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Shaped electric fields for fast optimal manipulation of electron spin and position
in a double quantum dot
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We use quantum optimal control theory algorithms to design external electric fields that drive the coupled
spin and orbital dynamics of an electron in a double quantum dot, subject to the spin-orbit coupling and Zeeman
magnetic fields. We obtain time profiles of multifrequency electric field pulses which increase the rate of spin-flip
transitions by several orders of magnitude in comparison with monochromatic fields, where the spin Rabi
oscillations were predicted to be very slow. This precise (with fidelity higher than 1 × 10−4) and fast (at the
time scale of the order of 0.1 ns, comparable with the Zeeman spin rotation and the interdot tunneling time)
simultaneous control of the spin and position is achieved while keeping the electron in the four lowest tunneling-
and Zeeman-split levels through the duration of the pulse. The proposed algorithms suggest effective applications
in spintronics and quantum information devices.
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I. INTRODUCTION

Among the current challenges in the fields of spintronics
[1] and quantum information technologies based on semi-
conductor devices, one of the most important is the fast and
accurate manipulation of electron spin in nanostructures and
particularly in quantum dots (QDs) [2]. Since the electron
spin is the most typical example of a two-level system,
the possibility of using single-electron QDs as a physical
realization of a qubit [3] has been suggested and extensively
studied. Just very recently, the realization of a two-qubit
logic gate has been achieved in isotopically enriched silicon
QDs [4]. Moreover, the spin-orbit coupling (SOC)—present
in semiconductors used in manufacturing the QDs—entangles
the spin and the orbital motion, making possible the handling
[5] and readout [6] of spin states fully by electric means.
This ability of a monochromatic electric field to coherently
rotate the electron spin, demonstrated experimentally for
GaAs-based two-dimensional (2D) quantum dots in Ref. [7],
opened a venue for experimental and theoretical studies of spin
manipulation by electric fields. Several interesting regimes of
the electric driving have been studied theoretically (see, e.g.,
Refs. [8–14]) and algorithms for two-dimensional quantum
dots to achieve the spin-flip faster than it can be done by
simple periodic fields have been put forward [15–17].

The recent progress in nanotechnologies and the interest in
novel systems for semiconductor-based quantum technologies
have led to the manufacturing of nanowire-based quantum dots
[18], and pose a question about spin manipulation in these
structures. The double quantum dots can host two spatially
separated electron spins and, thus, constitute a prototype of a
basic two-qubit quantum information device. It is well known
that a single isolated qubit cannot create a fully working
quantum computational module, so it is important to construct
reasonable practical models of interacting qubits. A model of
two spatially separated quantum dots coupled by tunneling

can serve as a starting point. Here one deals both with the
orbital degree of freedom describing the electron location in a
particular dot and with the spin degree of freedom, which can
be coupled in a nontrivial way, for example, by the SOC.
These considerations make the nanostructures with double
QDs interesting candidates as hardware elements for future
quantum information processing technologies.

However, even single-electron double quantum dots, either
two- or one-dimensional (1D), where the electron can be
localized near one of the potential minima or delocalized
in both of them, are qualitatively different from single dots
and can show a rather surprising spin dynamics (for two-
dimensional dots see, e.g., Refs. [19,20]). First of all, these
two possible localizations can make a double quantum dot
a realization of a charge qubit. Second, in contrast to a
single dot, the low-energy states in a double quantum dot
are formed by interminima tunneling, making the electron
position strongly sensitive to any applied electric field that
may produce even a relatively weak asymmetry in the electron
energies at the minima. Third, the electron motion between
the potential minima leads to a well-defined spin precession
angle, proportional to the tunneling distance. The second and
third factors make the spin manipulation by electric fields in
double and single quantum dots qualitatively different. These
differences can be summarized as follows: (i) The spin-flip
Rabi frequency in a double quantum dot becomes much lower
than expected from the conventional linear dependence on the
driving field amplitude, and (ii) the involvement of several
low-energy orbital states produces a mixed rather than a pure
spin state, pushing the spin vector inside the Bloch sphere [21].
(For a one-dimensional single quantum dot see Ref. [22].) As a
result, a full spin flip is difficult to achieve even at long times,
thus making the spin manipulation strongly sensitive to the
decoherence.

To eliminate these obstacles and speed up the spin manip-
ulation, one may try to apply a modification of the driving
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technique, namely, to control the quantum dynamics via spe-
cially tailored electric fields, rather than using monochromatic
ones. The theoretical design of the shape of the fields can
be achieved with the help of quantum optimal control theory
(QOCT) [23,24]. Here, we employ this technique to study
the possibility of spin-flip speedup, computing the fields that
allow one to produce the requested spin states and electron
displacements in a fast and controllable way.

This paper is organized as follows. In Sec. II, we intro-
duce the quantum mechanical model of a double quantum
dot (DQD), hosting one electron, in the presence of SOC
and Zeeman magnetic fields, and a time-dependent external
electric field that can drive the dynamics. In Sec. III, we
describe our implementation of QOCT for this system. In
Sec. IV, we present relevant results that show, in particular,
how the spin-flip rate can be strongly increased in comparison
to the rates computed for a monochromatic driving field in a
previous study on the same system [21]. The conclusions of
this work are given in Sec. V.

II. MODEL

We use the model of Ref. [21], which can be realized
by producing a nanowire-based double quantum dot with the
gating technique described, for example, in Ref. [25]. In the
absence of SOC and external magnetic field, the Hamiltonian

Ĥk = k2

2m∗ + U (x) (1)

describes an electron confined in a one-dimensional double
quantum dot, where k = −i∂/∂x is the momentum operator
(we set � ≡ 1), m∗ is the electron effective mass, and the
confinement potential U (x) is given by

U (x) = U0

[
1 +

(
x

d

)4

− 2

(
x

d

)2]
. (2)

The shape of this potential is presented in Fig. 1. It is
a double-well structure, with two minima at −d and d

[U (d) = U (−d) = 0], separated by a barrier of height U0.
A characteristic tunneling time T 0

t = 2π/�E0
t is determined

by the tunneling energy �E0
t � U0, that is, the gap between

the ground and first excited state of Ĥk .
The presence of an external magnetic field may then be

accounted for by a Zeeman coupling term [the vector potential
term does not enter the Hamiltonian Eq. (1) for a 1D structure],
defined by ĤZ = �0

Zσ̂z/2, where �0
Z = g∗μBB, and σ̂z is the

corresponding Pauli matrix (where g∗ and μB are the effective
g-factor and the Bohr magneton, respectively). In addition
there is a SOC term in the form

ĤSO = (αDσ̂x + αRσ̂y)k. (3)

The strength of the SOC is determined by the structure-
related Rashba (αR) and the bulk-originated Dresselhaus (αD)
parameters.

Finally, under the influence of a driving electric field, the
static Hamiltonian

Ĥ0 = Ĥk + ĤSO + ĤZ (4)

described above is supplemented with a time-dependent
term, and the system is governed by the time-dependent
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FIG. 1. (a) Confinement potential U (x) and the six first energy
levels of the DQD system with the SOC and magnetic field switched
off. Each horizontal red line is twofold degenerate in spin. (b) The four
lowest energy levels for four cases: (I) without SOC and magnetic
field; and with the SOC switched on (αR = 10−9 eV cm and αD =
0.3 × 10−9 eV cm) for (II) B = 0 T, (III) B = 1.73 T, and (IV)
B = 6.93 T.

Schrödinger’s equation during the time interval [0,T ]:

i
d

dt
|�(t)〉 = Ĥ (t)|�(t)〉 = [Ĥ0 + ex̂ε(t)]|�(t)〉, (5)

where the electron-field interaction assumes the dipole approx-
imation in the length gauge.

Numerically, we first employ a truncated basis of plane
waves, i.e., assuming a periodic unit cell of size L ≈ 7d (large
enough to ensure convergence) as a simulation box:

〈x|j 〉 = 1√
2πL

ei
2πj

L
x . (6)

This basis is used to represent the time-independent Hamilto-
nian Ĥ0:

H 0
jj ′ = 〈j |Ĥ0|j ′〉 . (7)

Then, we diagonalize the resulting matrix H 0
jj ′ , obtaining the

eigenbasis {ψn}: Ĥ0|ψn〉 = En|ψn〉. Later, in order to solve
Eq. (5), the wave function �(t) is expanded in this basis:

�(x,t) =
∑
m

ζm(t)e−iEmt 〈x|ψm〉. (8)
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Substituting Eq. (8) in Eq. (5), we obtain, for the time
dependence of ζm(t),

d

dt
ζn(t) = ieε(t)

∑
m

ζm(t)〈ψn|x̂|ψm〉ei(En−Em)t . (9)

III. QUANTUM OPTIMAL CONTROL THEORY

The evolution of the system modeled in the previous section
is determined by the external field ε(t). The goal now is to
shape this real function in order to bring the system to a
predefined state, for example, by switching the spin direction.
As we mentioned in Sec. I, the theoretical tool suitable for
this task is QOCT. It has already been used recently to study
the electron dynamics of 2D quantum dots and rings in the
presence of terahertz laser fields [16,26–28].

The formalism of QOCT for the purposes of this work
can be summarized as follows: the function ε(t) (hereafter,
the control function) is determined by a set of parameters
u1, . . . ,uM ≡ u: ε(t) ≡ ε[u](t). The specification of a par-
ticular set u therefore fully determines the evolution of the
system: � = �[u]. Next, one must encode the physical target
that one wants to achieve into the mathematical definition of
a target functional F , that depends on the system state ψ and
possibly also on the control function parameters: F = F [�,u].
The value of this functional determines the degree of success
achieved: a large value of F should correspond to a desirable
realization of the physical target.

In our case this functional is split into two parts, F [�,u] =
J1[�] + J2[u], where J1 depends on the state of the system
only and J2 is determined solely by the control function.
Regarding J1, it may depend on the evolution of the system
during all the propagation time, or only on its final state:
J1[�] = J1[�(T )], as it is assumed in this work. It is typically
defined as the expectation value of some operator Ô:

J1[�] = 〈�(T )|Ô|�(T )〉 . (10)

Regarding J2, sometimes called the penalty, it may be
included in the definition of F in order to penalize entering
unwanted regions of the search space; for example, we wish
to avoid solutions with high intensities, and this can be done
by defining J2 as

J2[u] = −γ

∫ T

0
ε2[u](t)dt , (11)

where γ is a positive constant, the penalty factor. In this way, as
the fluence (integrated intensity of the driving field) is higher,
the value of J2 is negative and larger in the absolute value
and the sum J1 + J2 is smaller. Thus, the J2 term ensures
that the optimization algorithm will try to find solutions
simultaneously maximizing the physical target and minimizing
the pulse fluence.

Since the shape of the control function and the evolution
of the system are determined by the parameters u, the entire
problem is reduced to the maximization of a function of u:

G[u] = F [�[u],u] = J1[�[u]] + J2[u]. (12)

There are many alternative algorithms to maximize a real
function of many arguments such as G; the most effective
ones necessitate procedures to compute the value of both the
function and its gradient. With the QOCT approach one obtains

for the gradient of G

∇uG[u] = 2Im

[∫ T

0
dt〈χ [u](t)|∇uĤ [u](t)|�[u](t)〉

]

+∇uJ2[u] , (13)

where, given the structure of our Hamiltonian, ∇uĤ [u](t) =
x̂∇uε[u](t). Here, χ [u](t) is a new auxiliary backward-
propagation wave function, defined as the solution of

i
d

dt
χ [u](x,t) = Ĥ †[u](t)χ [u](x,t), (14a)

χ [u](x,T ) = Ô�[u](x,T ). (14b)

The maxima of G are found at the critical points ∇uG = 0
by using the quasi-Newton method designed by Broyden and
Fletcher [29,30].

Regarding the target operator Ô, its definition depends on
the goal, which in this work is always to populate some selected
excited state ψt that has the required spin (orbital) orientation
(position). Obviously, one easy way to achieve this goal is to
use the projection onto that state and choose Ô = |ψt 〉〈ψt |.
Thus, the functional J1 has the form

J1[�] = 〈�(T )|Ô|�(T )〉 = |〈ψt |�(T )〉|2. (15)

The initial and target states can be chosen as a linear
combination of eigenstates of the system.

It remains to specify the parametrization of the control
function, i.e., the definition of the parameter set u. In our case,
we expand the control function in a Fourier series, so that
the parameters correspond to the coefficients. However, this
correspondence is not exact, since we must enforce several
physical constraints. First, in order to ensure that the signal
over the full propagation time integrates to zero, the zero-
frequency component is assumed to be zero. Second, in order
to ensure that the field starts and ends at zero, the sum of all
the cosine coefficients of the Fourier series is also set to zero.

Finally, since these optimizations are iterative algorithms,
one must assume an initial driving field. Thus, in all the cases
discussed below, we start by considering a “reference” field of
the form

εref(t) = A0 sin(ω0t), (16)

where ω0 is the characteristic frequency of the “target
transition,” i.e., the difference in energies between the initial
and target states (the expectation values whenever those states
are not eigenstates), and A0 is the amplitude.

IV. RESULTS

In the following, we present results for three types of
transitions in a double quantum dot. Specifically, the first
two examples show the realization of a spin-flip transition
for two different external magnetic fields. In the third example
we show the possibility of controlling the electron position,
moving it from one minimum of the DQD potential to the
other. In the last example we explore the simultaneous control
of spin and position.

For all our calculations we have considered a GaAs-based
structure, with an effective mass of m∗ = 0.067me (where
me is the free electron mass) and g∗ = −0.45. The potential
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minima are set at d = 25
√

2 nm and U0 = 10 meV (unless
otherwise indicated). These parameters are the same as those
considered in Ref. [21]. This will allow us to compare some
of the new results with those of that work. In the absence
of magnetic field and SOC, the tunneling splitting is �E0

t =
0.0928 meV (see Fig. 1). This value corresponds to a transition
frequency of approximately 23 GHz. Note also in Fig. 1(a)
that the lowest tunneling-split doublet is separated by a large
(≈ 6 meV) gap from the higher orbital states. As discussed
below, this aspect is of great importance in relation to the
fidelity of the achievable spin states. The presence of SOC
does not modify �E0

t , and the most noticeable effect is a
global redshift, as it can be learned from case II in Fig. 1(b).

The presence of the SOC alone does not break the time-
reversal symmetry of the electron states. Therefore, the spin
twofold degeneration is preserved unless we introduce an
external magnetic field, as can be seen in cases III and IV
in Fig. 1(b), that correspond to moderate (1.73 T) and strong
(6.93 T) magnetic fields. If the SOC is not present, these
magnetic fields correspond to Zeeman splittings �0

Z = �E0
t /2

and �0
Z′ = 2�E0

t , respectively. We may then define other
characteristic times and energies of the system: the Zeeman
splittings �

(A)
Z = 0.0358 meV and �

(B)
Z = 0.0355 meV (and

the corresponding periods T
(A)
Z = 2π/�

(A)
Z = 115.536 ps and

T
(B)
Z = 2π/�

(B)
Z = 116.589 ps) at the low magnetic field

(1.73 T) and the Zeeman splittings �
(A)
Z′ = 0.18735 meV and

�
(B)
Z′ = 0.18606 meV, associated to the higher magnetic field

(6.93 T) (T (A)
Z′ = 2π/�

(A)
Z′ = 22.074 ps and T

(B)
Z′ = 2π/�

(B)
Z′ =

22.228 ps). It is important to mention that in the absence of
SOC �

(A)
Z = �

(B)
Z = �Z and �

(A)
Z′ = �

(B)
Z′ = �Z′ .

Unless otherwise indicated, the peak amplitude of the
reference field is set to 1.5 × 102 V/cm, which corresponds
to 2d × eA0 ≈ 0.1U0 ≈ 10�E0

t , strongly modifying the in-
terminima tunneling. The latter estimate means that the
field is strong enough to potentially involve also the states
higher than the four states shown in Fig. 1. To calculate the
dynamics, we have represented the wave function using a
basis of 20 eigenstates [see Eqs. (8) and (9)]. Finally, for the
parametrization of the electric field in Fourier series, we have
set in all the examples below a cutoff frequency ωcutoff = 10ω0.

A. Control of spin-flip dynamics

For the first example we consider a moderate external
magnetic field, B = 1.73 T, with the chosen Rashba and
Dresselhaus SOC parameters being the same as introduced
earlier. We start with a reference field whose driving frequency
ω0 = �

(A)
Z is in resonance with the transition that we want to

maximize, that is, between the states ψ0 and ψ1:

ψ0 → ψ1. (17)

Figure 2(a) shows the electric field pulse resulting from
the optimization, and the thin line is the reference initial
field εref(t), shown for comparison. The time scale is in
units of T

(A)
Z . Note that the optimized pulse has a lower

fluence than the reference field and contains higher-frequency
oscillations, forming a very irregular temporal profile. These
higher-frequency components are better observed in the power
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FIG. 2. (a) Optimized driving field for a maximized spin-flip
transition between states ψ0 and ψ1 with a magnetic field of B =
1.73 T (the reference driving field is also shown for comparison).
In the inset, the power spectrum (arbitrary units) in the frequency
domain of the optimized pulse is shown. The vertical dashed line
marks the initial driving frequency. (b) Time-dependent occupation
of the four lowest energy levels. (c) Time dependence of the charge
distribution. The white color refers to the maximum values of charge.
The thick black line is the time-dependent 〈x〉. (d) Trajectory of the tip
of the spin vector, S(t) in the Bloch sphere. The color scale represents
the module of S. The blue and red thick lines indicate the initial and
final spin vectors, respectively.

spectrum in the inset in Fig. 2(a), where one can see a bimodal
frequency distribution. A sharp distribution of frequencies
is centered around the initial ω0 = �

(A)
Z , forming the lowest

energy peak.
This optimized pulse produces the dynamics of the popula-

tion of the levels shown in Fig. 2(b). In this plot, only the first
four levels are shown since, throughout the pulse duration,
the electron occupies mainly these four states. Clearly, in
this case the target is achieved almost entirely (0.999867,
as indicated in the plot). As it was previously discussed in
Ref. [21], the dynamics of this system can be characterized
approximately as a superposition of two kinds of transitions:
those of spin-flip type and those of spin-conserved type. This
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aspect can be clearly seen in Fig. 2(b), where one can notice
the presence of fast exchanges between the populations of
the states ψ0 and ψ2, at the beginning of the pulse, and
between the populations of the states ψ1 and ψ3 at the end
of the pulse. These two spin-conserving transitions are related
to the tunneling splittings �E

(A)
t and �E

(B)
t , respectively.

As we mentioned earlier, the transition that we want to
maximize [Eq. (17)] is of spin-flip type and is associated to
the spin splitting �

(A)
Z , which is smaller than the tunneling.

In contrast with the fast spin-conserved transitions, note the
slower general depopulation (population) of states ψ0 and ψ2

(ψ1 and ψ3). Note also in Fig. 2(c) how the average position
of the electron smoothly moves from one QD to the other (the
charge distribution varies slowly between minima d and −d)
in time intervals where the occupation of the states changes
very little—or does so less abruptly. In contrast, note that at
the beginning and at the end of the interval [0,T ] the charge
is distributed almost equally between both QDs, showing just
faster and smaller oscillations. This explains why in these
regions the average position of the electron is found mainly
within the region of the tunneling barrier. Note also that,
when only one eigenstate is occupied, the charge is equally
distributed in both QDs, while a charge located mainly in one
of these involves a superposition of two or more states.

Finally, Fig. 2(d) shows the time evolution of the spin vector
inside the Bloch sphere. Since the target eigenstate ψ1 is almost
completely populated, it is therefore not surprising that the final
value of 〈σz〉 corresponds to that eigenstate. Due to the SOC,
electron spin is no longer well defined, so the z component
does not reach 〈σz〉 = −1. Note also the absence of high-
frequency oscillations in the spin vector evolution. These rapid
oscillations are associated with transitions involving higher
energy levels, so their absence reveals that the occupation of
the higher orbitals during the evolution time is negligible.

Next, we have considered the same spin-flip goal, but using
a relatively strong external magnetic field, B = 6.93 T. Here,
energy levels E0 and E1 correspond both to “spin-up” states,
while levels E2 and E3 correspond to “spin-down” states. In
this case, the goal is to maximize the transition between states
ψ0 and ψ2 (ω0 = �

(A)
Z′ ):

ψ0 → ψ2. (18)

The results are shown in Fig. 3. Importantly here, the
precession time, T

(A)
Z′ , associated with the target transition is

smaller than in the previous case since this is a higher-energy
transition. As a consequence it has been possible to achieve
good results in terms of the target only by setting T = 3T

(A)
Z′ =

66.223 ps as the minimum duration for the pulse.
In general terms, the behavior observed in this regime

of stronger magnetic field is similar to the behavior typical
for a moderate B. However, in this case the optimized pulse
exhibits peaks that are slightly higher than the reference field,
as can be seen in Fig. 3(a). This has consequences for the
occupation of higher energy levels, as discussed below. In
the inset of Fig. 3(a), we note that the distribution of the
frequencies that comprise the optimized pulse is broader than
that for a moderate magnetic field. In addition, there is only
one main peak, centered around a frequency equal to �

(A)
Z′ /3.

Furthermore, in Fig. 3(b) one can observe at the beginning
(end) of the time interval, a strong exchange of population
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FIG. 3. The same as Fig. 2 but with a magnetic field of B =
6.93 T. In this case, the target is the state ψ2.

between levels E0 and E2 (E1 and E3), that is, between pairs
of states with the same spin orientation. As in the previous case,
the dynamics of the average position of the electron in Fig. 3(c)
shows a higher-frequency oscillatory behavior of 〈x〉 in the
intervals of fast spin-conserved transitions, whereas in the rest
of the time interval the dynamics is less abrupt, showing a slow
oscillatory displacement between both minima, d and −d. The
result of the optimization can be considered satisfactory given
the degree of occupation of the target at the end of the pulse
as well as the final spin orientation [Fig. 3(d)].

In these two examples we have demonstrated how electric
field pulses with suitably designed temporal profiles can
produce spin-flip transitions on time scales much shorter
than the period of the corresponding Rabi oscillations: these
periods were shown in Ref. [21] to be about one order of
magnitude longer.

It becomes therefore clear that the tailored shapes allow
for population-transfer mechanisms that cannot be accessed
with the simple Rabi-like resonance-based processes. For
example, in these two first cases the population dynamics
has three phases. The first phase is characterized by a fast
exchange between same spin levels, i.e., the driven tunneling
transitions. However, in the presence of strong SOC, this active
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spatial motion triggers the spin-flipping mechanism, which
forms the second phase, where the two same-spin initial state
components decrease, whereas the other two with opposite
spin begin to grow. Finally, there is a third phase similar to the
first one, in which same-spin transitions take place. These final
oscillations help to “settle” the final state with the required
spin orientation. Note that the electric field amplitudes are
higher and oscillate faster in the first and last phases of the
process. Therefore, the spin-flip transfer takes place during
the relatively slow second phase, and it occurs thanks to the
initial preparation of the faster field at the initial phase. Finally,
some faster motion is required in the last phase of the process
in order to select one specific final state in the subspace of
states with the desirable spin direction.

Although we have used a given reference field amplitude
A0 for the starting guess of the optimization algorithm, other
values of A0 could be considered. In a simple two-level Rabi
picture, the population of the target state grows with the
amplitude of a resonant monochromatic field. However, as
already shown in Ref. [21], the population does not grow
monotonically with increasing A0. For the short time intervals
that we employ here, these target state populations are very
small when using monochromatic fields, regardless of the A0

amplitude used. Within the QOCT scheme, this A0 is merely a
starting value in the search algorithm; in fact, as discussed
in the previous section, we have introduced a penalty in
the target definition that leads to a preference of solutions
with lower fluence, i.e., average intensity over time. The
reason for doing that is that we expect that the population
of higher-lying states, favored by higher amplitudes, would
lead to faster decoherence. Nevertheless, it is interesting to
check how an optimization solution looks if we choose other
values of A0, since the solutions are not unique, and depend
on the starting guesses. For that purpose we have performed
an extra calculation for the driven spin-flip dynamics. In this
case we have reproduced the conditions for Fig. 2 with higher
A0 value, i.e., A0 = 3 × 102 V/cm. The results (displayed in
Supplemental Material [31]) show that the optimized driving
field has a greater overall amplitude than that obtained in
Fig. 2(a). The latter has resulted in the participation of
higher-energy orbital states (with the energies around U0 or
higher), manifested in the high-frequency oscillations in the
dynamics of the observables.

B. Control of electron position

In the example shown in this section, the aim is manipulat-
ing the position of the electron in the DQD system, keeping the
spin z component unchanged. For this purpose, we begin with
a state ψi localized in one of the potential minima and aim
at moving it to the other one with conserved spin orientation
(the target state, ψt ). The initial and target states are not single
eigenstates of the system, but each one of these is a linear
combination of two eigenstates:

|ψi〉 = 1√
2

(|ψ0〉−i|ψ2〉) → |ψt 〉 = 1√
2

(|ψ0〉+i|ψ2〉). (19)

On the other hand, for the reference field we have chosen the
driving frequency ω0 corresponding to the splitting between
the levels E0 and E2: �E

(A)
t = 0.0967 meV. The time for one

period of oscillation at this frequency is T
(A)
t = 42.757 ps.
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FIG. 4. (a) Optimized driving field for a manipulation of electron
position with B = 1.73 T, both with and without SOC. In the inset,
the power spectrum (arbitrary units) in the frequency domain of
the optimized pulse (with SOC) is shown. (b) Time dependence of
the occupation of the initial and target states. (c) Time dependence
of the charge distribution (with SOC). The thick black line is the
time-dependent 〈x〉, while, as a comparison, the thin dashed line
corresponds to the case without SOC. (d) Trajectory of the tip of
the spin vector, S(t) in the Bloch sphere (with SOC). The color scale
represents the module of S. The blue and red thick lines indicate the
initial and final spin vectors, respectively.

Figure 4(a) shows the pulse optimized to maximize the
transition ψi → ψt . In order to assess the possible relevance
of SOC for this charge transfer transition, we have performed
calculations both with and without this term. (The Lyapunov-
based control of the charge qubit in the absence of SOC was
recently analyzed in Ref. [32]). For these calculations, we have
set the pulse length to 2T

(A)
t since for shorter time intervals

it was impossible to reach target occupancy over 90%. Note
that the power spectrum of the field, presented in the inset, is
centered around ω0/2. The optimized pulses allowed nearly
full occupation of the target state, as can be seen in Fig. 4(b).
As for the optimized field, the dynamics of the occupancy of
states ψi and ψt shows odd symmetry with respect to the center
of the time interval. The time dependence of the populations of
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states ψ0, ψ1, ψ2, and ψ3 (not shown here) reveals just a minor
contribution of the “spin-down” states (ψ1 and ψ3) around t =
T/2. Figure 4(c) shows the evolution of the charge distribution
(including SOC) and 〈x〉 (for both, with and without SOC)
as the electron is transferred between the minima. Finally,
Fig. 4(d) shows the dynamics of the spin and a high-fidelity
conservation of its z component. One can see that the mean
value of the electron spin performs a precession around the z

axis corresponding to the dominating spin projection without
reversing its sign during the whole time interval.

We conclude that the presence of SOC makes the charge
manipulation slightly harder, as the amplitude of the optimized
field needs to be higher. In addition, the time dependence of
the field and the observables is more complex.

C. Simultaneous spin-orbital control

Next, in the final example, we seek to maximize the fidelity
of a transition that involves the transfer of the electron from
one QD to the other, while reversing the sign of 〈σz〉. Again,
the system parameters and the magnetic field that we have
used are the same as in the previous example.

We start from the same initial state ψi of the previous
example. The target, however, differs:

|ψi〉 = 1√
2

(|ψ0〉−i|ψ2〉) → |ψt 〉 = 1√
2

(|ψ1〉−i|ψ3〉). (20)

In this state, the electron is located near the minimum at
x = d with negative z component of spin. The energy of
this transition is �Et = ω0 = (E1 + E3)/2 − (E0 + E2)/2 =
(�(A)

Z + �
(B)
Z )/2 = 0.0357 meV and the associated period is

T
(A)+(B)
t = 116.06 ps.

As in previous cases, Fig. 5(a) shows the pulse shaped
to maximize the population of the target ψt . The length of
the pulse in this case is T = T

(A)+(B)
t , which is enough to

reach a target occupation of 0.999947, as can be seen in
Fig. 5(b). The population dynamics of states ψi and ψt follows
the relation |〈ψt |�(t)〉|2 = |〈ψi |�(−t)〉|2, noting that in the
central region both states are just slightly occupied. It is in this
region where the spin-flip transitions occur and almost the full
occupation is due to the superposition of the ψ2 (spin-up)
and ψ1 (spin-down) states (not shown here). Returning to
Fig. 5(a) we note in the inset that, as well as in Fig. 2(a),
the spectral component at the resonance frequency of the
target transition, ω0 = (�(A)

Z + �
(B)
Z )/2, remains the largest,

dominating in the bimodal distribution. Finally, Fig. 5(c) shows
the time dependence of the charge distribution and the average
electron position, whereas Fig. 5(d) presents the evolution of
the spin vector. One can see a clear displacement of the electron
from the left to the right QD with a simultaneous spin flip. As
was studied in Sec. IV A, the slow oscillatory behavior of the
charge distribution between both QDs, in the central region of
the time interval, reveals the region where the spin-flip phase
is occurring.

It is worth mentioning that in all the examples considered,
the occupation of the higher-energy states (above the lowest
four) is practically negligible (below 1 × 10−3 in all cases).
This happens not only for the dynamics generated by the
optimized fields, but also for the dynamics produced by
the monochromatic reference fields. The occupation of those
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FIG. 5. The same as Fig. 4 but for a simultaneous spin-orbital
manipulation with a magnetic field of B = 1.73 T.

higher-energy states is difficult due to both the large energy
gap between them and the lowest ones, and due to their small
spatial overlap. In addition, it is important that the desired
transitions can be obtained with relatively weak fields, also
preventing occupation of the higher orbitals.

In all the previous examples we have fixed the structural
parameters (distance between wells, barrier height, etc.).
These parameters set a regime of interdot coupling that keeps
the two well and clearly separated, and separates the lower
energy levels from the higher ones, although not making them
inaccessible. The variation of these parameters may lead to
different dynamics, and we finish by discussing here these
possibilities. First, by decreasing the interdot coupling, either
by enlarging the distance or by increasing the barrier, we would
get slower tunneling, but not qualitatively different results, as
the higher energy levels would intervene even less.

The opposite, which is an increase in the coupling, is more
interesting. In order to study this realization, we analyzed
another example with reduced potential barrier (U0 = 5 meV)
and the same distance between the QDs. Since the change in
U0 modifies the entire set of electron states, in order to obtain
the same final configuration as in the previous case the target
state must be set as |ψt 〉 = (|ψ1〉 + i|ψ3〉)/

√
2. Obviously, the
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FIG. 6. The same as Fig. 5 but considering U0 = 5 meV.

change in U0 also modifies the tunneling splitting, �Et , and
the values of ω0 (0.0375 meV), T

(A)+(B)
t (110.32 ps), and A0

(7.5 × 101 V/cm).
Figure 6(a) shows the optimized field obtained in this

simulation, where the presence of higher-frequency com-
ponents of larger amplitude is well seen. Nevertheless, the
resonant frequency of the target transition is still the main
component, as can be seen in the inset. The fact that the
optimized field includes these higher frequencies is a sign
of the increased presence of transitions involving states above
the lowest four. This is logical given that, as U0 decreases, the
gap between these lowest states and the higher ones decreases
too, so that the transient occupations of the latter become
more probable. In the previous case [Fig. 5(a)], the energy
gap prevents the optimization algorithm from making use of
those higher-energy states, avoiding the need of electric field
oscillations of greater amplitude. On the contrary, in this case
[Fig. 6(a)] this gap is smaller, the higher-energy states more
accessible, and therefore the optimization algorithm uses them.

The presence of higher-energy transitions during the dy-
namics is also reflected in the evolution of the observables
[see Figs. 6(b)–6(d)]. Note the higher-frequency oscillations
in the three cases compared with those observed in Fig. 5. In

particular, in Fig. 6(c), note that the charge density oscillates
much faster and with smaller amplitudes (the charge is almost
equally distributed in both QDs), in comparison with Fig. 5(c).
Note also that the charge distribution penetrates more deeply
into the barrier region throughout all the dynamics.

In Sec. IV A, we referred to the fact that the QOCT scheme
aims at minimizing the driving field fluence. For the present
case we have reduced the amplitude of the reference driving
field. However, it was interesting to see that, even if we keep
the original amplitude (A0 = 1.5 × 102 V/cm), the results (not
shown here) are quantitatively similar to those shown in Fig. 6.

V. CONCLUSIONS

This paper has shown how to optimally control, using
spin-orbit coupling, the electron localization and the simulta-
neous spin dynamics in single-electron nanowire-based double
quantum dots by electric means. The manipulation is fast (of
the order of 0.1 ns, much shorter than the decoherence time
induced by the unavoidable hyperfine interactions [33]) if the
electric pulses are properly shaped, which we have achieved
with the help of quantum optimal control theory. The dynamics
of these systems had been known to be complex (and to
some extent surprising) as it was found [21] that the Rabi
spin oscillation frequency does not grow monotonously with
the electric field amplitude, but rather exhibits an unexpected
nonlinear behavior. Due to this fact, the use of monochromatic
radiation results in rather slow spin-flip transitions. In addition
and for the same reason, it is not useful to simply increase the
field amplitude. This is a challenge if these systems are to
be used in spintronics devices. Here we have shown how the
problem can be solved by making use of control techniques to
design more complex electric pulses. The obtained shape of
the pulse is relatively simple and includes fewer than 10 main
spectral components, just simplifying the pulse generation.

In this paper we concentrated on the systems with param-
eters corresponding to the spectrum of the optimal pulses in
the subterahertz domain. It is possible to modify the double
quantum dot parameters such that the splitting of the levels,
and, correspondingly, the spectral range of the pulses will
become of the order of 1 GHz. This is a better frequency
scale for conventional semiconductor-based electronics and
involves the use of lower magnetic fields. In this case the pulse
design is based on the same approach as we applied here, and
the results will be similar to the results obtained here.
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