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The construction of exponentially localized Wannier functions for a set of bands requires a choice of Bloch-like
functions that span the space of the bands in question, and are smooth and periodic functions of k in the entire
Brillouin zone. For bands with nontrivial topology, such smooth Bloch functions can only be chosen such that they
do not respect the symmetries that protect the topology. This symmetry breaking is a necessary, but not sufficient
condition for smoothness, and, in general, finding smooth Bloch functions for topological bands is a complicated
task. We present a generic technique for finding smooth Bloch functions and constructing exponentially localized
Wannier functions in the presence of nontrivial topology, given that the net Chern number of the bands in
question vanishes. The technique is verified against known results in the Kane-Mele model. It is then applied
to the topological insulator Bi,Ses;, where the topological state is protected by two symmetries: time reversal
and inversion. The resultant exponentially localized Wannier functions break both these symmetries. Finally, we
illustrate how the calculation of the Chern-Simons orbital magnetoelectric response is facilitated by the proposed

smooth gauge construction.
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I. INTRODUCTION

Discoveries of the past decade established that not only
the geometry of electronic bands but also their topology is a
fundamental material property [1,2]. Being at the root of a
variety of physical effects [3,4], topologically nontrivial bands
turned out to be ubiquitous, and many materials were found to
host various topological states [5-9].

As a general principle, nontrivial topologies in band
structures are a consequence of some symmetry. They are
examples of symmetry protected topological states [10,11].
For instance, magnetic insulators in two dimensions (2D)
realize the integer quantum Hall effect in the absence of
external magnetic field [12,13]. In such insulators, dubbed
Chern insulators, the nontrivial topology is captured by a
Chern number topological invariant [14], which cannot be
changed unless the U(1) charge conservation symmetry is
broken [15]. In the case of time-reversal (TR) symmetric
insulators, a Z, topological invariant is assigned [16] to the
band structure that cannot be changed without breaking the TR
symmetry (provided the band gap remains open). This concept
of symmetry protection can also be generalized to crystalline
symmetries, which protect the value of certain topological
invariants, associated with these symmetries [17,18], giving
rise to crystalline topological insulators [9,19,20].

The topology of a band structure in all these cases is
associated with the Bloch bands and their Berry curva-
ture [21,22] in momentum space. An alternative description of
crystalline solids can be made in position space by means of
localized Wannier functions (WFs) [23,24]. Such a local basis
is often preferable to that of Bloch functions, for example
for modeling finite size effects in materials [25], chemical
bonding [26], computing electronic polarization [27], or
ballistic transport [28]. This variety of applications and the
existence of established numerical techniques for WF-based
analysis of materials [24,29], makes it important to extend the
phenomenology of WFs to materials with nontrivial topology.

Another motivation for finding Wannier representation of
topological bands is the calculation of the isotropic contribu-

2469-9950/2016/93(3)/035453(13)

035453-1

tion to the orbital magnetoelectric response [30]. The linear
magnetoelectric coupling tensor «;; is defined as

JdP; oM ;
i =\ == , ()
aB/’ E=0 IE; B=0

where P and M are the polarization and magnetization of
a material, E and B are electric and magnetic fields, and
both derivatives are evaluated at zero fields. While lattice
and spin degrees of freedom also contribute [31,32] to «;j,
here we focus solely on the orbital (frozen-lattice) part. The
orbital magnetoelectric response can be further split into two
parts [33,34]:

B fe?
wij =& + ESU, (2)

of which &;; is traceless, and the second, isotropic, part
is characterized by a dimensionless quantity 6, called the
“axion angle” in high energy physics [3,35]. There are two
contributions to 8 [34]: one is an ordinary perturbative Kubo
term and the other is a purely geometrical one, the Chern-
Simons contribution 6cs. The latter one can be evaluated from
the ground-state electron wave functions, by computing an
integral of the Chern-Simons 3-form over the entire Brillouin
zone (BZ) [3,33,34]. However, this evaluation requires a choice
of Bloch states that are smooth and periodic in k space as
detailed in Sec. V D. Alternative formulations of this term in
position space require the existence of exponentially localized
WFs (ELWFs) [30].

Magnetoelectric response was long thought to be observ-
able only in materials that break TR and inversion symmetries.
Remarkably, it turned out that TR- and inversion-symmetric
topological insulators (TIs) are characterized by a nonzero
quantized magnetoelectric response [3,18,33,36]. In the pres-
ence of one of these symmetries the Kubo contribution to 6
vanishes and 6 = 6¢s. The seeming contradiction is resolved
by noticing that 6 couples to the E - B term in the Lagrangian,
so that the corresponding equations of motion are invariant
under & — 0 + 2m [35]. Since, in addition, 6 is odd under both
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TR and inversion [35], the rwo values & = 0,7 are compatible
with these symmetries.

In TR- or inversion-symmetric TIs these two values of 6
can be used as an analog of the Z, topological invariant [3,33],
with 8 = m corresponding to the TI phase and 6 =0 to
the normal insulator (NI) one. For the cases of TR- and
inversion-symmetric insulators the quantization of 6 is exact
and since 6 corresponds to the Z, invariant, it can be obtained
using the methods for computing this invariant [37-39].
However, for materials that lack these symmetries, 6 is in
general not quantized, and it becomes necessary to evaluate the
Ocs term directly. As mentioned above, this requires ELWFs.
Since nontrivial band topologies can arise even when there
are no symmetries that quantize the magnetoelectric response,
computation of fcg gives yet another motivation for developing
a method to obtain ELWFs for topologically nontrivial band
structures.

WFs are constructed by Fourier transforming Bloch states,
and thus the momentum space geometry of the Bloch function
can strongly influence the properties of the resultant WFs,
in particular the degree of its localization. An important
example is that the construction of an ELWF for a Bloch
state with nonzero Chern number is impossible [40]. This is
a consequence of the fact that a Chern number represents an
obstruction for choosing the Bloch state to be a smooth and
periodic function of k globally in the whole BZ [41].

ELWFs can only be constructed if all the Bloch states, for
which a Wannier representation is constructed, are smooth
and periodic in the whole BZ. For topologically trivial bands,
the choice of smooth Bloch states, referred to as a smooth
gauge choice, respecting all the symmetries of the underlying
band structure is generally possible. For topological bands,
however, the symmetry that protects the topology represents
an obstruction to choosing a smooth gauge that respects this
symmetry. Consequently, the smooth WFs have to to break
this symmetry. This was explicitly illustrated to be the case for
the time-reversal (TR) symmetric Z, TIs [37,42-44].

While it is clear that the construction of a smooth gauge
on a lattice requires breaking certain symmetries in the gauge,
finding an explicit representation of smooth Bloch states on
a lattice of k points, required for a numerical construction of
ELWFs, is a nontrivial task. An explicit construction based
on parallel transport of the occupied states was obtained in
Ref. [45] for a 2D model of a quantum spin Hall insulator.
That construction, however, is tedious to generalize to the
many-band case, and especially to higher dimensions.

Another approach to finding a smooth gauge is based on
projecting certain localized orbitals that break the topology-
protecting symmetry onto the the occupied states (see Sec. 11
for details) and is more appropriate for material calcula-
tions [43]. The problem of this method is that no specific
algorithm for choosing the orbitals for the projection is pre-
sented. The requirement of breaking the topology-protecting
symmetry in the initial projection is necessary but not sufficient
for finding ELWFs.

In this work we develop a generic algorithm to construct
ELWFs for a set of topologically nontrivial bands, with a
zero net Chern number. The idea is to construct an adiabatic
connection between trivial and TI phases by breaking the
symmetries that protect the topology everywhere along the
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connecting path, except the initial and final points. Since the
topology-protecting symmetries are broken at intermediate
steps, it becomes possible to find a path connecting these
two phases in a parameter space such that the insulating gap
remains open along the connection.

The construction of this path allows one to avoid the
problem of finding the correct symmetry-breaking projection
in the topological phase. Instead, one discretizes the path in
parameter space into steps, and constructs ELWFs at each step
by projecting onto ELWFs found at the previous step. The
initial step requires finding ELWFs in a topologically trivial
case, which is a standard task [26]. As a result, one naturally
obtains ELFW:s for the topological bands at the final point of
the discretized path.

The breaking of symmetries plays a key role in adiabatically
connecting two topologies. It is often the case that there
are more than one symmetry protecting the topology of
the band structure, and it is important that all of them are
broken along the adiabatic path. For example, the Z, topology
of the TR-symmetric TIs can be additionally protected by
inversion [18,46], in-plane mirror [47,48], and certain other
point group symmetries [49]. These symmetries need to be
broken in addition to TR along the adiabatic path to obtain a
smooth gauge in such band structures.

This paper is organized as follows. In Sec. II we provide
the theoretical background about construction of ELWFs.
In this light we also discuss the topological obstruction for
constructing ELWFs in TIs. In Secs. III and IV we apply our
technique on the model of Kane and Mele [16]. Then in Sec. V
we apply our technique onto Bi,Ses; and use it to calculate
the Chern-Simons magnetoelectric coupling 6¢s. Finally, we
summarize our findings and give an outlook in Sec VI.

II. WANNIER FUNCTIONS AND TOPOLOGICAL
OBSTRUCTION

A. Construction of Wannier functions

Here we provide a brief review of the methods introduced
in the work of Ref. [26] used for an explicit construction
of ELWFs starting from a set of Bloch states obtained by
diagonalizing the Hamiltonian on a mesh of k points. The
construction requires a projection of a set of trial localized
orbitals onto the Bloch states. The choice of these orbitals,
which is simple in the case of topologically trivial bands,
becomes problematic for the case of nontrivial topology. For
the method we present in this work, localized trial orbitals
need to be found only in the topologically trivial case.

Given a Bloch state 1,x(r), a corresponding WF is defined
as

v .
(Rn) = W =R = /B ke, )

where V is the volume of the unit cell and d is the
dimensionality. The Bloch wave functions y,x are assumed
to be normalized within the unit cell.

This definition, however, is not unique. The nonuniqueness,
referred to as gauge freedom, is easily seen when construct-
ing WFs for a set of N Bloch states. A general unitary
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transformation U(N) of the N occupied bands

k) = Y Unn(&) [ Yrmi). “)

results in a different set of Bloch states that span the same
Hilbert space as the original ones, and hence can equally be
used for constructing the Wannier representation. Depending
on the particular gauge choice, the resultant WFs and their
degree of localization can vary a lot. In order to obtain ELWFs,
the gauge choice has to be smooth, meaning that all N Bloch
states used to construct the WFs are smooth in the entire BZ,
and obey periodic boundary conditions ¥,k = ¥,k+c upon
translation by any reciprocal lattice vector G.

But even such a smooth gauge choice is not unique, since
a smooth gauge transformation performed on a set of smooth
Bloch states will result in a different set of smooth Bloch states
and different ELWFs. Additional constraints can be put on the
gauge to reduce the gauge freedom. A very common choice of
such a constraint is the requirement of maximal localization
of the resultant WFs in position space proposed in the work
of Ref. [26]. This gauge is obtained by minimizing the spread
functional

N
Q=> (M), — () =2+ )

n=1

where (r), = f |W,|?>rdr, and ©; and € stand for the gauge-
independent

N

Q=) [<r2>n -3 |<Rm|r|0n>|2] (6)
Rm

n=1

and gauge-dependent parts of the spread

N
Q= Z Z [(Rm|r|0n)|>. (7

n=1 Rm#0n

The goal of maximal localization is to find a U(N) trans-
formation that, when applied to some initial set of Bloch
states according to Eq. (4), minimizes 2 to produce a set of
maximally localized WFs. Maximal localization can always be
performed, once the initial choice of Bloch states is smooth.

The necessity for smoothness of the initial Bloch states is
most easily seen from the general procedure used to construct a
set of WFs, as described in Ref. [26]. Following this procedure,
to construct a set of N WFs from N isolated (that is, separated
by energy gaps from the rest of the spectrum) Bloch bands
obtained from numerical diagonalization of the Hamiltonian,
a set of N localized trial states |r;) is chosen. For each
momentum k all of the trial orbitals are projected on the Bloch
states to get a set of N Bloch-like states [26]

N
i) = Blm) =Y 1) (Y|, ®)

n=1

which are not orthonormal.

For the construction of WFs these states need to be
orthonormalized, and it is the orthonormalization procedure,
where the smoothness of the gauge becomes crucial. To see
this, apply Lowdin orthonormalization procedure to the states,
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which is commonly used to get a set of orthonormalized Bloch
states, to orthonormalize the states | Yik),

W) = Y LSO 2L T, ©)

where
Smn(k) = (ka|Tnk) (10)

is the overlap matrix. While |,,) are not the eigenstates of
the single particle Hamiltonian, they span the same space as
the usual Bloch eigenstates, and therefore describe the same
ground state. For the trial states embodying a reasonable
assumption about the character of the bands described, the
[¥) will be smooth functions of k. In this case the WFs
constructed from them by means of Eq. (3) are expected to
be exponentially localized, and the degree of localization is
further increased by doing maximal localization.

However, the orthonormalization procedure breaks down
if at some k the determinant of the overlap matrix vanishes,
that is det S(k) = 0. This is guaranteed to happen if one runs
into a topological obstruction, for example, by projecting onto
a set of trial states |7;) that respect the topology-protecting
symmetry, as shown below.

B. Topological obstruction via hybrid Wannier functions

Hybrid WFs (HWFs) [50] differ from usual WFs in that the
Wannier decomposition is done in one direction only

w/a
Rk = 5= [ ke .
) 27 ) s
This wave function is localized in momentum in the x direction
and in position in the y direction, being a hybrid of Bloch-
and Wannier-like functions. HWFs proved to be useful for
classifying topologies of band structures [38,51], providing an
intuitive approach to topological invariants.

The band structure topology can be obtained by tracking
the charge centers of HWFs defined as

In(ky) = (Okxn|9|0k.n), 12)

where the HWFs are located within the home unit cell.
Computation of the charge centers does not require an explicit
construction of HWFs, and can be done by means of the par-
allel transport procedure, as described in Ref. [38]. The HWF
charge centers obtained in this gauge [52] are the eigenvalues
of the projected position operator [53]. However, for an
isolated set of N bands the gauge can be chosen differently,
resulting in different values of y(k,), and it is only the sum
of all the N centers that is gauge invariant (modulo a lattice
vector in the y direction) at each k, [38].

The parallel transport gauge respects the symmetries of the
system. For example, in the presence of TR symmetry the HWF
charge centers come in Kramers pairs y, (ky) = y,,(—k,) being
doubly degenerate at the TR-invariant momenta —k} = k} +
G,, where G, is a reciprocal lattice vector in the x direction.
This is illustrated in Figs. 1(a) and 1(b) for a model with two
occupied bands. The two centers are degenerate at k, = 0 and
ky = £m/a. Both centers evolve smoothly in between £ /a.
In the case of Fig. 1(a) they return to the original value at the
BZ boundary and the band structure is topologically trivial. In
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FIG. 1. Possible flows of the hybrid Wannier charge centers in a
2D TR-symmetric system. (a) Topologically trivial insulator. (b) and
(c) Quantum spin Hall insulator. A TR-symmetric gauge is used in
(a) and (b), while a TR-breaking gauge is used in (c).

the case of Fig. 1(b) they interchange, which is generally the
case in a quantum spin Hall insulator [37].

This interchange results in a discontinuity of the hybrid
Wannier charge center lines as a function k,: the two centers
are continuous functions of momentum for k, € [—nm/a,7/a],
but the periodicity constraint is not satisfied, meaning that
the center position does not necessarily return to the original
value after a 2 /a change in momentum. This is equivalent
to placing the topology-dictated gauge discontinuity on the
boundary of the BZ. In this gauge choice, the Wannier centers
each correspond to a particular, individual Chern number, since
the shift of the Wannier center at the boundary is still an
integer number of unit cells. Hence, each of the hybrid Wannier
functions can be understood as a well-defined function, in a
sense that a Chern number can be assigned to each of them,
despite the possible presence of degeneracies in the energy
spectrum.

For example, the two bands in the Kramers pair are degen-
erate at the TR-symmetric momenta, but the corresponding
hybrid Wannier centers result in a splitting of the pair into
two subspaces with well-defined Chern numbers. For a trivial
insulator, illustrated in Fig. 1(a), the two centers correspond
to zero Chern numbers. For the case of a quantum spin
Hall insulator the hybrid Wannier centers shown in Fig. 1(b)
indicate that in the chosen gauge the occupied space is split
into two subspaces with Chern numbers equal =1 [54]. In both
cases the two subspaces are TR images of each other, but the
nonzero Chern numbers of the two states in the topological
phase signal that the TR-symmetric gauge is not smooth on
the whole BZ torus. The above argument is equally valid for
more than two occupied bands, where each of the two subspace
contains several bands and Chern numbers are then assigned
to each subspace.

The Kramers degeneracy of the Wannier centers persists
for any gauge, in which TR maps one state at k onto the other
state at —k [45]. For this reason TR symmetry in the gauge
represents an obstruction for it to be smooth and periodic in
the BZ. Tracking the presence of this obstruction is the basis
for the methods of computing topological invariants [37-39].

The above analysis, in accord with other meth-
ods [37,42,44], leads to the conclusion that in the Z, TIs
a smooth gauge, and hence ELWFs, have to break TR
symmetry. Breaking the symmetry in the gauge (but not in
the Hamiltonian) lifts the Kramers degeneracy of Wannier
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centers at the TR invariant momenta, and can result in a
smooth gauge [43] like the one illustrated in Fig. 1(c). The
Wannier centers are smooth and single valued throughout the
BZ. This means that the occupied subspace was split [45]
into two subspaces with zero Chern numbers, and hence the
construction of the ELWFs becomes possible in this gauge.

The above line of reasoning can be easily generalized to
band structures, where the nontrivial topology is protected
by a symmetry different from TR, for instance a crystalline
symmetry [17,18,36,55]. A particular example can be that
of the crystalline TI SnTe [9,19], where the mirror Chern
numbers [47] of £2 can be defined on the {110} mirror plane
in the BZ. Hence, the mirror symmetry should be broken in
the gauge to obtain ELWFs for this material. Again, not any
symmetry-breaking gauge would work, but only specific ones
that provide a decomposition of the occupied space into states
that are smooth in the BZ.

III. AVOIDING TOPOLOGICAL OBSTRUCTION

Finding suitable initial projections, for which det S(k) # 0
in the whole BZ, is particularly difficult for TIs due to the
band inversion and hence, band character change, present
in these materials. According to the discussion above and
also the previous findings [43], the initial projections must
be chosen such that they break the topology-protecting
symmetries. However, as mentioned above, this requirement
is necessary, but not sufficient. Given that with an increasing
number of bands the number of possible projections increases
exponentially, a brute force search for suitable projections is
complicated and inefficient.

Here we describe a technique for obtaining a smooth gauge
and ELWFs for topological bands that avoids the need of
finding suitable initial projections. Instead, we construct an
adiabatic path that connects a topologically trivial Hamiltonian
to the topological one, such that the system remains gapped
along the path, as illustrated in Fig. 2. To keep the system
gapped, all the symmetries that protect the topology need
to be broken along the path. The initial topologically trivial
Hamiltonian can be chosen in different ways. For example,
in calculation for a material, where the nontrivial topology is
often driven by spin-orbit coupling (SOC), the Hamiltonian

K
Htopological

metallic

Htrivial :
metallic

A1

FIG. 2. Schematic path in a parameter space of some model
Hamiltonian. The adiabatic path is chosen to connect the topologically
trivial and nontrivial phases avoiding gap closures. The topology-
protecting symmetries is broken along the path.
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with SOC artificially set to zero is topologically trivial and can
be used as a starting point, if it is gapped.

Finding suitable trial functions |z;) for topologically trivial
bands is usually straightforward, since they respect the
symmetries of the Hamiltonian [26]. Moreover, an automated
procedure for finding optimal projections for the trivial bands
was proposed recently in Ref. [56]. Thus, the ELWFs at the
initial step of the path can always be found.

At least two parameters are required to parametrize the
adiabatic path. One controls the topological phase transition by
tuning the strength of symmetry breaking along the path [57].
Care should be taken when breaking the symmetries, since
double symmetry protection can occur, meaning that there is
more than one symmetry protecting the nontrivial topology.
The issue of double symmetry protection is discussed with
more detail in Sec. IITA.

Once the adiabatic path is constructed, the smooth Bloch
states for the initial, topologically trivial, Hamiltonian Hy, are
found and used to construct ELWFs. After this is done the path
is discretized into L steps, so that H}, is the Hamiltonian of the
TI in question. At step 1 the Hamiltonian H; is diagonalized
and the ELWFs obtained at the initial step are used as
the trial orbitals for its occupied states. For dense enough
discretization, the corresponding projection is guaranteed to
have det S(k) # 0 throughout the BZ, since H; and Hy are only
slightly different. The resultant states are used to construct
ELWFs for H,. The procedure continues by projecting the
ELWFs obtained at the step £ onto the occupied state of the
Hamiltonian H,,, until the final point of the path is reached.
Since at each step ELWFs were found, one ends up with ELWF
representation of the occupied topologically nontrivial space,
which solves the problem of finding a smooth gauge [58].

We emphasize that this method is general, being applicable
to any isolated set of bands and in any dimension, provided
that the net Chern number of this set is zero.

Double symmetry protection

Here we discuss the double symmetry protection of the
topological phase using two examples: Z, TR-symmetric
insulators with mirror or inversion symmetries.

We start by considering the case of coexisting mirror and
TR symmetries. When a TR-symmetric plane in the BZ of the
insulator is invariant under mirror symmetry, the nontrivial
2D Z, invariant of this plane suggests that both TR and
mirror symmetries need to be broken in the smooth gauge.
The mirror symmetry breaking in the gauge means that the
Bloch states |,x) of Eq. (4) obtained in the smooth gauge
and used to construct ELWFs are not eigenfunctions of the
mirror operator on the mirror plane. This can be seen by
noting that the two states in a mirror-symmetric Kramers
pair have opposite mirror eigenvalues +i on this plane, so
the occupied space of an insulator on this plane can be
split into two subspaces according to the value of the mirror
eigenvalue. In the Z,-odd phase 4+i and —i have opposite odd
Chern numbers, and thus breaking TR symmetry only is not
sufficient to remove the topological obstruction, since the two
mirror-labeled subspaces remain nontrivial. Hence, the mirror
symmetry has to be broken as well, to construct Bloch states
that are smooth in the entire BZ for the Z,-odd phase.
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Another example of double protection is that of an
inversion- and TR-symmetric TI. The smooth gauge in this
case also has to break both symmetries, as we argue below.
Several works [36,46] discussed the possibility of a topological
classification in the presence of inversion-symmetry only. In
particular, the work of Ref. [46] presented a study of the HWF
centers in inversion symmetric insulators, obtained by a special
construction (called a Wilson loop [39]). In that construction
the projector onto all the occupied states f’lf is defined at each
k point, and the HWF centers are obtained by taking the log
of the eigenvalues of the product of operators [ [, }3]? taken
over discretized values of k on a closed loop in momentum
space [39]. For inversion symmetric systems the inversion
symmetry [ puts the following constraint on the projector
P =1pP°]1.

The resultant HWFs are inversion symmetric in a sense
that for each center y,(k,) there exists an inversion symmetric
partner —y,(—k,), where n is not necessarily equal to m. Thus,
in the presence of inversion symmetry the sum of all the HWF
centers at the inversion-invariant momenta k, = {0,7r/a} can
only be 0 or b/2, which are the inversion-symmetric values
assuming the inversion center coincides with the center of the
unit cell.

However, as discussed above, when constructing ELWFs,
one needs a representation of the occupied subspace in terms of
Bloch states that are smooth and periodic in k space, meaning
that the projector on each of these Bloch states is smooth. Thus,
in a smooth gauge the net projector onto the occupied states is
decomposed into a set of projectors P2 = > P!, each of which
is smooth. However, imposing inversion symmetry constraint
of the form P} = [ P", I on each of the individual projectors,
restricts the corresponding HWF centers (not their sum, but
each of them separately) to take on inversion-symmetric values
at k, = {0,7r/a}, that is either 0 or b/2. We call a gauge, in
which each of the projectors respects inversion symmetry in
this sense an inversion-symmetric gauge.

In an inversion-symmetric gauge each Bloch state |/,)
respects inversion symmetry e\ U) = I [¥—1), and hence
the corresponding WF centers are subject to the condition
(r), = —(r), mod R. Consequently, the HWF centers fulfill
Yn(ky) = —¥,(—k,) modulo b and are restricted to the values
Y (ky) = {0,b/2} at k, = {0,7/a}. Note that the HWFs are
smooth in momentum in the interior of the BZ, and thus the
index n refers to the same center on both sides of this equation.
If for k¥ = {0,7/a}, |1/~/,lk> has the same parity at kK, = 0 and
7 /b then j,(k}) = 0, while if the parities are opposite y,(k}) =
b/2.

This means that if an inversion-symmetric Bloch state has
a nonzero Chern number on some 2D BZ (2D cut of a 3D
BZ), thus being not smooth, it is impossible to make it smooth
(that is, change the Chern number to zero) if the inversion
symmetry in the gauge is preserved. This is shown in Fig. 1.
The illustrated centers are obtained in an inversion-symmetric
gauge, and by construction are smooth in the interior of the BZ
ky € [—m/a,m/a]. The Chern numbers of the centers shown
as solid blue and dashed red lines in Fig. 1(b) are given by the
number of unit cells traversed by the HWF center when going
from one edge of the BZ to the other, and are equal to +1.
They cannot be changed to zero by breaking TR symmetry
alone, while preserving inversion symmetry in the gauge in
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the above sense, since that would require moving the center
position away from the value fixed by inversion symmetry at
some high-symmetry momentum. In the inversion-symmetric
gauge, where each Bloch state separately is taken to be the
eigenstate of an inversion operator, this argument holds for
any number of Kramers pairs, since the argument applies for
each individual HWF center.

To state it more rigorously, the TR and inversion invariant
Z, topological insulating state in 2D is characterized by the
total number of negative parity eigenvalues of occupied states
at the four TR invariant momenta [46,59]: if this number
divided by two is odd the system is a topological insulator [60].
Let n| be the difference in the number of negative parity
eigenvalues between points (0,0) and (0,7/b), and n, the
difference between points (77/a,0) and (7 /a,n/b). If n] and
n, are different (which is the case in a TI) then the number of
HWF centers for which y, (k) = b/2is also differentatk, = 0
and k, = m/a. Since the HWF centers are smooth in the BZ
interior k, € [—m/a,m/al, at least |n] —n; | of the hybrid
centers y,(k,) correspond to a nonzero Chern number. These
Chern numbers can only be removed by breaking inversion
symmetry of individual |/,), similar to the TR symmetric
case discussed in Sec. II B. Therefore, the obstruction to
smoothness persists in the inversion symmetric gauge. Note
that also in a Zj-even case inversion symmetry can protect
additional topologies as has been pointed out in Refs. [36,46].

Thus, the adiabatic connection of an inversion-symmetric
topological insulator to a trivial one should be found by
breaking the inversion symmetry along the path.

IV. APPLICATION TO KANE-MELE MODEL

We first illustrate our technique by applying it to the Kane-
Mele (KM) model that describes a 2D quantum spin Hall (Z,-
odd) insulator in some of its parameter space [16]. A smooth
gauge and the corresponding WFs were obtained previously
for this model by other methods [43,45], and it is instructive
to validate our method versus known results before going to
more complicated cases.

A. Kane-Mele model
The KM is a tight-binding model on a honeycomb lattice
with one spinor orbital per site. The primitive hexagonal
lattice vectors are a; = af and a; = 5(£ + @ y) with the
atoms A and B located at at sites £4 = %(al +ay)and tg =
%(al + a,). The KM Hamiltonian is given by

H = Zf[j CJ-LCJ' +i)\SOZVijC,TO-ij
(ij) ()

+idg Y cls x dij)c; + A0 Y Eicjei,  (13)

(ij) i

where summation over the suppressed spin indices is assumed.
The summation (ij) runs over all nearest neighbors, and the
sum over ((ij)) runs over all second-nearest neighbors. v;; =
(2/\/5)(31 xc?z) = %1, with 31 and (?2 being the first-neighbor
bond vectors encountered by an electron hopping from j to i,
s is a spin-1/2 operator. Aso and Ar are parameters defining
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the spin-orbit coupling and 1, is a staggered on-site potential.
In what follows we fix t = 1, Agp9 = 0.6, and Ag = 0.5.

B. Constructing an obstruction-free path
for the Kane-Mele model

Following our method, first an adiabatic path connecting
the normal insulator (NI) to the TI phase of the KM model
needs to be found. Let us first tune A, while keeping the
spin-orbit coupling parameters Ago and Ar fixed. This path
corresponds to the vertical axis in Fig. 3. A gap closure occurs
at the two Dirac points at K and K’ in the BZ (illustrated in
the inset of Fig. 3). We thus need to find a symmetry breaking
field that would prevent the gap closure at both Dirac points
simultaneously.

We thus introduce a hopping anisotropy § to the nearest-
neighbor hopping #;;. For the reasons that are made clear below,
it is chosen such that the hopping is #(1 + ) in the (1,1)
direction and ¢ in the other directions, and it breaks the Cs-
rotational symmetry of the KM model (see the Appendix A for
a thorough discussion of the symmetries in the KM model).
By tuning § and moving along the A,, = 0 line in Fig. 3 the gap
closure can be moved to the M point. This path is depicted by
the red arrows in Fig. 3.

The degeneracy at the M point is easily lifted by an
appropriate weak TR-symmetry breaking field. We found the
optimal field to be a staggered magnetic field in the (—1,1)
direction of the form [61]

V33 1
HY = (—Tax + >0, + —O’Z>TZ,

4 2 (14

where o and 7 are the Pauli matrices acting in the spin
and sublattice subspaces correspondingly. Apart from the
TR symmetry, this field breaks the mirror and C,-rotational
symmetries of the KM model (see Appendix A) and the
resultant WFs coincide with the ones reported in Ref. [43].
The final path, shown by the red line in Fig. 3, is thus made
of two parts: the line P1P2, connecting two points with the

A\, A
5 P1 K

i |

1
¥ 'sB
FIG. 3. Phase diagram of the KM model for Aso = 0.6 and Ax =
0.5. The red arrows indicate the path used to construct an obstruction-
free gapped path between the trivial and topological phases. The

symmetry breaking is indicated in the third, out-of-plane, axis. The
BZ of a honeycomb lattice is shown in the inset.
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same Z, invariant, and the line P2 P3, where the Z, invariant
changes from even to odd, and along which the TR symmetry
is broken. Note that it is also possible to start the path directly at
P2, which corresponds to the NI phase. However, for reasons
made clear below, we find it illustrative to add P1 P2 to the
discussion.

C. Wannier functions of the KM model

Now that the gapped path connecting points P1 and P3 is
found, the above outlined method is implemented and the WFs
are calculated along this path. The position space density [62]
of the WFs is shown in Fig. 4 corresponding to the points P1,
P2, and P3 on the adiabatic path of Fig. 3.

At P1 (NI phase) both WFs are localized on the lower
energy sites. Each of them is mapped onto the other by TR,
forming a Kramers pair of WFs with opposite spins.

The sum of the Wannier centers P =t + I,, being
proportional to the electronic polarization [27], is illustrated
with ared dot in the left panel in Fig. 4. The C3 symmetry of the
KM model (see Appendix A) constrains the possible values of
this sum, to the values that are invariant under this symmetry
modulo a lattice vector. Consistent with C; are the following
values: (Py,P,) = (0,0),(1/3,1/3),(2/3,2/3). A change be-
tween distinct values cannot occur continuously, unless the C3
symmetry is broken. The value of P corresponding to the point
Plis P, = 1/3 and P, = 1/3. This is yet another example of
additional topological protection. If there is a symmetry that

P1
i
N
P2
k-
P3
™ 4

FIG. 4. Charge density distribution corresponding to the WFs
obtained at points P1, P2, and P3 of Fig. 3. The left and right panels
show the two WFs of the KM model at each of the points. The red
point marks the sum of the corresponding Wannier centers (modulo
a lattice vector).
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quantizes the values of electronic polarization [27], and if
the values in the topologically trivial and nontrivial phases
are different, then the symmetry must be broken so that the
polarization can be changed continuously between the two
discrete values [63].

When going from P1 to P2, § # 0 and A, # 0 and both
the C3 and C, symmetries are broken. This allows us
to continuously change the electronic polarization without
closing the band gap. At P2 (NI phase) the two lattice sites
have equal energies, since A,, = 0. Accordingly, the two WFs
are equally distributed between both sites, again forming a
Kramers pair. Note that P, = P, = 0 at this point.

At P3 we are in the desired Z,-odd phase. The field of
Eq. (14) is introduced to get from P2 to P3 along the gapped
path. The two WFs are localized on different sites, having
opposite spins, in accord with the earlier study of Ref. [43].
Clearly this configuration does not conserve the TR symmetry
of the system. The sum of the Wannier centers remains at
P, =P, =0.

V. APPLICATION TO Bi,Se;

The standard example [6,64] of a TI is Bi,Ses. It has
a rhombohedral lattice structure with the space group ng.
The material is layered with hexagonal quintuple layers,
consisting of three Se (two equivalent Sel and one Se2) and
two equivalent Bi atoms (shown as A, B, and C in Fig. 6)
bounded together by van der Waals interaction. The structure
is inversion symmetric, with an inversion center at the central
Se0 atom marked with the cross in Fig. 6.

Without SOC the band structure of Bi,Ses is topologically
trivial, turning SOC on with a parameter Agp drives it into
the TT phase. At Aso = 0 BiySes is a direct small band-gap
semiconductor (NI phase), whereas at the full experimental
SOC strength Ago =1 it is a TI. At the topological phase
transition there is an intermediate semimetallic state with a
gap closure. This gap closure can be avoided by applying a
suitable symmetry breaking field.

A. Constructing a model Hamiltonian for Bi,Se;

A fully self-consistent density functional theory calculation
was carried out for Bi,Ses without spin-orbit coupling (SOC)
using the Vienna ab initio simulation package (VASP) [65,60]
with the projector augmented-wave method [67], using
generalized gradient approximation of the Perdew-Burke-
Ernzerhof for the exchange-correlation potential [68]. The
Wannier90 [29] package was then used to first disentangle an
isolated group of bands and then to project the band structure
onto the atomic p orbitals of all Bi and Se atoms. No further
iterative minimization of the WF spread was done.

The resultant band structures, obtained from the projected
Hamiltonian and the ab initio calculations are illustrated in
the left panel of Fig. 5. SOC is added afterwards to this
Hamiltonian by adding a local Hamiltonian HS°C in the basis
of the atomic p orbitals [69,70]. The case of full SOC is
illustrated in the right panel of Fig. 5. The correct topological
phase of the projected Hamiltonian was confirmed using the
method of Ref. [38].
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FIG. 5. Projected band structure [Se (Bi) character shown in red (blue)] and the ab initio band structures (black dotted lines) of Bi,Ses.
Left panel: no spin-orbit coupling. Right panel: spin-orbit coupling included.

In the following we work with the projected Hamiltonian,
which allows for the easy control of SOC and a symmetry
breaking field in the total Hamiltonian

Htot — H() +)\SO HSOC e HSB. (15)

The term HS® is introduced below. Note that both H5°C and
HSB are local. The two parameters Ago and « are found to be
sufficient to construct an adiabatic path between the NI and TI
phase in Bi,Ses.

B. Constructing an obstruction-free path for Bi,Se;

The SOC strength Ago is tuned from Ago = O (NI phase) to
Aso = 1 (TI phase with full experimental SOC strength) [71],
passing through a topological phase transition at Agg =& 0.47.
At this phase transition the gap closes and a 3D Dirac cone
is formed at the I" point. To obtain a gapped adiabatic path
connecting NI and TI phases, a suitable symmetry breaking
field HSB that gaps the Dirac cone needs to be found by
considering the symmetry breaking requirements. Due to
the double protection described in Sec. III, the field must
break both TR and inversion symmetries. This requirement
is satisfied by a staggered magnetic field, analogous to that
of Eq. (14) used in the case of the KM model. The optimal
direction of the staggered field was found to be in the plane of
hexagonal layers (see Fig. 6).

Examples of two such staggered fields are illustrated in
Fig. 6. The first one, HgiB, shown with black arrows, acts on

«— P A(Set)
— B BBi1)
«— X C(Se0)
«— B A(B2)
— [ B(Se2)

FIG. 6. The layered structure of Bi,Se;. The cross denotes the
inversion center at the Se0Q atoms. The black arrows indicate the
staggered magnetic field on the Bi sites corresponding to HSP. The
red arrows indicate an additional field corresponding to HS5,.

Bi sites only. While both TR and inversion symmetries are
broken by this field, the combination of the two symmetries
survives. As a consequence, the band structure remains doubly
degenerate upon the inclusion of this field.

The other symmetry breaking field, H3%., breaks this
compound symmetry as well by applying, in addition to HgiB,
a field on all Se sites, as marked by the red arrows in Fig. 6.
Application of this field lifts the double degeneracy of the
bands. Both fields prevent the gap closure and allow for the
adiabatic connection between the NI and the TI.

The band gap as a function of Agp is shown in Fig. 7. The
parameter o« of the TR symmetry breaking field is tuned as
a(rso) = sin(Agomr). We interpolate the path between Agg = 0
and Ago = 1 using nine intermediate equidistant steps. In what
follows the BZ of the Hamiltonian 15 is discretized into a
16 x 16 x 16k mesh.

C. Wannier functions of Bi,Se;

We first need to find WFs for the initial step of the path, that
is for Ago = 0. Suitable trial states |t;) for the topologically
trivial band structure can be guessed from the occupations of

1.0 ‘ : :
— gap without TR breaking field
08l -- gap with TR breaking field HS" |
--- gap with TR breaking field Hys,
_ 0.67 .

AE (eV

0.4

02f .o

°8.

FIG. 7. The bulk energy gap as a function of Aso. The symmetry
breaking is tuned as sin(Aso7). The field HSP preserves the double
degeneracy of bands. The gap is larger for the Hys, field, which lifts
this degeneracy.
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TABLE I. The spread of the resultant WFs after minimization.

Aso =0 Aso =1
Q Q Q Q
H 11.01 0.46 11.04 0.70
HSE, 11.01 0.46 11.04 0.73

atoms shown with color in Fig. 5(a). The occupied subspace
consists mainly of the Se p states. Therefore, the Se p orbitals
(both up and down spin) are chosen to be the initial trial states.

Throughout the path we monitor the minimum of det S(k)
and the Wannier spreads. Apart from the first projection, where
we start with local projections, the determinant always stays
reasonably close to 1. For this reason, the minimization of the
Wannier spreads done at each step of the path, after projecting
onto the WFs obtained at the previous step, results in only
small improvement in localization.

The Wannier spreads in the NI and TI phase are given in
Table I. As expected we find them to be larger in the TI than
in the NI phase [43]. Both symmetry breaking fields lead to
nearly identical WFs, although, the resulting spread is found
to be slightly larger when the field Hys, is used to break the
symmetry. The smoothness of the resulting gauge is visible
in Fig. 8 (see Fig. 1), where we show the flow of the hybrid
Wannier centers in the k, = 0 plane. All centers are smooth
and periodic in the BZ.

Now that a smooth gauge for Bi,Se; is obtained, the
corresponding Bloch states can be used as a set of k-dependent
trial states 7;(k). These states are useful to quickly obtain
a smooth gauge and ELWFs on a different k¥ mesh without
repeating the above procedure. In the spirit of Wannier
interpolation [25], the new t;(k) are obtained by Fourier
transforming the ELWFs on the new k mesh.

The obtained ELWFs also allowed us to find the local trial
states that work for BiySe; that result in well localized WFs
for different k meshes [72]. They are listed in Table II, where
the site location (see Fig. 6), the orbital character, and the spin
direction are provided for each of the trial states. Apart from
the two exclusions, the states come in time-reversal pairs listed
in the same row of the table. The trial states have mostly Se
character, apart from the exclusions, which are listed in rows
4 and 7 of the table, and reflect the band inversion that occurs

0.5 i e
A S
e e,
of (@ { | ]
S,
o = = :
—0.5 5= _HO'_- ™ =T -.('; ™

FIG. 8. Flow of the hybrid Wannier centers in the k, = 0 plane
in Bi,Ses. (a) The gauge respects TR and inversion symmetries. (b)
The smooth gauge used to obtain the ELWFs.
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TABLE II. The 18 trial states for the topological material Bi,Ses.
Left and right column show potential time reversed partners.

[Se0,p., 1) [Se0,py, |2)
1Se0,py, 12) [Se0,py, |2)
[Se0,p., 12) [Se0,p., J2)
%(ISel,px, 1) + IBil,py, 1)) [Sel,py, x)
[Sel,py, 1) [Sel,py, {x)
[Sel,p;, 1) [Sel,pz, dx)
1Se2,px, 1) %(ISeZ,px, Vi) + IBi2.py, 4x))
[Se2,py, 1x) 1Se2,py, )
[Se2,p;, 1s) [Se2,pz, L)

between the p, states of Se and Bi in Bi,Ses at the I point,
which can be seen in Fig. 5(b).

As discussed above, BiSes is an example of a double sym-
metry protection of the band topology, where both inversion
and TR are broken in the smooth gauge. This breaking of the
two symmetries is clearly seen in the flow of hybrid Wannier
centers shown in Fig. 8. Figure 8(a) shows hybrid Wannier
centers constructed from a symmetry-preserving gauge. The
topological obstruction is evident. In contrast, Fig. 8(b)
illustrates the case of the smooth gauge obtained above.
The smooth gauge Wannier centers are neither inversion,
nor TR symmetric, but are smooth and periodic in the BZ,
corresponding to zero individual Chern numbers.

D. Evaluation of the Chern-Simons magnetoelectric
polarizability 6cg

We now proceed to calculating the geometrical contribution
to the magnetoelectric effect. The numerical evaluation of the
Chern-Simons magnetoelectric polarizability 6cs introduced
in Sec. I is a tedious task [30]. While a direct simulation of a
material’s response to electromagnetic fields can potentially
be used to evaluate this term, such a calculation requires
the use of large supercells, which makes it inefficient and
computationally expensive. Several methods to compute O¢g
from the bulk wave functions exist [30,33,34,73,74], but only
one of them (Ref. [30]) was applied to materials within an ab
initio framework. Our calculation is based on the formalism
developed in the latter work, but the actual implementation
of the formulas is also done directly in position space, which
significantly improves convergence with respect to the k mesh,
compared to the k-space implementations used before [30].

To calculate 65 the Bloch wave functions obtained from
the bulk calculation are used. The Berry connection matrix for
these states is defined as

Apin, j(K) = (il ’ 7AW (16)
mn, j = Umk |l 7 |Unk),

I ok,
which is computed using the smooth gauge, obtained
above [75]. Then Ocg is evaluated by integrating the Chern-
Simons 3-form over the entire Brillouin zone [3,33]

1 2i

fs = —— | dkegtr| A A — —AAA|. (A7)
4 BZ ’ 3

where the summation over band and Cartesian indices is

assumed. While this integral is gauge invariant modulo 2, a
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smooth gauge is assumed in the derivation of Eq. (17) [3,34].
Thus a smooth gauge is required for a meaningful evaluation
of the integral. This is when the above technique for finding a
smooth gauge becomes important.

Equation (17) can be rewritten in terms of matrix elements
of position operators evaluated with WFs in position space.
Using

Amn ;&) =Y R (Om|r; Rn), (18)
R

the result reported previously [30] can be obtained

1 273
Ocs = — ¢ Im| > (Om|ri|Rn) (Rnr; |0m) Ry

dr Q =

2
-5 Z(Ol|r,»|Rm)(Rm|rj|Pn)(Pn|rk|01)>. (19)
RP

This equation still assumes a smooth gauge, since when the
WFs are not exponentially localized, surface terms should be
included to account for the slow decay of the Wannier matrix
elements [30].

We now use the ELWFs obtained for Bi,Se; above, to
compute the fcg term in this material. While both formulas
Egs. (17) and (19) agree in the limit of an infinitely dense k
mesh, the use of the position space formula of Eq. (19) results
in faster convergence, compared to the k-space formulation of
Eq. (17) [76].

We used the trial states of Table II to get localized WFs for
a variety of k meshes up to 80x80x80. The scaling in the TI
phase is shown in Fig. 9. Because of the slow convergence in
k-mesh density, an extrapolation to the infinitely dense mesh
is required. A linear extrapolation in (Ak)? is done using the

1.2
1.0F~ _ .
& ~
@__ S
0.8} T a .
Q. Sa
S "o i
= 06f y A .
0.4} ° 4 .
X o A
O
0.2} S 5 |
% Q

OU‘J.OO 0.05 0.10 0.15 0.20 0.25
(Ak)’ (nm~?)

FIG. 9. Convergence of 6cs in the TI for varying densities of k
meshes. Ak is the nearest-neighbor spacing on the grid. Convergence
to Ocs = m can be reached for mesh densities of order 80x80x80
[(Ak)?* = 0.0068 nm~2]. The black circles (red crosses) correspond
to the results obtained by evaluating the Berry connection in k
space without (with) maximal localization of the WFs resultant from
the projections of Table II. The green triangles correspond to the
results obtained by evaluating (0m|r;|Rn) in position space. A linear
extrapolation to the infinitely dense k mesh was done using the last
data points.
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FIG. 10. 6cs calculated along the adiabatic path connecting NI
and TI phases. The full (empty) circles correspond to the symmetry
breaking field HSP (HSS,) [60].

last data points, getting in all cases very close to the expected
value of Ocs = m. This extrapolation choice is dictated by
the error in numerical evaluation of the .A; matrices and
the Wannier matrix elements (Om|r;|Rn), which is of order
Ol(AK)*] [77].

Exponential convergence can be achieved by directly
evaluating (Om|r;|Rn) in position space with the ELWFs [78].
This is, however, computationally more expensive and was
done only for relatively coarse k meshes up to 25x25x25.
The green triangles in Fig. 9 illustrate the results obtained
from this position space approach. Even with this coarse k
mesh a reliable extrapolation to the expected value Ocs =
can be done within a few percent accuracy.

The 6cs term was also computed along the adiabatic path
connecting NI to TI for the two different symmetry breaking
fields (H3? and HSE,). The results are shown in Fig. 10. The
Ocs term is found to be larger for the HgiB field, which does
not break the product symmetry of TR and inversion.

VI. CONCLUSION

In this paper we established a general procedure for
constructing ELWFs and smooth Bloch states to describe a
group of bands with nontrivial topology. This is done by
connecting the topologically nontrivial Hamiltonian to some
trivial one by a gapped adiabatic path. Our technique works for
all symmetry-protected topologies, provided that the net Chern
number of the bands is zero. It was illustrated for Z, TIs in two
dimensions using the example of the Kane-Mele tight-binding
model, and the real three-dimensional topological insulator
material Bi;Ses;. We also introduced the concept of double
symmetry protection of nontrivial topology, which describes
(ubiquitous) situations when there is more than one symmetry
that presents the obstruction for choosing smooth Bloch states.
We expect that this technique can also be generalized to
the case of Chern insulators to obtain numerically a smooth
lattice representation for all the occupied Bloch states, apart
from one that carries the net Chern number of the system, and
hence cannot be made smooth.
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Finally, we described how the proposed scheme of con-
structing a smooth gauge allows for the calculation of the
Chern-Simons Ocg term that captures the geometric contri-
bution to the orbital magnetoelectric response of materials.
A detailed discussion of the numerical implementation of
this calculation was provided, showing how to efficiently
implement our technique to materials, where 6cs is not
quantized. This technique is especially useful in the presence of
band topologies that do not result in a quantized value of the O¢g
term. More generally, the numerical construction of the smooth
gauge for lattice models presented here can have broader
applications in evaluation of various (band) geometric effects
that do not have an immediate gauge-invariant formulation.
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APPENDIX: SYMMETRIES OF THE KANE-MELE MODEL

Here the symmetries of the Kane-Mele model discussed
in the main text are derived explicitly. Using the basis set
(JA 1),|B 1),|A |),|B |)) the Hamiltonian Eq. (13) can be
written in K space

H(k) = t og[zc€/1(K) 4+ 1y€,2(K)] + Aso 0, T;€50(K)
+ Ar {ox[Te€r1(K) + Tyera(K)]
+o,[tyer3(K) + Trera(K)]} — A 007, (A1)

with o and T matrices acting in spin and lattice subspaces; oy
being the unit matrix, and oy , , (7, ;) the Pauli matrices.
The k-dependent coefficients in the Hamiltonian are

&n(k) = (1 +9) fi(k) + fo(k) + f3(k),
(k) = (1 +8)g1(k) + g2(k) + g3(K),
eso(k) = 2[— sin(k;) + sin(kz) + sin(k; — ka)],

1 1
€rR| = _Egl(k) - Egz(k) + g3(k), (A2)
1 1
€rRy = —§f1(k) - Efz(k) + f3(k),
3 3
€R3 = %fl(k) - %fz(k),
3 3
€R4 = %gl(k) - %gz(k),
where
K — ki k K = si ki ky
fi( )—COS(§+§), 8i1( )—s1n<§+?),
k k k k
fr(k) = cos (—2§1 + §2> ¢>(K) = sin (—2§1 + f)
k k k k
£(K) = cos (?' - 2?2) g3(k) = sin (?‘ - 2?2)
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TABLE III. Point symmetries (relative to the origin) of the KM
model for A, = § = 0. Both momentum transformations and matrix
representations are given.

Symmetry Representation R ky — --- ky — ---
ol i(-% + Loy ke ki
o(h i(?ax + 2t —ky —k
C, io, T, —ki —k,
C; (2 +iLo)5 ky — ki —ky
Ce (Lo +i%)r, ks ks — ki

with k; and k, being the reduced coordinates in terms of
the reciprocal lattice vectors by = %(kx — %k),) and b, =
2t 2 |
a /37

We first consider the case of A, = § = 0, corresponding

to the point P3 in Fig. 3. In this case the 2D space group
(wallpaper group) of the model is p6m in IUC notation (*632
in orbifold notation) [79], and the corresponding 2D point
group is Dg. The specific matrix representation of all the point
group symmetries for this case is provided in Table III. Each
of the symmetries acts according to

H(S(ky.k2)) = RsH(k1.k2)Ry, (A3)
where S is the symmetry operation and Rg is its matrix
representation.

The consistency of the matrix representation of Table III
can be checked by noting that the C, symmetry is the product
of the two mirrors o' and o'V, and the C3 symmetry is
the C¢ rotation applied twice, as expected. Other reflection
symmetries can be obtained by appropriate combinations of
these operations. The relations expected for spin-1/2 systems,
namely 02 = C3 = C3 = C¢ = —1 are satisfied. Without the
Rashba term, that is for Ag = 0, there would be an additional
inversion symmetry o(t,.

The symmetries corresponding to the different points in the
path of Fig. 3 are summarized in Table IV. When both 1, # 0
and § # 0, which is the case on the line connecting P1 and P2
(P1P2 in Fig. 3), the sum of the Wannier centers P is allowed
to change continuously along the lines P, = %Px + %, where
m is an integer.

The TR symmetry in the model is given by i, 7/C, with
being complex conjugation, and its action in k space given by
ky — —k; and ky — —k,. Two TR-breaking fields A and
H(Szl)3 were considered in this work:

1 V3
I‘I(Sll)3 = (_EUX —+ TO'y)fz,

V3 3 1
I‘I(Szl)3 = (—TO'X “+ Z()'y —+ EO'Z)'L'Z.

Of them, H(Sll)?’ commutes with both mirror symmetries alf“),

oD The field is applied along the line P, P5, where, according
to Table IV, both these mirrors are preserved. Therefore, the
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TABLE IV. Symmetries at the different points of the adiabatic path of Fig. 3. The wallpaper group is given in IUC and orbifold notation.

AM=56=0 A FE0,6=0 A =0,6%#0 Ay FE0,6#£0
See Fig. 3 P3 P1 P2P3 P1P2
Wallpaper group pbm, *632 p3ml, *333 cmm, 2¥22 cm, *x
Point group Dg D D, D,
Conserved symmetries cfu“”,aém,Cz,C3,C6 oM. Cy UU(“),UIE'T),CZ alth
P quantized Yes Yes Yes No

resulting WFs reflect this symmetry and the minimization of
their spread gets stuck in a local minimum. By adding the o,

component, leading to H(SZ];‘, both mirrors are broken and we
obtain the maximally localized WFs also found in Ref. [43].
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