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Hierarchy of gaps and magnetic minibands in graphene in the presence
of the Abrikosov vortex lattice
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We determine the bands and gaps in graphene subjected to the magnetic field of an Abrikosov lattice of
vortices in the underlying superconducting film. The spectrum features one nondispersive magnetic miniband
at zero energy, separated by the largest gaps in the miniband spectrum from a pair of minibands resembling a
slightly broadened first Landau level in graphene, suggesting the persistence of ν = ±2 and ±6 quantum Hall
effect states. Also, we identify an occasional merging point of magnetic minibands with a Dirac-type dispersion
at the miniband edges.
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Studies of superlattices in two-dimensional (2D) electron
systems recently have been boosted by the development of
van der Waals heterostructures of graphene with hexagonal
boron nitride (hBN). In such systems, the superlattice effects,
observed in scanning tunneling microscopy (STM) spectra
[1–3], magnetotransport characteristics [4–6], and quantum
capacitance [7], are produced by a periodic moiré pattern,
with the period a determined by a slight incommensurabil-
ity and misalignment between graphene and hBN crystals
[1,8,9] and reflect the formation of superlattice minibands
for graphene’s Dirac electrons [4,7,9]. To a large extent, the
possibility to observe the superlattice effects in graphene-hBN
heterostructures owes to the high mobility of electrons in such
systems, where graphene is encapsulated between hBN sheets
both protecting from contamination and permitting to vary
the electrons’ density over a broad range using electrostatic
gates. When subjected to a strong external magnetic field, the
superlattice leads to the formation of a “Hofstadter butterfly,”
a sparse spectrum of minibands [10–12] formed at magnetic
field values corresponding to the magnetic flux � = p

q
φ0

(through the area S = √
3a2/2 of the superlattice unit cell)

commensurate with the flux quantum φ0 = h/e.
Here, we consider a magnetic superlattice [13–18] that

can be realized in a ballistic hBN-graphene-hBN stack by
placing it over a high-Hc2 superconductor film (e.g., Nb, W, or
MoRe alloys). In such a system, where no alignment control of
graphene and hBN lattices is required, the long-range periodic
structure is caused by the Abrikosov lattice of vortices [19,20]
formed in a superconductor subjected to an external magnetic
field H < Hc2, sketched in the inset of Fig. 1. In contrast
to the earlier theories developed for spatially alternating
magnetic fields with a zero average [21–26], the Abrikosov
lattice produces magnetic induction with a spatial average
B = φ0/(

√
3a2) linked to the magnetic lattice period a. As

each vortex carries the flux h/2e, the vortex lattice realizes
the simplest fundamental fraction p

q
= 1

2 in the Brown-Zak
commensurability condition for a magnetic field flux in a 2D
periodic system [10,11].

Figure 1 shows the hierarchy of bands and gaps in the
corresponding spectrum of Dirac electrons calculated in this
work and plotted as a function of 4πλ2B/φ0. The latter
parameter characterizes the ratio between the lattice period
a =

√
φ0/

√
3B and the penetration depth λ in a superconductor.

The spectrum in Fig. 1 features one degenerate magnetic
miniband which precisely coincides with the zero-energy
m = 0 Landau level (LL) that is peculiar for Dirac electrons,
and two other low-energy bands which resemble slightly
broadened m = ±1 LLs. At the same time, the higher-energy
minibands (traceable at 4πλ2B/φ0 � 1 to LLs with |m| � 1 at
E = m

|m|v
√

2|m|�eB, m ∈ Z) are strongly broadened, and they
overlap on the energy scale when a � λ, forming Dirac-type
features at conjoint miniband edges.

The distribution of the magnetic field of Abrikosov’s lattice
(for isotropic superconductors, the vortex lattice is hexagonal)
is given by [19,20]

H (r) =
∑
Ri

Hv(r − Ri), Hv(r) = 1

2π

φ0

2λ2
K0

( r

λ

)
,

where Ri picks the location of each individual vortex with
the field profile given by the modified Bessel function of
the imaginary argument, with K0(x � 1) ≈ ln 1

x
and K0(x �

1) ≈ √
π
2x

e−x . For convenience, we use a Fourier representa-
tion for the periodic field of the vortex lattice [20] and the
corresponding vector potential,

H (r) = B

⎛
⎝1 +

∑
gn1n2

1

1 + λ2g2
n1n2

e−ign1n2 ·r

⎞
⎠,

A = Ā − �

e

√
3

8π

∑
n1n2

l̂z × ∇e−ign1n2 ·r

ω2
n1n2

(
1 + α-2ω2

n1n2

) , (1)

(∇ × Ā)z = B ≡ h/e√
3a2

, α ≡
√

3a

4πλ
,

and a nonorthogonal coordinate system adjusted to the hexag-
onal symmetry of the vortex superlattice,

gn1n2 = g ẑ × (n1 x̂1 + n2 x̂2),

ωn1n2 =
√

n2
1 + n2

2 + n1n2, g = 4π/(
√

3a),

x̂1 = 1

2
x̂ +

√
3

2
ŷ, x̂2 = −1

2
x̂ +

√
3

2
ŷ.
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FIG. 1. Spectrum of Dirac electrons in graphene in a magnetic
field of an Abrikosov vortex lattice, with one degenerate band at
E = 0. Energy is scaled as v

√
2�eB ≡ 2

31/4 v
√

π/a, and the magnetic
field as 4πλ2B/φ0. Inset: Second and third miniband dispersions over
the folded magnetic Brillouin minizone near their touching condition.

The spectrum of electrons in the K and K ′ valleys of
graphene is determined by the Hamiltonian

H = vσ · ( p − e Ā)

+ �vσ ·
√

3

8π

∑
n1n2

l̂z × ∇e−ign1n2 ·r

ω2
n1n2

(
1 + α-2ω2

n1n2

) , (2)

where Ā = hx1(−x̂1 + 2x̂2)/(3a2e), x1 = x + 1√
3
y, x2 =

−x + 1√
3
y, and v ≈ 106 cm/s is the Dirac velocity in

graphene. This Hamiltonian acts in the space of two-
component wave functions describing the electrons’ ampli-
tudes on the A and B sublattices of the honeycomb lattice of
carbons, with the basis choice [	(A),	(B)] in valley K and
[	(B), − 	(A)] in valley K ′: This choice provides us with
the same form of the Hamiltonian in both valleys.

To find the magnetic miniband spectrum corresponding to
Hamiltonian (2), we use [12] the basis of Bloch states (with
s = −N /2, . . . ,N /2, and t = 0,1),∣∣m

t
(k)

〉 = 1√
N

∑
s

e−i2sk1aψ
k2+

√
3

4 g(2s+t)
m ,

(3)

k1 = 1

2
kx +

√
3

2
ky, k2 = −1

2
kx +

√
3

2
ky,

built of LL states ψm, Em = m
|m|

�v
a

√
π√

3
|m| (m ∈ Z) of Dirac

electrons in a homogeneous magnetic field B [27]:

ψ
k2
0 = eik2x2

√
L

(
ϕ0

0

)
, ψ

k2
m	=0 = eik2x2

√
2L

(
ϕ|m|

m
|m|e

i π
3 ϕ|m|−1

)
,

ϕn = Cn

(
2π√
3a2

)1/4

e
− 1

2 z2
k2

(1+ i√
3

)Hn

(
zk2

)
, (4)

Cn =
√

3√
π2(n+1)n!

, zk2 = 31/4

√
2π

(
π

a
x1 + k2a

)
.

Here,Hm are Hermite polynomials, and the sign of m identifies
the conduction (m > 0) and valence (m < 0) band states.

The states in the basis set |mt (k)〉 transform according to the
irreducible representations of the symmetry group M2

6 of the
vortex lattice field, which includes C6 rotations and magnetic
translations G = {�̂X = eiπn′

1x2/aT̂X ,X = n′
1a x̂1 + n′

2a x̂2} ⊂
M2

6. In contrast to usual translations, magnetic translations do
not commute with each other, �a1�a2 = −�a2�a1 , however,
the group M2

6 contains an Abelian subgroup,

G ′ = {�̂R = eiπn′
1x2/aT̂R,R = 2n′

1a x̂1 + 2n′
2a x̂2},

which is formed by translations on a superlattice with an
isotropically doubled period and a unit cell area 4S. Because
of this, it is possible to classify the states on the magnetic
superlattice using the wave vector q taken over the folded
Brillouin zone (BZ) with the area

√
3

8 g2, four times smaller
than the BZ area of the geometrical vortex lattice. Each of
these folded states is twofold degenerate [10,12], which is
prescribed by the anticommutation, �a1�a2 = −�a2�a1 , of
the operators of elementary translations. By analyzing the
characters of the magnetic translation group M2

6, one can
find that the latter features six different two-dimensional
irreducible representations related to the states with the wave
vector q = 0 in the center of magnetic BZ. In practice, these
six types of irreducible representations can be constructed
using linear combinations of Bloch functions |±(6M+N)

t (k)〉
with different M � 0 but fixed N = 0,1,2,3,4,5.

Using the basis of Bloch functions in Eq. (3), Hamiltonian
Eq. (2) can be represented in the form of the Heisenberg matrix,

〈m
t

(k)
∣∣H∣∣m̃

t̃
(k̃)

〉 = �v

a

√
4π√

3
δt,t̃ δk,k̃

⎡
⎣ m

|m|
√

|m|δm,m̃ +
∑
n1n2

e−i2n1k1a

√
(1 + δm0)(1 + δm̃0)

μ
k2+

√
3

4 gt,k2+
√

3
4 g(n1+t)

m,m̃,n1,n2

ω2
n1n2

(
1 + ω2

n1n2
α-2

)
⎤
⎦,

μ
κ,κ̃
m,m̃,n1,n2

= m

|m| (n1e
iπ/3 + n2)V|m|−1,|m̃|(n2,κ,κ̃) − m̃

|m̃| (n1e
−iπ/3 + n2)V|m|,|m̃|−1(n2,κ,κ̃), (5)

VN,Ñ (n2,κ,κ̃) = 1√
6
CNCÑ

∫ ∞

−∞

dx1

a
HN (zκ )HÑ (zκ̃ )e− 1

2 z2
κ (1− i√

3
)
e
− 1

2 z2
κ̃ (1+ i√

3
)
ei

√
3

2 n2x1g,

where zκ = 31/4√
2π

(π
a
x1 + κa).
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In Fig. 1, we show bands (shaded) and gaps (white intervals)
in the spectrum obtained by numerical diagonalization of
the Heisenberg matrix (5). In this calculation we used 80
LLs to guarantee the convergence of the energies in the
lowest 20 bands on the conduction and valence band sides,
and we included all points gn1n2 in the reciprocal space
such that |gn1n2 | � 64π/(

√
3a). The calculated energies are

scaled with v
√

2�eB ≡
√

4π
31/4 �v/a (energy of |m| = 1 LL in

a homogeneous field B), and they are shown for various
values of 4πλ2B/φ0, the parameter we use to characterize
the magnetic field distribution across the unit cell. The band
diagram in Fig. 1 is electron-hole symmetric, and the hierarchy
of bands and gaps in this spectrum is universal, as it can be
applied to Dirac electrons in the field of a vortex lattice in a
film of any isotropic type-II superconductor. To mention, due
to the large demagnetization factor of a film, vortices enter
the film at a field much lower than the nominal first critical
field of a bulk superconductor, hence justifying the regime of
4πλ2B/φ0 � 1. We have set the upper side of the interval of
4πλ2B/φ0 � 2 shown in Fig. 1 at the lowest possible limit for
the second critical field Hc2, knowing that at higher values of
4πλ2B/φ0 the minibands would converge further towards the
LL spectrum in a homogenous magnetic field.

The spectrum in Fig. 1 features a dispersionless zero-energy
band that exactly coincides with m = 0 LL in graphene, both
by its energy, large gaps separating it from the rest of the
spectrum, and capacity to accommodate electrons. Also, the
first magnetic minibands, both on the conduction and valence
band side, are only slightly narrowed and follow almost
exactly the energy of m = ±1 LL. All the other magnetic
minibands progressively broaden upon the increase of param-
eter α, and some touch at certain values of α. Such band
degeneracies occur due to occasional nonavoided crossings of
q = 0 energy levels at the mini-BZ center (γ point). These
occasional crossings are allowed by symmetry, because the
energy levels ε

γ
m at the mini-BZ center belong to one of

six different irreducible representations, so that the closest
levels do not necessarily “repel” each other on the energy
axis.

As different irreducible representations are built by mixing
parent LL states which are, at least, |δm| = 6 apart, such

(
)

FIG. 2. Distribution function P (s) of the normalized level spac-
ings in the miniband energies at γ and μ points of the Broillouin
minizone. Energy levels were taken from more than 30 states sampled
(E = 0 and the first band excluded) for ten values of 0.5 � α � 1.5,
with a step of δα = 0.1.

crossings can be identified by analyzing only the diagonal
entries in the Heisenberg matrix (5),

εγ
m = m

|m|

√
4π

31/4

�v

a

√
|m|

[
1 − 1

2

∑
n1,n2

e− 1
2 tn1 ,n2(

1 + α−2ω2
n1n2

)

× 1F1
(
1 − |m|,2,tn1,n2

)]
,

tn1,n2 = 4πω2
n1n2√
3

,

where 1F1 is Kummer’s confluent hypergeometric function.
Hence, we estimate that, within the interval α � 2, such
crossings would appear at α2,3 = 0.98 for bands 2 and 3, at
α6,7 = 0.90 for bands 6 and 7, and α14,15 = 1.03 for bands 14
and 15, and these values are close to the band touching points
found in the exact diagonalization of Eq. (5). At a finite q,
such separation of the spectrum into six independent groups is
no longer possible.

The separation versus mixing of the groups of levels can
be followed for the states at q � π/a near the γ point, where
off-diagonal matrix elements between the closest energy states

FIG. 3. Spectrum of Dirac electrons in the presence of a square
vortex lattice. Energy is scaled by v

√
2�eB, and the spectrum includes

one degenerate band at E = 0. Inset: Second and third miniband
dispersions over the folded magnetic Brillouin zone in the vicinity of
their touching condition.
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can evaluated analytically [28], leading to a 2 × 2 matrix,

Hm+1,m =
(

ε
γ

m+1 ṽτm

(
qx + iqy

m
|m|

)
ṽτ ∗

m

(
qx − iqy

m
|m|

)
ε

γ
m

)
,

ṽm = v

4

∑
n1n2

e− 1
2 tn1n2

1 + α-2ω2
n1n2

⎡
⎣L0

|m|+ m
2|m| − 1

2

(
tn1n2

)

− tn1n2√(|m| + m
2|m|

)2 − 1/4
L2

|m|+ m
2|m| − 3

2

(
tn1n2

)⎤⎦,

where τm = e
i π

6 (3− m
|m| ) and Lα

n(x) are Laguerre polynomials
(m 	= 0, ± 1). This matrix catches the Dirac-type edges of
touching bands at α = αm,m+1, confirmed by the numerically
calculated dispersions plotted over the entire magnetic BZ in
the inset of Fig. 1. Note that the velocity of all these “second
generation” Dirac electrons appears to be almost the same,
ṽm,m+1 ≈ 0.75v, and, due to the spin and valley degeneracy
which has to be factored additionally to the twofold degeneracy
of states in magnetic minibands at φ = 1

2φ0, each of the
calculated orbital states in the folded magnetic BZ is eightfold
degenerate.

The mixing versus separation of subsets of states in the
magnetic minibands can also be traced using the distribution
function P (s) of the normalized level spacings (Fig. 2) for

two given points in the Brillouin minizone. For the μ point, it
shows a strong “level repulsion” characteristic for the unitary
symmetry class of random matrix theory [30]. For the γ

point, levels can appear close to each other, as happens in
other periodic systems [31–34] where high lattice symmetry
splits the spectrum into subsets of states corresponding to
different irreducible representations of the lattice symmetry
group which can appear arbitrarily close to each other
[35–39].

The features we found for the Dirac electrons in hBN-
encapsulated graphene placed over a hexagonal Abrikosov
vortex lattice suggest that the quantum Hall effect at the filling
factors ν = ±2 and, to some extent, ν = ±6 would remain a
robust feature in the transport and capacitance measurements,
whereas Shoubnikov–de Haas oscillations at higher filling fac-
tors would be strongly suppressed. This property of Dirac elec-
trons in graphene seems to be generic for a broad range of mag-
netic field distributions. To stress this point, in Fig. 3 we show
the calculated spectrum of Dirac electrons moving in a square
vortex lattice, which has all the same characteristic features as
the spectrum corresponding to the hexagonal vortex lattice.
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E. McCann, and V. I. Fal’ko, Phys. Rev. B 89, 075401
(2014).

[13] S. J. Bending, K. von Klitzing, and K. Ploog, Phys. Rev. Lett.
65, 1060 (1990).

[14] S. J. Bending, K. von Klitzing, and K. Ploog, Phys. Rev. B 42,
9859 (1990).

[15] G. H. Kruithof, P. C. van Son, and T. M. Klapwijk, Phys. Rev.
Lett. 67, 2725 (1991).

[16] A. K. Geim, JETP Letters 50, 389 (1989); A. K. Geim, S. V.
Dubonos, and A. V. Khaetskii, ibid. 51, 121 (1990).

[17] A. K. Geim, S. J. Bending, and I. V. Grigorieva, Phys. Rev. Lett.
69, 2252 (1992).

[18] A. K. Geim, V. I. Fal’ko, S. V. Dubonos, and I. V. Grigorieva,
Solid State Commun. 82, 831 (1992).

[19] A. A. Abrikosov, Sov. Phys. JETP-USSR 5, 1174 (1957);
J. Phys. Chem. Solids 2, 199 (1957).

[20] J. B. Ketterson and S. N. Song, Superconductivity (Cambridge
University Press, Cambridge, U.K., 1999).

[21] M. Taillefumier, V. K. Dugaev, B. Canals, C. Lacroix, and P.
Bruno, Phys. Rev. B 78, 155330 (2008).

[22] I. Snyman, Phys. Rev. B 80, 054303 (2009).
[23] F. Guinea and T. Low, Philos. Trans. R. Soc. A 368, 5391

(2010).
[24] M. Taillefumier, V. K. Dugaev, B. Canals, C. Lacroix, and P.

Bruno, Phys. Rev. B 84, 085427 (2011).
[25] M. Kamfor, S. Dusuel, K. P. Schmidt, and J. Vidal, Phys. Rev.

B 84, 153404 (2011).

035427-4

http://dx.doi.org/10.1038/nmat2968
http://dx.doi.org/10.1038/nmat2968
http://dx.doi.org/10.1038/nmat2968
http://dx.doi.org/10.1038/nmat2968
http://dx.doi.org/10.1021/nl2005115
http://dx.doi.org/10.1021/nl2005115
http://dx.doi.org/10.1021/nl2005115
http://dx.doi.org/10.1021/nl2005115
http://dx.doi.org/10.1038/nphys2272
http://dx.doi.org/10.1038/nphys2272
http://dx.doi.org/10.1038/nphys2272
http://dx.doi.org/10.1038/nphys2272
http://dx.doi.org/10.1038/nature12187
http://dx.doi.org/10.1038/nature12187
http://dx.doi.org/10.1038/nature12187
http://dx.doi.org/10.1038/nature12187
http://dx.doi.org/10.1038/nature12186
http://dx.doi.org/10.1038/nature12186
http://dx.doi.org/10.1038/nature12186
http://dx.doi.org/10.1038/nature12186
http://dx.doi.org/10.1126/science.1237240
http://dx.doi.org/10.1126/science.1237240
http://dx.doi.org/10.1126/science.1237240
http://dx.doi.org/10.1126/science.1237240
http://dx.doi.org/10.1038/nphys2979
http://dx.doi.org/10.1038/nphys2979
http://dx.doi.org/10.1038/nphys2979
http://dx.doi.org/10.1038/nphys2979
http://dx.doi.org/10.1103/PhysRevB.86.115415
http://dx.doi.org/10.1103/PhysRevB.86.115415
http://dx.doi.org/10.1103/PhysRevB.86.115415
http://dx.doi.org/10.1103/PhysRevB.86.115415
http://dx.doi.org/10.1103/PhysRevB.87.245408
http://dx.doi.org/10.1103/PhysRevB.87.245408
http://dx.doi.org/10.1103/PhysRevB.87.245408
http://dx.doi.org/10.1103/PhysRevB.87.245408
http://dx.doi.org/10.1103/PhysRev.134.A1602
http://dx.doi.org/10.1103/PhysRev.134.A1602
http://dx.doi.org/10.1103/PhysRev.134.A1602
http://dx.doi.org/10.1103/PhysRev.134.A1602
http://dx.doi.org/10.1103/PhysRev.134.A1607
http://dx.doi.org/10.1103/PhysRev.134.A1607
http://dx.doi.org/10.1103/PhysRev.134.A1607
http://dx.doi.org/10.1103/PhysRev.133.A1038
http://dx.doi.org/10.1103/PhysRev.133.A1038
http://dx.doi.org/10.1103/PhysRev.133.A1038
http://dx.doi.org/10.1103/PhysRev.133.A1038
http://dx.doi.org/10.1103/PhysRevB.89.075401
http://dx.doi.org/10.1103/PhysRevB.89.075401
http://dx.doi.org/10.1103/PhysRevB.89.075401
http://dx.doi.org/10.1103/PhysRevB.89.075401
http://dx.doi.org/10.1103/PhysRevLett.65.1060
http://dx.doi.org/10.1103/PhysRevLett.65.1060
http://dx.doi.org/10.1103/PhysRevLett.65.1060
http://dx.doi.org/10.1103/PhysRevLett.65.1060
http://dx.doi.org/10.1103/PhysRevB.42.9859
http://dx.doi.org/10.1103/PhysRevB.42.9859
http://dx.doi.org/10.1103/PhysRevB.42.9859
http://dx.doi.org/10.1103/PhysRevB.42.9859
http://dx.doi.org/10.1103/PhysRevLett.67.2725
http://dx.doi.org/10.1103/PhysRevLett.67.2725
http://dx.doi.org/10.1103/PhysRevLett.67.2725
http://dx.doi.org/10.1103/PhysRevLett.67.2725
http://dx.doi.org/10.1103/PhysRevLett.69.2252
http://dx.doi.org/10.1103/PhysRevLett.69.2252
http://dx.doi.org/10.1103/PhysRevLett.69.2252
http://dx.doi.org/10.1103/PhysRevLett.69.2252
http://dx.doi.org/10.1016/0038-1098(92)90174-8
http://dx.doi.org/10.1016/0038-1098(92)90174-8
http://dx.doi.org/10.1016/0038-1098(92)90174-8
http://dx.doi.org/10.1016/0038-1098(92)90174-8
http://dx.doi.org/10.1016/0022-3697(57)90083-5
http://dx.doi.org/10.1016/0022-3697(57)90083-5
http://dx.doi.org/10.1016/0022-3697(57)90083-5
http://dx.doi.org/10.1016/0022-3697(57)90083-5
http://dx.doi.org/10.1103/PhysRevB.78.155330
http://dx.doi.org/10.1103/PhysRevB.78.155330
http://dx.doi.org/10.1103/PhysRevB.78.155330
http://dx.doi.org/10.1103/PhysRevB.78.155330
http://dx.doi.org/10.1103/PhysRevB.80.054303
http://dx.doi.org/10.1103/PhysRevB.80.054303
http://dx.doi.org/10.1103/PhysRevB.80.054303
http://dx.doi.org/10.1103/PhysRevB.80.054303
http://dx.doi.org/10.1098/rsta.2010.0214
http://dx.doi.org/10.1098/rsta.2010.0214
http://dx.doi.org/10.1098/rsta.2010.0214
http://dx.doi.org/10.1098/rsta.2010.0214
http://dx.doi.org/10.1103/PhysRevB.84.085427
http://dx.doi.org/10.1103/PhysRevB.84.085427
http://dx.doi.org/10.1103/PhysRevB.84.085427
http://dx.doi.org/10.1103/PhysRevB.84.085427
http://dx.doi.org/10.1103/PhysRevB.84.153404
http://dx.doi.org/10.1103/PhysRevB.84.153404
http://dx.doi.org/10.1103/PhysRevB.84.153404
http://dx.doi.org/10.1103/PhysRevB.84.153404


HIERARCHY OF GAPS AND MAGNETIC MINIBANDS IN . . . PHYSICAL REVIEW B 93, 035427 (2016)

[26] X. Lin, H. Wang, H. Pan, and H. Xu, Phys. Lett. A 376, 584
(2012).

[27] In the nonorthogonal coordinates we use here, the
free-electron Dirac Hamiltonian in a magnetic field

has the form (λB = √
�/|eB| = a

√√
3/(2π ))(0 d̂†

d̂ 0 ),d̂ =
−2√

3
[ei 2π

3 ∂x1 + e−i 2π
3 (∂x2 + iπ

x1
a2 )].

[28] We simplified Eq. (2) using the identity [29]
∫ ∞

−∞ e−x2
Hn(x +

y)Hm(x + z)dx = 2n
√

πm!yn−mLn−m
m (−2yz),n � m.

[29] A. Jeffrey and D. Zwillinger, Table of Integrals,
Series, and Products (Academic, New York,
2007).

[30] M. L. Mehta, Random Matrices (Elsevier/Academic, Amster-
dam, 2004).

[31] E. R. Mucciolo, R. B. Capaz, B. L. Altshuler, and J. D.
Joannopoulos, Phys. Rev. B 50, 8245 (1994).

[32] H. Silberbauer, P. Rotter, U. Rössler, and M. Suhrke, Europhys.
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