̃n + σ�n,
(10)

fn,σ = fn + σ f̃n, gn,σ = gn + σ g̃n,

where σ ≡ s0s12. Note that the parameters fn,f̃n,gn,
g̃n,�̃n,�n,μn, and μ̃n are associated with the nth Landau
level. They are obtained by calculating the eigenvalues of the
corresponding operators, introduced on the right-hand side of
Eqs. (6) and (7).

Similarly, the full GLLR propagator takes the form [48]

G(ω; r,r′) = ei(r,r′)G̃(ω; r − r′), (11)

where the Schwinger phase is exactly the same as in Eq. (8)
and the translation invariant part of the propagator reads

G̃(ω; r) = i
e−ξ/2

2πl2

∞∑
n=0

∑
s0=±1

∑
σ=±1

{
s0(ω + μn,σ ) + �̃n,σ

(ω + μn,σ )2 − E2
n,σ

×[
δ

s0−σLn(ξ ) + δ
s0+σLn−1(ξ )

]
+ i

v2
F

l2
(γ · r)

fn,σ − s0gn,σ

(ω + μn,σ )2 − E2
n,σ

L1
n−1(ξ )

}
Ps0,s0σ .

(12)

The explicit form of the Landau level energies En,σ are given
by

E0,σ = σ�̃0,σ = �0 + σ�̃0, (13)

En,σ =
√

2n
(
f 2

n,σ − g2
n,σ

)
v2

F /l2 + �̃2
n,σ , n � 1. (14)

The corresponding quasiparticles energies are determined by
the location of the poles in the propagator (12), namely ω0,σ =
−μ0,σ + E0,σ and ω±

n,σ = −μn,σ ± En,σ for n � 1.
Note that the expressions for the Landau level energies

in Eqs. (13) and (14) shed additional light on the physical
meaning of the various dynamical parameters, used in the
ansatz of the full quasiparticle propagator. In particular, as we
can see, the combination of the wave-function renormalization

parameters
√

f 2
n,σ − g2

n,σ determines the renormalization of

the quasiparticle velocity. Also, we see that the absolute value
of �̃n,σ plays the role of a mass.

C. Schwinger-Dyson (gap) equation with static screening

In order to derive the GLLR form of the Schwinger-Dyson
(gap) equation, we will start from the standard coordinate
form of the gap equation in the random-phase approximation
(RPA) and assume that the interaction is provided by the long-
range Coulomb force subject to static screening effects. Such
a consideration will amend the analysis of Ref. [48], where the
corresponding gap equation was analyzed in the approximation
without screening. Our goal here is to illuminate the qualitative
and quantitative role played by screening.

It is important to emphasize that we will use a mean-field
method that ignores the fluctuations of order parameters.
While this is a common approximation used in numerous
theoretical studies, there is no rigorous justification of its
validity. Formally, the corresponding fluctuations can destroy
any long-range order in 2D when T = 0 and, thus, prevent any
spontaneous breakdown of continuous symmetries. We argue
semirigorously that this may not be the case for finite-size,
high-quality graphene devices fabricated on substrates. The
substrate could make certain aspects of dynamics in graphene
effectively three-dimensional and, thus, tame the dangerous
fluctuations (at least on the length scales of typical devices)
that would destroy the long-range order in an ideal 2D
graphene. Admittedly, however, this issue requires a more
careful investigation in the future studies.

After taking into account the condition of overall charge
neutrality in graphene, we arrive at the following gap equation
for the translation invariant part of the quasiparticle propaga-
tor [48]:

G̃−1(ω; r) = S̃−1(ω; r) + e2γ 0G̃(ω; r)γ 0D(ω; r), (15)

where D(ω; r) is the timelike component of the gauge (photon)
field propagator that contains all the information about the
interaction. As stated before, we will use an approximation
with Coulomb interaction that includes the effects of static
screening. In essence, this is the instantaneous approxima-
tion [6] that neglects the retardation of the interaction. One
might argue that this is a reasonable approximation because
charge carriers are much slower than the speed of light. (See,
however, Refs. [49,50] suggesting that dynamical screening
could affect the dynamics quantitatively.) Therefore we use
an energy independent polarization function, i.e., �(ω,k) �
�(0,k), in order to model the effects of screening in the photon
propagator. In momentum space, the latter reads

D(ω,k) ≈ D(0,k) = i

ε0[k + �(0,k)]
, (16)

where ε0 is the dielectric constant, associated with the
substrate. When the value of ε0 is large, the underlying
dynamics becomes weakly coupled and the approximation
for the gap equation (15) should become reliable. This is
not always the case in graphene. However, we expect that
this may be applicable in the case of the highest-quality
graphene devices, fabricated on a thin hexagonal boron nitride
substrate [23].

A convenient explicit form of the polarization function
in the presence of an external magnetic field was calcu-
lated in Refs. [49]. In the approximation that neglects the
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wave-function renormalization and the Dirac masses, it reads

�(0,k) = e2Nf

16πl2T

∞∑
n=0

∑
λ=±

Qλλ
nn(y)

cosh2
(

μ−λMn

2T

) − e2Nf

4πl2

×
∞∑

n,n′ = 0
λn = λ′n′

∑
λ,λ′=±

Qλλ′
nn′ (y)

nF (λMn) − nF (λ′Mn′)

λMn − λ′Mn′
,

(17)

where Mn =
√

2nv2
F /l2,T is the temperature, and the explicit

form of function Q
λ,λ′
n,n′ (y) is given by [49]

Q
λ,λ′
n,n′ (y) = e−yy|n−n′ |

[√
(1 + λλ′δ0n>

)n<!

n>!
L|n−n′ |

n< (y)

+ λλ′(1 − δ0n<
)

√
(n< − 1)!

(n> − 1)!
L

|n−n′ |
n<−1 (y)

]2

. (18)

Here, by definition, y = k2l2/2, n> = max(n,n′) and n< =
min(n,n′). We note that neglecting the wave-function renor-
malization and masses in the calculation of the polarization
function should provide a reasonable approximation to leading
order in weak coupling. Moreover, this may work also at
moderate coupling because the bulk of the polarization effects
appear to be determined by the total number of filled Landau
levels and not as much by the details of the quasiparticle
dispersion relations.

For the derivation of the GLLR form of the gap equations,
we refer the reader to Appendix B in Ref. [48]. The final set
of equations reads

μn,σ − μe − σ�̃n,σ

= αεl

2

∞∑
n′=0

κ
(0)
n′,n

{
nF (En′,σ − μn′,σ ) − nF (En′,σ + μn′,σ )

− σ�̃n′,σ

En′,σ
[nF (μn′,σ − En′,σ ) − nF (En′,σ + μn′,σ )]

}
, (19)

for n � 0, and

μn,σ − μe + σ�̃n,σ

= αεl

2

∞∑
n′=1

κ
(0)
n′−1,n−1

{
nF (En′,σ −μn′,σ )−nF (En′,σ +μn′,σ )

+ σ�̃n′,σ

En′,σ
[nF (μn′,σ − En′,σ ) − nF (En′,σ + μn′,σ )]

}
,

(20)

fn,σ = 1 + αεl

2

∞∑
n′=1

κ
(1)
n′−1,n−1

n

fn′,σ

En′,σ

×[nF (μn′,σ − En′,σ ) − nF (En′,σ + μn′,σ )], (21)

gn,σ = αεl

2

∞∑
n′=1

κ
(1)
n′−1,n−1

n

gn′,σ

En′,σ

×[nF (μn′,σ − En′,σ ) − nF (En′,σ + μn′,σ )], (22)

for n � 1. In these equations, we introduced a dimensionless
coupling constant, α ≡ e2/ε0vF ≈ 2.2, which is an analog of
the fine structure constant for suspended graphene.

The effect of screening in the above set of gap equations
is implicit. It comes only through the modified values of the
kernel coefficients [48],

κ (ρ)
m,n =

∫ ∞

0

dk

2π

klL(ρ)
m,n(kl)

k + �(0,k)
, with ρ = 0,1. (23)

It is straightforward to calculate numerically the static polar-
ization function �(0,k) as a function of dimensionless variable
kl. We checked that, for sufficiently small and sufficiently
large values of kl, the numerical results approach the expected
asymptotical behavior at k → 0 and k → ∞, respectively,
derived in Eqs. (19) and (22) in Ref. [49]. Then, by making use
of the definition in Eq. (23), we obtain the numerical values
of the kernel coefficients κ

(ρ)
m,n (with ρ = 0,1). The results for

the first few Landau levels are presented in Tables I and II,
respectively. By comparing these with the kernel coefficients
in Ref. [48], we observe that the screening effects substantially
(i.e., by about a factor of 2) decrease the values of κ

(ρ)
m,n. As

we will see in the next section, this change strongly affects the
magnitude of the order parameters (i.e., the symmetry breaking
Dirac masses and chemical potentials) in the QH states with
fractional filling of Landau levels.

III. NUMERICAL RESULTS

In this section, we present our numerical solutions to the
GLLR gap equations (19) through (22) in the model with static
screening effects. In the calculation, we use the Newtonian
iteration algorithm and replace the original infinite set of
gap equations with a truncated set of nmax = 50 equations.
In accordance with such a truncation, we also impose a
sharp cutoff in the summation over the Landau level index
at nmax = 50. (The numerical tests reveal that the cutoff at
nmax = 100 does not affect any qualitative features of the
solutions and only slightly changes the numerical results for
the dynamical parameters in the first few Landau levels.)

Taking into account that each Landau level (n � nmax) has
two possible spin states and each of them is characterized
by eight different dynamical parameters, see Eq. (10), we
have a total of 16nmax independent parameters that should
be determined by solving 16nmax coupled algebraic equations,
see Eq. (19) through (22). [Strictly speaking the number of
independent parameters is 16nmax + 4, where the additional
four corresponds to the n = 0 Landau level, which is special.]

Before proceeding with the numerical analysis, it is useful
to note that the coupled sets of gap equations for the two
spin states, s = ↓,↑, have exactly the same form. They differ
only in the value of the chemical potential, i.e., μ↑ = μe − Z

and μ↓ = μe + Z, where Z ≡ μBB is the Zeeman energy.
We also note that the gap equations are the same for σ = ±1
when the dynamical parameters fn,σ , gn,σ , μn,σ , and σ�̃n,σ

are treated as independent variables. These two observations
allow us to greatly reduce the numerical cost of calculations.
We first consider the generic set of equations in a finite range
of chemical potentials and tabulate possible solutions for the
above-mentioned four independent parameters. Usually, there
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TABLE I. The kernel coefficients κ (0)
m,n with the effects of static screening included.

κ (0)
m,n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

0 0.0744 0.0235 0.0164 0.0136 0.0120 0.0109 0.0101 0.0094 0.0088 0.0083 0.0079
1 0.0235 0.0602 0.0222 0.0156 0.0129 0.0114 0.0104 0.0096 0.0090 0.0085 0.0081
2 0.0164 0.0222 0.0531 0.0211 0.0149 0.0124 0.0109 0.0100 0.0093 0.0087 0.0083
3 0.0136 0.0156 0.0211 0.0486 0.0202 0.0144 0.0120 0.0106 0.0097 0.0090 0.0085
4 0.0120 0.0129 0.0149 0.0202 0.0453 0.0195 0.0140 0.0116 0.0103 0.0094 0.0088
5 0.0109 0.0114 0.0124 0.0144 0.0195 0.0428 0.0189 0.0137 0.0113 0.0100 0.0092
6 0.0101 0.0104 0.0109 0.0120 0.0140 0.0189 0.0407 0.0184 0.0133 0.0111 0.0098
7 0.0094 0.0096 0.0100 0.0106 0.0116 0.0137 0.0184 0.0390 0.0180 0.0131 0.0109
8 0.0088 0.0090 0.0093 0.0097 0.0103 0.0113 0.0133 0.0180 0.0375 0.0176 0.0128
9 0.0083 0.0085 0.0087 0.0090 0.0094 0.0100 0.0111 0.0131 0.0176 0.0362 0.0172
10 0.0079 0.0081 0.0083 0.0085 0.0088 0.0092 0.0098 0.0109 0.0128 0.0172 0.0351

exist multiple solutions that differ in their symmetry properties.
The final solutions for the complete set of dynamical parame-
ters with fixed values of s = ↓,↑ and σ = ±1 are obtained by
combining the distinct generic solutions for properly shifted
values of the chemical potential.

In the numerical analysis, it is convenient to express all
physical quantities in units of the Landau energy scale,

εl =
√

�v2
F |eB⊥|/c ≈ 26

√
B⊥ [T] meV ≈ 300

√
B⊥ [T] K,

(24)

where the value of the magnetic field is measured in teslas.
It may be appropriate to emphasize here that, while εl is
determined by the component of the magnetic field orthogonal
to the plane of graphene B⊥, the Zeeman energy Z = μBB ≈
5.8 × 10−2B [T] meV ≈ 0.67B [T] K is proportional to the
absolute value of B. Despite the fact that B⊥ � B, the Zeeman
energy is generically much smaller than the Landau energy
scale (24). This changes only in the case when the magnetic
field becomes nearly parallel to the plane of graphene, i.e.,
when B⊥ � B. In the analysis below, we do not consider
such a limiting case. In general, the dimensionless Zeeman
energy is given by z ≡ Z/εl = 2.2 × 10−3√B [T]/ cos θB ,
where θB is the angle of the magnetic field tilt. In the numerical
analysis below, we will fix the value of the dimensionless
Zeeman energy to be z = 0.015. This formally corresponds to
B/ cos θB ≈ 46.5 T.

A. Fermi velocity renormalization in weak magnetic field

In a weak magnetic field, the effect of symmetry breaking
dynamical parameters is expected to be negligible. However,
even in this regime it is interesting to explore the implications
of the long-range Coulomb interaction on the quantum Hall
effect in graphene. In particular, the interaction is expected
to renormalize the Fermi velocity, which can be extracted
from the dynamically modified expressions for the Landau
level energies [48]. In absence of QHF and MC order
parameters, as we see from Eq. (14), the energies are given
by En = fnvF

√
2nεl , implying that the renormalized Fermi

velocity is determined by the wave-function renormaliza-
tion parameters fn, namely v

(ren)
n,F ≡ fnvF . Without screening

of the Coulomb interaction, the numerical values for the
wave-function renormalization parameters fn were previously
reported in Ref. [48]. The corresponding results with the
effects of screening were reported in Ref. [35] for the QH
states with filling factors ν = ±4(k + 1/2). In the latter
study, in fact, the dynamical parameters μn and �n were
also properly accounted for. By noting that the values of
fn depend not only on the chemical potential, but also on
the Landau level index n, we conclude that the same is
also true for the renormalized Fermi velocity. This is a
very interesting theoretical prediction that could be easily
tested in optical experiments, for example, via a systematic
study of absorption/transmission lines for each of the QH
states [51–53].

TABLE II. The kernel coefficients κ (1)
m,n with the effects of static screening included.

κ (1)
m,n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

0 0.0509 0.0142 0.0084 0.0064 0.0055 0.0051 0.0048 0.0046 0.0043 0.0041 0.0039
1 0.0142 0.0901 0.0283 0.0172 0.0131 0.0111 0.0099 0.0093 0.0088 0.0084 0.0081
2 0.0084 0.0283 0.1244 0.0419 0.0260 0.0198 0.0167 0.0148 0.0137 0.0129 0.0123
3 0.0064 0.0172 0.0419 0.1553 0.0550 0.0346 0.0264 0.0222 0.0197 0.0181 0.0169
4 0.0055 0.0131 0.0260 0.0550 0.1839 0.0677 0.0431 0.0330 0.0276 0.0244 0.0224
5 0.0051 0.0111 0.0198 0.0346 0.0677 0.2107 0.0801 0.0515 0.0395 0.0331 0.0292
6 0.0048 0.0099 0.0167 0.0264 0.0431 0.0801 0.2361 0.0922 0.0597 0.0459 0.0385
7 0.0046 0.0093 0.0148 0.0222 0.0330 0.0515 0.0922 0.2602 0.1039 0.0678 0.0523
8 0.0043 0.0088 0.0137 0.0197 0.0276 0.0395 0.0597 0.1039 0.2834 0.1154 0.0758
9 0.0041 0.0084 0.0129 0.0181 0.0244 0.0331 0.0459 0.0678 0.1154 0.3056 0.1266
10 0.0039 0.0081 0.0123 0.0169 0.0224 0.0292 0.0385 0.0523 0.0758 0.1266 0.3271
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TABLE III. Values of the wave-function renormalization fn for several values of the chemical potentials with screening effects considered,
compared with the solutions in Ref. [48] with screening effects neglected in the parentheses. (Note that the corresponding data in Ref. [48] had
typos that were corrected here.)

f1 f2 f3 f4 f5 f6

|μe| <
√

2εl 1.084 (1.270) 1.072 (1.243) 1.065 (1.227) 1.060 (1.214) 1.057 (1.205) 1.054 (1.197)√
2εl < |μe| <

√
4εl 1.045 (1.194) 1.066 (1.224) 1.063 (1.217) 1.059 (1.208) 1.056 (1.201) 1.054 (1.194)√

4εl < |μe| <
√

6εl 1.037 (1.166) 1.042 (1.177) 1.058 (1.200) 1.057 (1.199) 1.055 (1.194) 1.052 (1.189)√
6εl < |μe| <

√
8εl 1.033 (1.150) 1.035 (1.156) 1.039 (1.165) 1.052 (1.184) 1.052 (1.185) 1.051 (1.182)√

8εl < |μe| <
√

10εl 1.031 (1.138) 1.032 (1.142) 1.034 (1.148) 1.037 (1.156) 1.048 (1.172) 1.049 (1.174)√
10εl < |μe| <

√
12εl 1.029 (1.128) 1.030 (1.132) 1.031 (1.136) 1.032 (1.141) 1.035 (1.148) 1.045 (1.162)√

12εl < |μe| <
√

14εl 1.027 (1.121) 1.028 (1.123) 1.028 (1.127) 1.029 (1.130) 1.031 (1.135) 1.034 (1.141)

In the context of the optical transitions, the effect of
interactions can be conveniently quantified by measuring the
deviations of the measured energies of transitions from the
free theory predictions [52],

�En,n′ = En′ ± En = (
√

2n′ ±
√

2n)εl + αεlCn,n′ , (25)

where the minus sign corresponds to transitions between
states with negative energies and states with positive energies.
Strictly speaking, the above definition of �En,n′ assumes
transitions between states with the same spin. In the case
of transitions between different spin states, an extra ±2Z

correction should be added on the right-hand side. Here,
the information about the wave-function renormalization is
captured by the following set of dimensionless parameters
Cn,n′ , i.e.,

Cn,n′ =
√

2n′

α
(fn′ − 1) ±

√
2n

α
(fn − 1). (26)

As we see, in absence of symmetry breaking, which is the case
in weak magnetic fields, the values of parameters Cn,n′ are
directly related to the quasiparticle velocity renormalizations.
As we claim here, for each QH state, the corresponding
renormalizations are functions of the Landau level index
n. In experiment, the complete set of parameters fn with
n � 1 could be extracted by measuring the transition energies
between the lowest Landau level (which is free from from
the corresponding renormalization effect) and higher Landau
levels. The values of fn, extracted in this way, would be
sufficient to calculate the values of Cn,n′ for transitions
between various higher Landau levels. The latter could be
also compared to the actual measurements and, in the case
of agreement, one would have a nontrivial test of the self-
consistency of the GLLR ansatz used here. From a theoretical

point of view, it will be perhaps even more interesting if
deviations from the relations in Eq. (26) are observed.

In a general case with nonvanishing QHF and MC order
parameters, the expressions for Cn,n′ parameters should be
corrected because the Landau level energies are modified,
see Eqs. (13) and (14). The magnitude of the corresponding
corrections is of the order of |μn,σ − μe| and �̃2

n,σ /(
√

nεl)
for Landau levels n � 1. (Note that the correction due to the
QHF order parameter should be interpret as part of the energy
measured with respect to the thermodynamical potential μe.)
In the case of transitions to/from the lowest Landau level
(n = 0), the corrections are ±σ�̃0,σ , see Eq. (13). Below,
we present our numerical results for the parameters Cn,n′ in
several QH states in both approximations, i.e., with and without
inclusion of the QHF and MC order parameters.

By utilizing the same value of the cutoff, nmax = 100, in
the numerical calculation as in [48], but also including the
effects of screening, we straightforwardly obtain the wave-
function renormalization parameters fn. The corresponding
zero temperature results for the first few Landau levels are
presented in Table III. We note that they differ slightly from
those in Ref. [35] because here all dynamical parameters such
as μn and �n were neglected. For comparison, in Table III
we also list in the parentheses the numerical results from
Ref. [48], obtained without the screening effects. Different
rows in Table III correspond to different choices of the
chemical potential in the gaps between a completely filled nth
Landau level and a completely empty (n + 1)th Landau level.

By comparing the results with and without screening in Ta-
ble III, we find that the effect of wave-function renormalization
goes from about 14% to 27% down to about 3% to 8%, which
appears to be even smaller than the prediction in Ref. [54]. It
is curious to explore in detail if the logarithmic running of the
coupling constant could explain such a difference. By making

TABLE IV. Parameters Cn,n′ in the QH state with the filling factor ν = 2 in the model with static screening. The values in parentheses are
obtained in an approximation with the wave-function renormalization effects included, but all QHF and MC order parameters neglected.

Cn,n′ n′ = 1 n′ = 2 n′ = 3 n′ = 4

n = 0 0.082 (0.054) 0.093 (0.065) 0.099 (0.072) 0.103 (0.077)
n = −1 0.100 (0.108) 0.111 (0.119) 0.117 (0.126) 0.122 (0.131)
n = −2 0.108 (0.119) 0.119 (0.130) 0.125 (0.138) 0.129 (0.143)
n = −3 0.113 (0.126) 0.124 (0.138) 0.130 (0.144) 0.134 (0.150)
n = −4 0.116 (0.131) 0.127 (0.143) 0.133 (0.150) 0.138 (0.220)
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TABLE V. Parameters Cn,n′ in the QH state with the filling factor
ν = 6 in the model with static screening. The values in parentheses are
obtained in an approximation with the wave-function renormalization
effects included, but all QHF and MC order parameters neglected.

Cn,n′ n′ = 2 n′ = 3 n′ = 4

n = 1 0.054 (0.031) 0.066 (0.041) 0.073 (0.047)
n = 0 0.088 (0.060) 0.100 (0.070) 0.107 (0.076)
n = −1 0.103 (0.089) 0.115 (0.100) 0.122 (0.105)
n = −2 0.109 (0.121) 0.121 (0.131) 0.128 (0.136)
n = −3 0.113 (0.131) 0.125 (0.141) 0.132 (0.147)
n = −4 0.116 (0.136) 0.128 (0.147) 0.135 (0.152)

use of the definition in Eq. (26) and our numerical results for
various QH states, we readily calculate Cn,n′ parameters.

The representative results for Cn,n′ parameters are presented
in Tables IV and V for the QH states with the filling factors ν =
2 and ν = 6. Because of the particle-hole symmetry, the results
for the corresponding negative filling factors can be obtained
as follows: Cn,n′ (−ν) = C−n′,−n(ν). These results appear to be
about two to four times smaller than the results in the absence
of screening [48]. In calculation, we took into account the
effect of nonvanishing QHF and MC order parameters. For
comparison, in parenthesis we also show the results for the
same parameters in the approximation with the QHF and MC
order parameters neglected. It appears that the role of such
parameters is not negligible.

B. Quantum Hall states in strong magnetic field

In this section, we study QH states with different integer
filling factors at zero temperature. We will start by first
considering the states associated with the n = 0 and 1 Landau
levels. We will show, in particular, that the qualitative features
of the phase diagram obtained in Ref. [48] remain qualitatively
the same after the inclusion of the static screening. At the same
time, the quantitative changes will be substantial.

As stated earlier, the gap equations (19) through (22)
allow a large number of solutions with different types
of Haldane/Dirac masses (�n,�̃n) and chemical potentials
(μn,μ̃n). In order to identify the true ground state among them,
we compare their free energies. (For the explicit expression of
the free energy, see Appendix C in Ref. [48].) In the model at
hand, the choice of the corresponding states is strongly affected
by the Zeeman interaction energy, which is one of the main
factors in driving the vacuum alignment. Taking into account
that there may exist a large number of other symmetry breaking
effects, e.g., various on-site repulsion interaction terms [12],

the actual nature of the ground states should be accepted with
caution. Nevertheless, the study below is quite informative: it
reveals the quantitative effects of the static screening and role
of the running of the dynamical parameters in the QH regime
of graphene.

From the symmetry viewpoint, there are two types of
Dirac masses and chemical potentials for quasiparticles of
each spin orientation, s = ↓,↑. The parameters of the first
type (i.e., �n and μn) are singlets, while the parameters of
the second type (i.e., �̃n and μ̃n) are triplets with respect to
the flavor Us(2) subgroups. It is natural to expect that the
states with different symmetry properties compete. However,
it should be emphasized that the corresponding competition is
not necessarily between the MC and QHF scenarios because
both types of order parameters may belong to the same
representations of the flavor symmetry. In fact, as our results
show, the two types of order parameters generically coexist in
all QH states. (This was also emphasized in Ref. [48].)

From general considerations based on the structure of the
Landau levels, it is expected that there exist at least four
different classes of QH states with the following series of
filling factors: (i) ν = 4n + 2, (ii) ν = 4n (with a possible
exclusion of the rather unique ν = 0 state in a class of its
own), (iii) ν = 4n − 1, and (iv) ν = 4n + 1.

The first series of states with the filling factors ν = 4n + 2
describes the “normal” QH states with the complete filling of
the (nearly) degenerate Landau levels. They do not have or
require symmetry breaking and are resolved even at relatively
weak magnetic fields. The simplest realization of the ν = 4n

states could be provided by a dynamically enhanced Zeeman
splitting of Landau levels. In this case, the ground states have
U↓(2) × U↑(2) symmetry. While this is also the prediction of
the model at hand, we should emphasize that other realizations
of the ν = 4n QH states are possible. In fact, the ν = 0
state, which formally belongs to this series, is likely to have
a different origin [44]. The remaining two series of states
with the filling factors ν = 4n ± 1 are less controversial.
They require spontaneous symmetry breaking at least down
to U↓(1) × U↑(2) or U↓(2) × U↑(1).

In our analysis at sufficiently small values of the chemical
potential, we find a number of different solutions, associated
with the lowest Landau level (n = 0) and integer filling factors
ν = 0,±1,±2. The order of appearance and the competition
of different types of solutions appear to be the same as in
Ref. [48], see Fig. 3 there. By taking into account the screening
of the Coulomb interaction, however, we find that the actual
values of dynamical parameters change substantially. The
corresponding results are listed in Table VI. For comparison,
in parenthesis we also list the previous results in the model

TABLE VI. Gap parameters for the solutions when the Fermi energy close to the lowest Landau level. The solutions for nmax = 50 with
screening effects considered are compared with the solutions in Ref. [48] for nmax = 5 neglecting screening effects in the parentheses.

ν �̃eff
0,↑ �̃eff

0,↓ �0,↑ �0,↓

−2 0.000 (0.000) 0.000 (0.000) 0.082 (0.227) 0.082 (0.227)
−1 0.000 (0.000) 0.082 (0.227) 0.082 (0.227) 0.000 (0.000)
0 0.000 (0.000) 0.000 (0.000) 0.082 (0.227) −0.082 (−0.227)
1 0.082 (0.227) 0.000 (0.000) 0.000 (0.000) −0.082 (−0.227)
2 0.000 (0.000) 0.000 (0.000) −0.082 (−0.227) −0.082 (−0.227)
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TABLE VII. Gap parameters for the solutions when the Fermi energy close to the Landau level at n = 1. The solutions for nmax = 50 with
screening effects considered are compared with the solutions in Ref. [48] for nmax = 5 neglecting screening effects in the parentheses.

spin �̃eff
0 �0 f1 μ1 − μs �1 �̃1 f2 μ2 − μs �2 �̃2

ν = 3 ↑ 0.000 − 0.082 1.078 0.013 − 0.014 0.000 1.065 0.009 − 0.010 0.000
(0.000) ( − 0.227) (1.143) (0.053) ( − 0.068) (0.000) (1.112) (0.040) ( − 0.052) 0.000

↓ − 0.013 − 0.095 1.058 0.050 − 0.010 0.004 1.062 0.022 − 0.009 0.000
( − 0.051) ( − 0.278) (1.105) (0.148) ( − 0.049) (0.018) (1.102) (0.091) ( − 0.046) (0.006)

ν = 4 ↑ 0.000 − 0.082 1.078 0.013 − 0.014 0.000 1.065 0.009 − 0.010 0.000
(0.000) ( − 0.227) (1.143) (0.053) ( − 0.068) (0.000) (1.112) (0.040) ( − 0.052) (0.000)

↓ 0.000 − 0.108 1.038 0.087 − 0.006 0.000 1.059 0.034 − 0.009 0.000
(0.000) ( − 0.330) (1.066) (0.243) ( − 0.031) (0.000) (1.093) (0.143) ( − 0.039) (0.000)

ν = 5 ↑ − 0.013 − 0.095 1.058 0.049 − 0.010 0.004 1.062 0.021 − 0.009 0.000
( − 0.051) ( − 0.278) (1.105) (0.148) ( − 0.049) (0.018) (1.102) (0.091) ( − 0.046) (0.006)

↓ 0.000 − 0.108 1.038 0.087 − 0.006 0.000 1.059 0.034 − 0.009 0.000
(0.000) ( − 0.278) (1.066) (0.245) ( − 0.031) (0.000) (1.093) (0.143) ( − 0.039) (0.000)

ν = 6 ↑ 0.000 − 0.108 1.038 0.087 − 0.006 0.000 1.059 0.034 − 0.009 0.000
(0.000) ( − 0.330) (1.066) (0.243) ( − 0.031) (0.000) (1.093) (0.142) ( − 0.039) (0.000)

↓ 0.000 − 0.108 1.038 0.087 − 0.006 0.000 1.059 0.034 − 0.009 0.000
(0.000) ( − 0.331) (1.066) (0.245) ( − 0.031) (0.000) (1.093) (0.143) ( − 0.039) (0.000)

without screening [48]. As we see, the effect of screening is to
suppress the relevant dynamical parameters by about a factor
of 3. The same is true for the magnitude of the energy gaps in
the states with the filling factors ν = 0, ± 1.

The analysis of the QH states, associated with the n = 1
Landau level, is done in the same way. Here again, the order of
appearance and the competition of different types of solutions
appear to be exactly the same as in Ref. [48], see Fig. 4 there.

FIG. 1. The wave-function renormalization parameters fn,s as functions of the Landau level index n for four different types of QH states
with filling factors ν = 4n − 1, ν = 4n, ν = 4n + 1, and ν = 4n + 2.
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FIG. 2. The chemical potential differences μn,s − μs as functions of the Landau level index n for four different types of QH states with
filling factors ν = 4n − 1, ν = 4n, ν = 4n + 1, and ν = 4n + 2.

The actual values of the dynamical parameters in the model
with screening are listed in Table VII. The corresponding
results in the model without screening are given in parenthesis.
By comparing the two sets of data, we find that screening leads
to a suppression of the relevant dynamical parameters by a
factor of 3 to 5.

Because of the long-range nature of the Coulomb inter-
action, the dynamical QHF (μn,μ̃n) and MC (�n,�̃n) order
parameters are nontrivial functions of the Landau level index
n. The corresponding “running” of the dynamical parameters
is an important feature of the model at hand. From theoretical
viewpoint, it is essential to provide a realistic description
of the low-energy dynamics in graphene, where the role of
order parameters diminishes with increasing the quasiparticle
energy. This is in contrast to a common mean-field analysis of
models with pointlike interactions, where the order parameters
affect either (i) only the nearest filled Landau level or (ii) all
levels in the same way.

Our numerical results for the running dynamical parameters
fn,s,μn,s , �n,s,μ̃n,s , and �̃n,s are shown in Fig. 1 through
Fig. 4. In line with our discussion of the four different classes
of QH states with different filling factors, we show the results
for ν = 4n + 2,ν = 4n,ν = 4n − 1, and ν = 4n + 1 states in
separate panels. They are characterized by different ground
state symmetries. In order to avoid overcrowding the figures,
we showed the results only for a few states in the series, that
correspond to partially or fully filled n = 0,1, and 2 Landau

levels. It is natural to expect that the other states in the same
series, associated with filling of higher Landau levels, share
essentially the same qualitative features.

In Figs. 1–4, the results for the spin-up and spin-down
quasiparticle states are represented by the same types of filled
and unfilled symbols, respectively. The universal property of
all dynamical parameters is that their values approach the free
model limit at large n. Additionally, we see that often the
running parameters acquire their largest absolute values in
the Landau levels near the Fermi energy. These features were
expected, of course.

The results for the wave-function renormalization parame-
ters fn,s as functions of n are shown in Fig. 1. As we see,
the results are qualitatively the same for all four different
classes of QH states. This suggests that the wave-function
renormalization parameters and, thus, the renormalized Fermi
velocities are largely determined by the long-range (screened)
Coulomb interaction and not very sensitive to the effects of
the dynamically generated symmetry breaking terms.

In the states with the even filling factors ν = 4n and
ν = 4n + 2, only the singlet order parameters μn,↓ − μn,↑
and �n,s are generated. In both cases, the dynamical pa-
rameters have comparable magnitudes and the ground state
symmetry is U↑(2) × U↓(2). While the role of nontrivial
μn,↓ − μn,↑ and �n,s is critical in the series of states with
the filling factors ν = 4n, it is not the case for the states
with ν = 4n + 2. Indeed, in the ν = 4n states, it is the singlet
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FIG. 3. The singlet Haldane masses �n,s as functions of the Landau level index n for four different types of QH states with filling factors
ν = 4n − 1, ν = 4n, ν = 4n + 1, and ν = 4n + 2.

order parameters that determine the energy gaps of the QH
states. They are critical because the corresponding dynamical
energy gaps are generated to be much larger than the bare
Zeeman splitting. This is in contrast to the ν = 4n + 2 states,
which are characterized by rather large gaps (of order εl)
between Landau levels, which cannot be affected substan-
tially by relatively small corrections due to μn,↓ − μn,↑ and
�n,s .

Our results for the ν = 4n, associated with higher Landau
levels, appear to be in qualitative agreement with the exper-
imental results reported in Refs. [23,25]. The spin-polarized
nature of the corresponding states is supported by the observed
increase of the activation gaps as functions of the in-plane
component of the magnetic field.

In agreement with our general symmetry arguments, the
triplet order parameters μ̃n,s and �̃n,s are generated only in
the states with the odd filling factors ν = 4n ± 1, see Fig. 4.
We should note, however, that in both types of states the singlet
order parameters μn,↓ − μn,↑ and �n,s are generated as well,
see Figs. 2 and 3. This is not surprising since they do not
break any additional symmetries. The qualitative difference
between the states with ν = 4n − 1 and ν = 4n + 1 is that the
triplet order parameters are generated either exclusively for
the spin-down quasiparticles (ν = 4n − 1) or exclusively for
the spin-up quasiparticles (ν = 4n + 1). It is not immediately
clear whether these results are in perfect agreement with
the experimental data in Ref. [23]. Our theoretical model
appears to capture some of the key qualitative features of

the experimental data. For example, the corresponding states
are characterized by a spontaneous breakdown of the flavor
symmetry and the gaps are not particularly sensitive to the
Zeeman energy. On the other hand, the exact symmetry
breaking pattern in the observed states with filling factors
ν = 4n ± 1 is not clear. In theory, the ground state symmetry
is either U↓(1) × U↑(2) or U↓(2) × U↑(1). While this does not
contradict the measurements, the actual symmetry could in
principle be lower, i.e., U↓(1) × U↑(1). One way to resolve
the issue unambiguously is to investigate the spectrum of
quasiparticles in detail, e.g., by studying systematically all
allowed optical transitions. We hope that this will be done in
future investigations.

C. Temperature dependence of the energy gaps

As is clear from our discussion in the previous subsection,
the QH states with the filling factors ν = 4n and ν = 4n ± 1
are characterized by the energy gaps that are largely deter-
mined by the dynamically generated QHF and MC order
parameters. (Recall that the energy gaps in the ν = 4n + 2
states are of the order of the Landau energy scale εl and, thus,
are not affected much by the dynamical order parameters.)
The corresponding parameters and, therefore, the energy gaps
are expected to have a strong temperature dependence. In this
section, we study such a dependence in detail.

The numerical analysis of the GLLR gap equations (19)
through (22) at nonzero temperature is qualitatively the same as
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FIG. 4. The triplet chemical potentials μ̃n,s and the Dirac masses �̃n,s as functions of the Landau level index n for the QH states with the
filling factors ν = 4n ± 1.

at T = 0. After determining the ground states at various filling
factors as a function of temperature, we can straightforwardly
extract the temperature dependence of the energy gaps. For
different types of the QH states, associated with various fillings
of the lowest three Landau levels (n = 0,1,2), our numerical
results are shown in Figs. 5 and 6. There are several universal
features of these results: (i) the gaps decrease monotonically
with temperature, (ii) the overall size of the gaps decreases
with increasing the Landau level index n. We also find that,
for a fixed n, the gap functions in the states with ν = 4n − 1
and ν = 4n + 1 are almost exactly the same, see Fig. 5.

By comparing the results in Fig. 6 with those in Fig. 5,
we see that the temperature dependence of the energy gaps in
the QH states with filling factors ν = 4n ± 1 is qualitatively
different from that in the ν = 4n states. By taking into account
the very different symmetry properties of the corresponding
ground states, this is not surprising at all. The ν = 4n ± 1 states
are characterized by the triplet order parameters μ̃n,s and �̃n,s ,
which vanish in a symmetry restoring phase transition at the
critical temperature Tc, see Fig. 5. The transition appears to be
either a second-order, or a weakly first-order transition. The
temperature dependence of the energy gaps in the ν = 4n ± 1

FIG. 5. The energy gaps as functions of temperature for the QH states with the filling factors ν = 4n ± 1.
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FIG. 6. The energy gaps as functions of temperature for the QH
states with the filling factors ν = 4n.

states is fitted quite well by the following function:

�E = �E(0)

[
1 −

(
T

Tc

)4]0.8

, (27)

where �E(0) is the energy gap at zero temperature and Tc is
the critical temperature. Note that the approximate numerical
values of the zero temperature gaps are 0.165εl , 0.130εl and
0.112εl for the ν = 4n ± 1 states, associated with the Landau
levels n = 0,1,2, respectively. The corresponding approximate
values of the critical temperatures are 0.043εl,0.033εl and
0.029εl , respectively.

In contrast, the ν = 4n states are characterized by the
singlet order parameters μn,↓ − μn,↑ and �n,s , which have
the same symmetry as the Zeeman term and, thus, remain
nonzero even at large temperatures, see Fig. 6. As a result, the
corresponding transitions from the low-temperature ν = 4n

states with a dynamically enhanced Zeeman splitting to the
high-temperature states without such an enhancement are
generically smooth crossovers. In the case of the ν = 0 state,
however, we find a sign of a small discontinuity in the
temperature dependence of the energy gap around T � 0.04εl ,
suggesting a weak first-order transition. Of course, such a
transition is not related to a restoration of any exact symmetry
and, thus, can be viewed as accidental.

IV. DISCUSSION

In this paper, we utilized a highly flexible GLLR representa-
tion for the fermion propagator to describe the QH states with
integer filling factors in the low-energy model of graphene
with long-range Coulomb interaction. By including the static
screening effects in an external magnetic field, we amended
the earlier study of Ref. [48]. While using a similar mean-field
approximation, we found that the static screening has a sub-
stantial suppression effect on the dynamical order parameters
in all QH states with spontaneously broken symmetry. Also,
the deviations of the wave-function renormalization from 1
and the dynamical corrections to the Fermi velocity became
noticeably suppressed.

By making use of the framework that naturally incorporates
the running of the dynamical parameters with the Landau level
index n, we observed that the largest absolute values of such
parameters are typically obtained for the Landau level near the
Fermi energy. In the limit of large n, all dynamical parameters
approach the corresponding bare values. By making use of
numerical methods, we studied in detail the behavior of the
dynamical parameters in all four different types of the QH
states with the filling factors ν = 4n + 2, ν = 4n, and ν =
4n ± 1 that have different symmetry properties. At weak fields,
we also analyze the running of the renormalized Fermi velocity
with the Landau level index n.

In the low-energy model used, the states with the filling
factors ν = 4n + 2 and ν = 4n have the U↑(2) × U↓(2)
symmetry. They are characterized by the singlet type of the
QHF and MC order parameters with respect to Us(2) for
both s =↓ and s =↑. While the role of the corresponding
singlet parameters in the ν = 4n + 2 states is negligible, it
is profound in the ν = 4n states, where they determine the
magnitude of the dynamically enhanced Zeeman splitting.
This finding qualitatively agrees with the data reported in
Refs. [23,25], which supports spontaneous symmetry breaking
and spin polarization in ν = 4n states (with the exception of the
ν = 0 state). The states with the odd filling factors ν = 4n ± 1
have rather different properties and are characterized by a
lower ground state symmetry, i.e., either U↑(1) × U↓(2) or
U↑(2) × U↓(1). In such states, in addition to the singlet order
parameters, there are two types of spontaneously generated
triplet parameters. The latter play a critical role in the
realization of the ν = 4n ± 1 states by reducing the symmetry
so as to allow the appropriate lifting of the fourfold degeneracy,
as well as needed partial filling of Landau levels. These
properties appear to be in agreement with the experimental
data in Ref. [23], even though the data was not sufficient to
establish unambiguously the underlying symmetry breaking
pattern.

By extending the analysis to the case of nonzero tempera-
ture, we studied the energy gaps in the QH states with the filling
factors ν = 4n and ν = 4n ± 1. We found that the symmetry
breaking (triplet) order parameters, describing the ν = 4n ± 1
states, vanish at a certain critical value of temperature Tc, where
a second-order or weakly first-order transition occurs. In terms
of the zero-temperature gap �E(0), the results for the critical
temperature are approximately given by Tc ≈ 0.26�E(0) for
all ν = 4n ± 1 states associated with filling of the first few
Landau levels. On the other hand, we do not detect a well-
defined symmetry-restoring phase transition in the temperature
dependence of the energy gaps in the ν = 4n states. Instead, we
find a smooth crossover, which is consistent with the fact that
the corresponding states have no real symmetry-breaking order
parameters.

The results of this study unambiguously suggest that the
QH states of graphene with various integer filling factors
are generically characterized by a rather large number of
dynamical parameters that have a nontrivial running with the
Landau level index n. The corresponding rich structure of
Landau levels in the QH regime could be probed in detail via
a systematic study of transition lines in optical experiments
such as those reported in Refs. [51–53]. The temperature
dependence of the energy gaps obtained in this study appears
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to be in a qualitative agreement with the measurements of
the activation energies in Refs. [13,15,16,19,20,23,24]. While
such an agreement is encouraging, it remains to be seen
whether the theoretical predictions of the GLLR formalism
could be matched quantitatively to the experimental data.
Before such a comparison is attempted, however, one may need
to reevaluate the model approximations used in the present
study. In particular, one should address the precise quantitative
role of (i) dynamical screening, (ii) fluctuations of the order
parameter fluctuations, and (iii) nonzero quasiparticles widths.

Hopefully, all such effects in GLLR formalism will be
addressed in the future studies.
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