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A fast and efficient way to calculate and generate an accurate surface energy database (of more than several
million surface energy data points) for all bcc and fcc metals is proposed based on an effective pair-wise-potential
model. The accuracy of this model is rigorously tested and verified by employing density functional theory
calculations, which shows good agreement within a mean absolute error of 0.03 eV/atom. The surface energy
database generated by this model is then visualized and mapped in various ways; namely, the surface energy
as a function of relative orientation, a orientation-dependent stereographic projection (the so-called Wulff net),
and Gibbs–Wulff construction of the equilibrium crystal shape, for comparison and analysis. The Wulff nets
(drawn with several million surface energy data points) provide us with characteristic surface energy maps
of these cubic metals. In an attempt to explain the surface energy anomaly in bcc Li, we demonstrate how
our effective-pair-potential-derived Wulff net can clearly discriminate the strong influence of the second- and
third-nearest-neighbor bonds on the high-Miller-index surface energetics of bcc Li.
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I. INTRODUCTION

The surface energy γ of a solid is a basic yet central
physical quantity of paramount importance and influences
many important physico-chemical processes such as inter-
face adhesion, heterogeneous industrial catalysis, oxidative
corrosion, and shape-controlled crystal growth. However,
direct experimental measurements of these anisotropic surface
energies are nontrivial and are also subject to experimental
uncertainties such as the presence of impurities [1,2].

In view of the difficulties in obtaining experimental surface
energies, including their orientation dependence, accurate
electronic-structure calculations based on first-principles den-
sity functional theory (DFT) using the (semi) local ap-
proximations to the exchange-correlation (xc) functional are
typically employed. These studies may indeed have provided
an understanding of qualitative trends of surface energies
[3–5]. However, most of these studies have largely focused
on the study of atomically flat low-Miller-index surfaces. A
simple, systematic, yet accurate approach to study the stability
of these vicinal metal surfaces (of any surface orientation) is
still computationally challenging and not easily attainable.

In essence, γ is the energy cost of making a surface from
the corresponding bulk system by cutting chemical bonds as
defined by the surface orientation. Thus, a possible starting
point is the following simple expression that relates the surface
energy as a function of coordination numbers of surface and
bulk atoms: γ = (1 − √

CS/CB)Ecoh where CB and CS are the
full coordination number in the bulk and the local coordination
number of surface atoms, respectively, and Ecoh is the bulk
cohesive energy [6,7].

This overly simplified expression only considers the surface
energy as a function of the cohesive energy of the metal atoms
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and its nearest-neighbor bonds. Alternatively, Galanakis et al.
proposed that γ could also be predicted by using the concept of
surface anisotropy ratio—i.e., the ratio of the surface energy of
interest to that of the most stable surface [e.g., γ (hkl)/γ (111)
for fcc] [8,9].

A step further was taken by Da Silva et al. by using an
effective pair-potential (EPP) model (see Refs. [10–12]) to
calculate the surface energies of fifteen Cu surfaces [13]. The
EPP model is based on a pair-wise expansion of the energy and
takes the following form: γ (hkl) = ∑S

s=1 Ns(hkl)Vs , where
Ns(hkl) is taken as the number of broken bonds in the sth
coordination shell for the (hkl) surface, S is the number of
coordination shells to be included in the expansion, and Vs is
the sth coordination-shell-dependent EPP parameter.

Thus, importantly, one of the main aims of this work
is to predict an accurate yet tractable analytical surface
energy for thirteen bcc and eleven fcc metals by using DFT
energies as ab initio input. This affords a fast and efficient
recipe for high-throughput calculations of surface energetics
of virtually any orientation, requiring only a minimum input of
DFT-calculated low-Miller-index surface energies. We further
employ cartographic methods to stereographically project
these predicted surface energies onto so-called Wulff nets
composed of several million surface energies to provide
characteristic maps of cubic metals.

II. METHODOLOGY

A. Effective pair potential

Here, we outline the numerical approach for the calculation
of the number of broken bonds of plane (hkl), N (hkl), as
suggested by Mackenzie et al. [15]. According to this model,
the bond vectors of an atom in a crystal are defined as u. When
a plane (hkl) is cleaved, broken and unbroken bonds of the
atom located at the surface are determined by a dot product
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FIG. 1. A schematic figure of a geometrical surface system with
the plane (hkl) and the possible bond vectors, u bonds. Here, u1 bond
is considered to be a broken bond (h · ui > 0), while u2 and u3 bonds
are unbroken (h · ui � 0). dhkl denotes the spacing between adjacent
planes (hkl). The general scheme is adapted from Fig. 1 of Ref. [14].

between the normal vector of the plane, h, and each bond
vector ui (i = 1,2,3, . . .), among u as illustrated in Fig. 1.
The bond of ui is broken if h · ui > 0. Otherwise, the bond
remains intact.

Following Ref. [14], the density of broken bonds per area
of surface (hkl), n(hkl), is written as

n(hkl) =
∑

h · ui

|h|� , when h · ui > 0, (1)

where � indicates the volume per atom of the system. Next,
the number of broken u bonds per primitive unit cell, N (hkl),
can be given by

N (hkl) = n(hkl)s(hkl), when h · ui > 0, (2)

where s(hkl) is the area of the primitive unit cell of surface.
In crystal systems, s(hkl) can be defined depending on the

plane (hkl). In other words, in case of fcc, for instance, when
each component, h,k, and l, are all odd, s(hkl) = 2�|h| and
otherwise, s(hkl) = �|h|. In the similar sense, bcc metals have
the surface area of either 2�|h| when h + k + l is odd or �|h|
when h + k + l is even. Therefore, the number of broken u
bonds in the primitive unit cell of the fcc and bcc crystal,
N(hkl), at any arbitrary surface can be simplified as follows:

N fcc(hkl) = 3 + (−1)h·k·l

2

∑
h·ui , and

Nbcc(hkl) = 3 − (−1)h+k+l

2

∑
h · ui , when h · ui > 0.

(3)

Based on a simple broken-bond model, the surface energy
of plane is calculated by a product between the strength of the
first bond and the number of first broken bonds. In the same
context, the surface energy approximated by the EPP approach
is then obtained by a linear combination of the number of
further broken bonds and the EPP parameters:

γ (hkl) =
∑

N s(hkl)Vs, (4)

where N s(hkl) is the number of sth-nearest broken bonds
on the (hkl) surface and Vs is the corresponding effective
pair-interaction per bond of sth nearest neighbors, as suggested
by Vitos and Moriarty et al. [10,16]. This EPP-derived surface
energy, in principle, includes these EPP parameters up to the

sth nearest neighbors of interest and thus allows us to estimate
and predict sufficiently accurate γ (hkl).

The EPP parameters can be calculated by solving the
simultaneous equations with the surface energy of any surface
as input values. In our approach, we have chosen three
low-Miller-index surfaces for our EPP model, considering an
expansion of up to the third nearest neighbor (i.e., V1, V2,
and V3). This ensures not only the accuracy of the prediction,
but also the inclusion of the most representative and relevant
surfaces in bulk cubic metals.

B. Computational details

All density functional theory (DFT) calculations for the
bulk and surface properties of 24 metals (13 bcc metals: Li,
Na, K, Rb, Cs, Ba, V, Nb, Ta, Cr, Mo, W, and Fe; 11 fcc metals:
Ca, Sr, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, and Al) are performed
by using the Vienna ab initio simulations package (VASP)
code [17,18]. A plane-wave basis set with a kinetic-energy
cutoff of 500 eV [except for Li (600 eV) and Na (800 eV)]
is employed, within the projector augmented-wave (PAW)
approach [19]. The generalized gradient approximation to the
exchange-correlation functional (GGA) due to Perdew et al.
(PBEsol) [20] is used, which has been known to perform well
for bulk and surface properties of metals.

The Brillouin-zone integrations are performed by using
a �-centered k-point grid with a k-spacing method which
allows for the smallest spacing of 0.15 Å−1 for bulk lattice
optimization (for alkali and alkaline-earth metals, a smaller
spacing of 0.10 Å−1 is used, yielding a denser k mesh). The
number of irreducible k points for all metals are reported in
Tables S1 and S2 in the Supplemental Material (SM) [21].
The k meshes for all metal surfaces are then scaled according
to the surface unit cell dimensions. All DFT calculations
for the structural optimization are performed, ensuring the
convergence of the total energies and forces on atoms to within
10−4 eV and 10−3 eV/Å, respectively.

Spin polarization for ferromagnetic metals (Fe and Ni) are
explicitly considered. The calculated magnetic moments for Fe
and Ni are 2.07 and 0.63 μB/atom, respectively. They agree
fairly with the reference 2.22 and 0.60 μB/atom for Fe and Ni,
respectively [22].

Spin-polarized calculations are also performed for all metal
atoms, using a 15×15.5×16 Å3 asymmetric cell. In addition,
in order to determine the accurate ground-state configura-
tions of these atoms, Hund’s rule is enforced where partial
occupancies are prohibited. Namely, only fully occupied or
unoccupied states (i.e., 1 or 0) for orbital occupancies are
allowed.

In cases of surface calculations, a symmetric slab with
an 18 Å vacuum region is used. The thickness of slabs is
chosen after carefully testing that the total energy converges
to within 1 meV/atom. For the low-Miller-index surfaces of
(100), (110), and (111), 13 atomic layers (ALs) have been
used. The five innermost layers are fixed to their bulk positions
and all other layers are fully relaxed. In order to verify the
accuracy of the surface energy calculated by the EPP model,
we additionally calculated some selected higher-Miller-index
surfaces of both bcc and fcc metals.
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TABLE I. Errors in lattice constants a0, bulk moduli B0,
and cohesive energies Ecoh of bcc and fcc metals are compared
with both experimental (Expt.) and theoretical (Theor.) references
[23–26]. MAE stands for mean absolute error (in Å, GPa, and
eV/atom, respectively), Max. AE stands for maximum absolute error
(in Å, GPa, and eV/atom, respectively), MARE stands for mean
absolute relative error (in %), and MRE stands for mean relative error
(in %).

a0 B0 Ecoh

bcc Expt. Theor. Expt. Theor. Expt. Theor.

MAE 0.04 0.01 22.15 3.22 0.33 0.02
Max. AE 0.10 0.03 121.87 13.44 1.40 0.11
MARE 1.1 0.3 14.4 2.8 7.5 0.5
MRE − 1.1 0.0 13.9 − 0.1 6.5 0.3

a0 B0 Ecoh

fcc Expt. Theor. Expt. Theor. Expt. Theor.
MAE 0.03 0.01 14.74 1.75 0.54 0.04
Max. AE 0.13 0.02 41.27 6.49 1.39 0.09
MARE 0.7 0.2 7.9 1.3 12.1 0.9
MRE − 0.6 − 0.1 7.3 − 1.1 11.6 0.1

Specifically, for bcc metals, (210), (211), (310), and (321)
are selected, while (210), (211), (311), and (331) are chosen
for fcc metals. For these high-Miller-index surfaces, a slab
model of 19 ALs has been used. All surfaces of (210), (211),
(310), and (321) for bcc metals and (210), (211), (311), and
(331) for fcc consist of 19 ALs. Here, the five innermost ALs
are fixed to their bulk positions while all other layers are
fully relaxed. To include the possible influence of high-angled
surface steps and kinks on our calculated surface energies, we
have also tested much-higher-Miller-index surfaces [namely,
(410), (411), (755), and (911) surfaces], which are reported in
the SM.

The DFT-derived surface energies γ are calculated based on
the equation, γ = (Eslab − N slabEbulk)/(2A), where A is the
area of surface structure, Eslab is the total DFT energy of the
slab system, N slab is the number of metal atoms in the system,
and Ebulk is the total DFT energy per atom of the metal bulk.

III. RESULTS AND DISCUSSIONS

A. Bulk properties of cubic metals

Bulk properties, such as lattice constant a0, bulk modulus
B0 (by fitting to the third-order Birch–Murnaghan equation of
state [27]), and cohesive energy Ecoh, of 24 fcc and bcc metals
are calculated by using the PBEsol functional. We analyze and
present their associated errors, such as mean absolute error
(MAE), maximum absolute error (Max. AE), mean absolute
relative error (MARE), and mean relative error (MRE) in
Table I. The calculated value for each property is then listed
in Tables S1 and S2 of the SM. Overall, our calculations show
excellent agreement with theoretical reports within 0.01 Å (in
lattice constants), 2.55 GPa (in bulk moduli), and 0.03 eV (in
cohesive energy) as mean absolute error (MAE), whereas only
some cases (e.g., Cr and Fe) show a larger difference with the
reported experimental value for B0 [23–26].

TABLE II. DFT-calculated unrelaxed (γun) and relaxed (γr)
surface energies (in units of eV/Å2) of low-Miller-index surfaces
of bcc and fcc metals and the corresponding experimental surface
energies (eV/Å2).

100 110 111 Ref.

bcc γun γr γun γr γun γr Expt.

Li 0.030 0.030 0.033 0.033 0.036 0.035 0.033a

Na 0.015 0.015 0.014 0.014 0.017 0.017 0.016a

K 0.008 0.008 0.007 0.007 0.009 0.009 0.009a

Rb 0.006 0.006 0.006 0.006 0.007 0.007 0.007a

Cs 0.005 0.005 0.004 0.004 0.006 0.006 0.006a

Ba 0.023 0.023 0.023 0.023 0.029 0.028 0.024a

V 0.179 0.167 0.170 0.166 0.208 0.186 0.164a

Nb 0.177 0.164 0.148 0.145 0.186 0.164 0.169a

Ta 0.186 0.171 0.165 0.161 0.211 0.186 0.197a

Cr 0.265 0.253 0.227 0.224 0.261 0.243 0.147a

Mo 0.236 0.218 0.194 0.189 0.229 0.206 0.187a

W 0.285 0.267 0.222 0.218 0.268 0.240 0.230a

Fe 0.196 0.195 0.187 0.187 0.210 0.205 0.147b

100 110 111 Ref.

fcc γun γr γun γr γun γr Expt.
Ca 0.032 0.032 0.037 0.037 0.033 0.032 0.031a

Sr 0.024 0.024 0.029 0.029 0.025 0.025 0.026a

Rh 0.181 0.177 0.187 0.179 0.154 0.152 0.169c

Ir 0.211 0.202 0.219 0.205 0.162 0.160 0.187c

Ni 0.164 0.163 0.173 0.169 0.142 0.142 0.149a

Pd 0.116 0.115 0.125 0.122 0.099 0.099 0.125d

Pt 0.140 0.139 0.152 0.142 0.113 0.113 0.125e

Cu 0.114 0.113 0.123 0.120 0.104 0.104 0.114f

Ag 0.071 0.071 0.076 0.075 0.067 0.067 0.078c

Au 0.074 0.074 0.081 0.077 0.063 0.063 0.094e

Al 0.066 0.065 0.072 0.072 0.059 0.058 0.071e

aReference [28].
bReference [29].
cReference [30].
dReference [31].
eReference [32].
fReference [1].

B. Surface properties of low-Miller-index surfaces

Having optimized the bulk structure, symmetric slab mod-
els of metal surfaces are constructed. We considered both
bulk truncated surface models (i.e., no relaxation) as well as
those where only a few outermost layers are fully relaxed
as written in Methodology. The calculated surface energies
of the unrelaxed and relaxed models are listed in Table II
and plotted in Fig. 2. The experimentally measured surface
energies cannot be directly compared to our results due to
isotropic experimental values. However, one can find that our
results agree well with experiments generally, since the PBEsol
functional was, in part, developed for the purpose of providing
a more accurate description of the surface energy [20].

Parabolic trends are observed in Fig. 2, showing a depen-
dence on the d-electron occupation. The metals with half-filled
d orbitals show higher surface energies than others, whereas
the metals with fully occupied and empty d orbitals exhibit
smaller energies [33–36]. The most-close-packed surfaces
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FIG. 2. Comparisons of DFT-calculated surface energies of low-
Miller-index surfaces as a function of elements. Red, orange, and
blue indicate (100), (110), and (111) surfaces, respectively. Solid
lines with circles and dotted lines with squares denote relaxed and
unrelaxed surfaces, respectively.

[(110) for bcc and (111) for fcc] are generally the most
energetically favorable, which could be rationalized by the
broken-bond model [16]. It can also be found that metals with
half-filled d orbitals and those with a less compact surface tend
to exhibit a much larger surface relaxation effect.

To test the influence of spin-orbit coupling (SOC) on surface
energies of heavy metals, we considered the low-Miller-index
surfaces of two bcc (Mo and W) and fcc metals (Ag and
Au). Compared with those without the consideration of SOC,
surface energies of Au increase by approximately 3%, while
those of W decrease when SOC is explicitly considered.
Surface energies of Ag and Mo are not changed when SOC is
included, as shown in Table S4 in the SM. Similar observations
have been reported in the literature [8,9]. Nevertheless, to
verify the effective influence of SOC on the DFT-derived EPP
numbers, we checked that the overall trends in the obtained
EPP are not changed. Therefore, we neglect the SOC effect
in our DFT calculations given that SOC does not significantly
affect the surface energy and the EPP parameters of the metals
of our interests.

C. Validation of effective pair-potential approach

We obtain the effective pair-potential (EPP) parameters
V1, V2, and V3 by solving simultaneous equations of γ (100),
γ (110), and γ (111), following Eq. (4). These unique param-
eters allow us to calculate the surface energy of any plane of
interest by taking the number of broken bonds into account.
The number of broken bonds, the EPP parameters, as well
as the predicted surfaces of some high-Miller-index surfaces
are shown in Tables S3 and S5 and in Fig. S1 in the SM,
respectively.

In order to verify the accuracy of our results, we also
perform a benchmark with DFT surface energies for selected
high-Miller-index surfaces. We have chosen four surfaces of
four metals for both fcc and bcc, respectively. The chosen
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FIG. 3. Surface energy comparisons between DFT and EPP
model for selected high-Miller-index surfaces for (a) unrelaxed and
(b) relaxed systems. (210), (211), (310), and (321) surfaces for bcc
(Li, K, Mo, and W) with squares and (210), (211), (311), and (331)
surfaces for fcc (Cu, Pd, Ag, and Pt) with circles are calculated,
respectively. Absolute relative errors between DFT and EPP energies
are represented by gradient colors. 0%, 3%, and 6% are shown with
blue, red, and green, respectively.

surfaces are (210), (211), (310), and (321) of Li, K, Mo, and W
for bcc metals and (210), (211), (311), and (331) of Cu, Pd, Ag,
and Pt for fcc metals, respectively. The criteria for the choice
of surfaces is that these surfaces have the lowest number of
broken bonds as compared to the low-Miller-index surfaces.
These surfaces are possibly also more relevant due to their
relatively lower surface energies. The energy comparisons
between DFT and EPP are plotted in Fig. 3 and listed in
Table III, while their absolute values are listed in Table S6 in the
SM for both the unrelaxed and relaxed surfaces. Overall, our
EPP results agree very well with our calculated DFT surface
energies. Here, we find that the EPP model shows a much better
agreement for unrelaxed surfaces than for relaxed surfaces, i.e.,
with 1.2% and 2.4% of mean absolute relative error (MARE)
for the unrelaxed and relaxed surfaces, respectively. This is
easily rationalized by the fact that the broken-bond model is
based only on the bond energy in the ideal bulk system. This
naturally excludes possible atomic relaxation effects. When it
comes to the relaxed surfaces in reality, many surface processes
and possible reconstructions will deviate from this simple
bond-cutting model. However, we have included the relaxation
effect in an average way by employing DFT-derived energies
of relaxed surfaces.

TABLE III. Error analysis between the DFT-calculated and EPP-
predicted surface energies of selected high-Miller-index surfaces [i.e.,
(210), (211), (310), and (321) for bcc and (210), (211), (311), and
(331) for fcc] for both unrelaxed and relaxed surfaces, respectively.
The mean absolute error (MAE) and maximum absolute error (Max.
AE) are reported in units of eV/atom and the mean absolute relative
error (MARE) and mean relative error (MRE) are given in percent.

bcc fcc

% Unrelaxed Relaxed Unrelaxed Relaxed

MAE 0.01 0.02 0.02 0.03
Max. AE 0.13 0.22 0.11 0.14
MARE 1.0 2.5 1.4 2.2
MRE 0.4 2.5 0.9 2.1
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We consider much-higher-Miller-index surfaces which
have a greater number of broken bonds, which allows us
to further validate the EPP approach. (410), (411), (755),
and (911) planes for bcc Mo and W and fcc Cu and Ag
are considered. Mean relative errors of 1.1% and 2.0% for
unrelaxed and relaxed surfaces are obtained, respectively.
The error is rather similar to that of the surfaces analyzed
above. This tells us that the EPP approach would give uniform
predictions on higher-Miller-index surfaces. Details of the
calculated values are given in Table S7 in the SM.

By using a combination of those low- and high-Miller-index
surfaces, we generated two different sets of surface energies
as inputs for our EPP model so as to compare their fit results
with those obtained by using low-Miller-index surfaces to
derive the EPP parameters. Our results are shown in Table
S8 in the SM. We notice that these two sets of derived EPP
parameters show the same trend as for the low-Miller-index
case. However, a larger deviation in the absolute values derived
by using the mixed set is evident. We rationalize this deviation
as originating from the pressure of steps and kinks in the high-
Miller-index surfaces which are absent in the low-Miller-index
surfaces. Thus, to promise a higher degree of transferability
of the EPP parameters without compromising the reported
accuracy, we suggest using the set of low-Miller-index surfaces
to determine accurate EPP parameters.

We would also like to take this chance to further comment
on the DFT-derived EPP values in Table S5 in the SM.
One may notice small and negative values for some V2 and
V3 parameters. The physics of the bond-cutting model, in
principle, demands that all EPP values should be positive.
In this work (and also in Ref. [13]), the very small negative
values found in the Table S5 in the SM are due to an unphysical
artifact from solving these simultaneous linear equations. As
seen, these values are generally very close to zero and do not
affect our conclusion.

D. Surface energy maps

Successfully validating the accuracy of EPP approach
as well as having a full list of EPP parameters for all
24 cubic metals, it becomes fairly trivial to generate the
surface energy of any orientation by using Eq. (4). Thus,
following the process outlined in Fig. 4, we could provide the
“informatics” of surface energies of 24 metals with roughly
32 000 surfaces, encompassing all crystal planes from {100}
to {20 20 20}. Since this large database is able to give us
clear trends of surface energetics, as shown in Fig. S2 in the
SM, we postprocess it by using various means of visualization
techniques, as illustrated below.

We first plot the EPP-derived (relaxed and unrelaxed) sur-
face energy of these metals as a function of relative orientation
θ along low-Miller-index planes [i.e., from (100) → (111) →
(110) → (100)]. Here, θ is defined as an angle between the
surface of interest and of the surface of reference. These γ (θ )
plots for the representative fcc metal (Cu) and bcc metal (W)
are shown in Figs. 5(a) and 5(b) while that of the remaining 22
metals are shown in Figs. S3, S4, and S5 in the SM. In general,
we find that the surface relaxation effects in s metals are less
pronounced than in the transition d metals.

Choose a metal

START

Input values

More surfaces?

More metals?

Surface energy
database

Vs: sth effective 
pair-potential
parameters

Accumulate
a datum

Calculate γ (hkl)
γ (hkl) = ΣVsns

ns: the number of 
sth broken-bonds

Yes
No

No

END

Yes

Surface energies
(e.g. DFT, RPA, 
and experiments...)

FIG. 4. A flowchart of the effective pair-potential approach to
generate the database of surface energies of metal systems.

At first glance, the general dispersion of the surface energy
plot agrees well with that reported in the literature [35,37].
The bcc metals exhibit the lowest cusp in the γ (θ ) plot for the
(110) surface, while fcc metals do so for the (111) surface.
Interestingly, a non-negligible lowering of the surface energy
is noticed for the (211) surface of bcc metals. For the bcc
s metals, γ (211) is found to be even lower in energy than
γ (111) (with the exception of Li), while γ (211) is found to be
almost similar in energy to γ (111) for the bcc d metals. This
lowering of the (211) surface energy is also confirmed by DFT
calculations. One possible explanation could be attributed to
the directionality of the d orbitals in bcc d metals as opposed
to the more spherical s orbitals found in the bcc s metals.

Next, we visualize the surface energies via a stereographic
projection using the Cartesian coordinates of γ (x,y) onto a
plane. Following the definition of stereographic projection,
the integer Miller index (h,k,l) can be converted to Cartesian
coordinates (x,y) in the unit circle by the equation

(x,y) =
(

h

l + √
h2 + k2 + l2

,
k

l + √
h2 + k2 + l2

)
. (5)

This way of mapping the surface energies leads to a
generation of a stereographic net and is commonly termed
the “Wulff net” [38,39]. One advantage of the Wulff net is
that it allows one to visualize crystallographic planes as points
on circular arcs in a circle, thus producing a clear “atlas” of
surface energies. Every data point on the Wulff net corresponds
to its crystallographic plane (hkl) colored with its EPP-derived
surface energy.
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FIG. 5. (a), (b) Surface energies as a function of relative orientation [(100) → (111) → (110) → (100)], (c), (d) Wulff nets made up of
surface energies calculated by the EPP model, and (e), (f) predictions of equilibrium crystal shapes (ECSs) are shown for bcc W and fcc Cu.
In panels (c) and (d), colors of each point are describing surface energies of the system. High symmetric surfaces are indicated by blue dots. In
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The Wulff nets for Cu and W are plotted in Figs. 5(c)
and 5(d), respectively (see the SM for all remaining metals).
As seen in both Wulff nets, the primary structural boundaries
of fcc [i.e., (111) → (100) → (110)] and bcc [i.e., (110) →
(211)] are clearly shown. Also, via these stereographic Wulff
nets, the relative surface energetics for each element is clearly
displayed (i.e., aided by the contrast of colors) for further
analysis. In the case of W, the surfaces in the triangular region
enclosed by (111), (211), and (110) are energetically more
stable than those in the domain surrounded by (100), (211),
and (110). On the other hand, for Cu, it can be seen that surfaces
near the (111) plane are energetically more favorable.

Thus far, we have expressed the EPP-derived surface
energies in two-dimensional plots, either as a function of the
orientation angle or as a stereographic projection on a plane.
Another popular way to illustrate relative surface energies is to
construct a geometrical polyhedron based on the Gibbs–Wulff
theorem, yielding the thermodynamic equilibrium crystal
shape (ECS) [38,39]. As shown in previous reports, the ECS
has been used successfully to predict and explain observed
morphologies of nanocrystals [31,40–42]. According to the
Gibbs–Wulff theorem, the mathematical construct can be
expressed as follows:

r(d) = min [αγ (θ )]. (6)

where r(d) represents the radius of the crystal shape in the
direction of the vector d, and α is a proportionality constant.
By the Gibbs–Wulff theorem, one returns to the smallest
volume enveloping the origin inside all other crystallographic
directions as the thermodynamically most stable morphology
for a particular crystal.

Using the EPP-derived surface energies from the surface
energy database, and including both low- and high-Miller-
index surfaces of the cubic metals considered in this work, we
construct the ECS for all 24 metals, showing again only that
of Cu and W in Figs. 5(e) and 5(f), respectively. Accordingly,
the exposure of high-Miller-index surfaces [e.g., (211) for W
and (210) and (311) for Cu] is predicted via EPP-derived ECS
for selected metals. It was indeed highlighted in experimental
studies that the inclusion of high-Miller-index surfaces for ECS
prediction could be crucial, e.g., adsorbate-induced faceting
of {112}, {123}, and {178} surfaces in W and Mo systems
by Pt and Pd adatoms, and this has been reiterated in recent
theoretical works [31,43–45]. From the generated Wulff nets
and Wulff polyhedrons, it could be suggested that the high-
Miller-index surfaces near the (111) plane of Cu or in the
stereographic region along the (111) → (110) → (211) path
of W, as shown in Figs. 5(c) and 5(d), is potentially modulated
for the benefit of shape-controlled metal-particle synthesis.

E. Case study of Li

Having explained the numerical approach to surface
energetics—from data generation to its visualization, using
bcc Li as an example—we demonstrate the importance of how
the EPP approach can clearly discriminate the strong influence
of the second- and third-nearest-neighbor bonds (i.e., V2 and
V3) on the high-Miller-index surface energetics.

In Fig. 6(a), the primary structural boundaries of bcc [i.e.,
(110) → (321) → (211)] are found to be barely visible in the
Wulff net of Li, in contrast to those in other soft alkali s

metals such as K and Rb. Tracing back to the γ (θ ) plot of Li,
we find that the γ (100) of Li is much lower in energy than
γ (110), unlike most bcc metals where the (110) surface has
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the lowest energy [see Fig. 6(c)]. We stress that both EPP- and
DFT-derived surface energies reflect this anomaly. Looking
at the EPP parameters of Li, it is found that the V2 of Li is
approximately 2.5 times larger than V1 (i.e., V1 = 23.2 meV
while V2 = 58.6 meV) and, more surprisingly, V3 works out to
be almost 80% that of V1 (i.e., V3 = 18.1 meV). Similar trends
are observed when the different input sets [(100), (210), and
(211); (100), (110), and (211)], as shown in Table S10 of the
SM. The individual impact of these EPP parameters (NsVs)
has been untangled in Fig. 6(a) to illustrate their contribution
to the net surface energy of Li.

By definition, the EPP parameter Vs intrinsically reflects the
strength of the effective bond pair interaction of the sth nearest
neighbor [10,16]. Utilizing the Wulff net of Li, we traced
the relative surface energy variation along different pathways:
between (211) and (110) in Fig. 6(b), between (100), (110), and
(111) in Fig. 6(c), and between (310) and (332) in Fig. 6(d). The
former pathway (211) → (110), which satisfies h − k − l =
0, contains the primary surfaces of bcc mainly stabilized
by the first-nearest-neighbors bonds, (1/2)〈111〉, while the
other pathways [(100) → (110) → (111) and (310) → (332)]
contain the secondary and tertiary surfaces by (1/2)〈110〉 and
(1/2)〈331〉, respectively, as defined by Jenkins et al. [46]. In the
primary boundary as shown in Fig. 6(b), one can hardly tell the
difference between Li and other bcc metals (e.g., Nb and W).
However, when it comes to the secondary and tertiary zones
in Figs. 6(c) and 6(d), the relative surface energy variation
of Li misses the cusp at (211) and (321) (i.e., intersection
boundary with the primary zone), respectively, distinguish-
ing itself from other bcc metals that exhibit a noticeable
cusp.

This observed surface energy trend can be explained by
the energy cost of cutting these unusually strong second- and
third-nearest-neighbor bonds in bulk bcc Li. This accounts for

the significant increase in the surface energetics beyond the
simple (100) surface, and this physical phenomenon is readily
captured by the EPP-derived Wulff net of Li. The importance
of this finding leads to the fact that specific primary planes
that are meant to be stable in typical bcc metals [i.e., planes
near the pathway between (211) and (110)] could become
unstable in bcc Li due to the relatively strong interaction of
the second- and third-nearest-neighbor bonds. This gives us
a clear conclusion that surface energetics of bcc Li cannot
be adequately described by merely considering only the first-
nearest-neighbor broken bonds nor by the investigations of
typical low-Miller-index surfaces.

IV. CONCLUSION

To conclude, we propose a first-principles-based effective
pair-potential (EPP) model (beyond the first-nearest-neighbor
bond) to generate a surface energy database for a total
of 24 cubic fcc and bcc metals. The EPP-derived surface
energy database is verified to be within 1% accuracy of
DFT calculations. With the database, two-dimensional Wulff
nets and three-dimensional Wulff polyhedrons provide an
“infographics” of accurate and yet efficient surface energetics
to discriminate nearest-neighbor-bond contributions to the
overall “surface energy atlas” of these pristine cubic metals.
Based on this approach, we have also attempted to interpret
an anomaly found in surface energies of bcc Li by analyzing
the strong influence of the second- and third-nearest-neighbor
bonds to its surface energies. Notwithstanding, it is expected
that the EPP-derived surface energy database in this work
serves as a good platform to improve the mathematical
construct for a more realistic model for real applications, e.g.,
supported metal nanocatalysts [47,48].
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