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Role of the kinematics of probing electrons in electron energy-loss spectroscopy of solid surfaces
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Inelastic scattering of electrons incident on a solid surface is determined by two properties: (i) electronic
response of the target system and (ii) the detailed quantum-mechanical motion of the projectile electron inside
and in the vicinity of the target. We emphasize the equal importance of the second ingredient, pointing out the
fundamental limitations of the conventionally used theoretical description of the electron energy-loss spectroscopy
(EELS) in terms of the “energy-loss functions.” Our approach encompasses the dipole and impact scattering as
specific cases, with the emphasis on the quantum-mechanical treatment of the probe electron. Applied to the
high-resolution EELS of Ag surface, our theory largely agrees with recent experiments, while some instructive
exceptions are rationalized.
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I. INTRODUCTION

Electron energy-loss spectroscopy (EELS) is an efficient
and widely used experimental method to study excitation
processes on clean and adsorbate-covered surfaces of solids
and in thin (including atomically thin) films [1–4]. This
method utilizes the inelastic scattering of electrons, resulting
in both energy and momentum transfer from the projectiles
to diverse kinds of excitations in the samples. Reflected or
transmitted electrons are analyzed with respect to the energy
and momentum loss they have experienced in the interaction
with a target, revealing a wealth of information about the
properties of the latter.

Much effort has been exerted over the years to complement
EELS experimental techniques with comprehensive theoret-
ical pictures [2,5–11]. In this way, a clear understanding of
elementary excitations [such as electron-hole pair generation,
collective electronic excitations (plasmons), atomic vibra-
tional modes, etc.], including their momentum dispersion,
for solid surfaces, for interfaces, and in thin films has been
achieved.

Presently, the main approach to interpret EELS data
theoretically is to use energy-loss functions. A clear example
is the surface energy-loss function of a semi-infinite solid,
which, neglecting the momentum dispersion, can be written
as [10]

Ls(ω) = −Im
1

ε(ω) + 1
, (1)

where ε(ω) is the frequency-dependent dielectric function
(DF) of the bulk solid. This example exhibits an important
feature common also to other much more sophisticated loss
functions: Ls(ω) of Eq. (1) is a property of only the target.
Indeed, it is not concerned with the setup of the EELS
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experiment, such as the angles of incidence and reflection
(or transmission); the energy of the electrons in the incident
beam; or, which is subtler, the detailed, preferably quantum-
mechanical motion of the probe electrons both outside and
inside the target. As a clear reason why such an approach
may not be adequate, we note that it cannot, in principle,
determine the relative intensities of the surface and the bulk
plasmons in a given EELS setup, with the bulk response
being given in the same approximation by another energy-loss
function Lb(ω) = −Im 1

ε(ω) . For systems where the bulk and
the surface excitations overlap, as is the case, e.g., for silver,
this constitutes a serious limitation.

Meanwhile, a theoretical approach to EELS taking full
account of the incident electron kinematics was introduced two
decades ago [12]. This is based on the solution to the problem
of the energy loss by an electron traveling in the lattice potential
of a target, utilizing the method known in the scattering theory
as the distorted-wave approximation [13] [see Eq. (2) in the
next section]. That formal theory of the response of the target
system coupled to the quantum-mechanical motion of the
projectile electron has, however, never been implemented to
the full extent in calculations for specific systems. Indeed, the
formalism importantly stipulates that the density-functional
theory [14] (DFT) potential used in the calculations of the
ground state and of the response of the target, on the one hand,
and the potential which determines the motion of the projectile
electron, on the other, should be the same crystalline potential.
Only two specific applications of the theory have been made so
far. In the first, the theory of Ref. [12] has been implemented
for jellium within a model of the incident electron reflected
from an infinite barrier at a given position above/below the
surface [15]. In the other, which is an application to the
inelastic low-energy electron diffraction (LEED) of simple
metals, a severe approximation of the kinematic diffraction
theory was used [16]. At the same time, detailed measurements
in the high-resolution EELS (HREELS) of the silver surface
in the wide energy range have become available recently [17],
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FIG. 1. Bulk (solid line) and surface (dashed line) energy-loss
functions of silver. The experimental optical dielectric function
εAg(ω) is used [18].

calling for the implementation of refined theoretical
methods.

The purpose of this paper is therefore twofold. First, we aim
at the implementation of the theory of EELS of Ref. [12] in its
original form, i.e., that would treat the incident electron and
the electrons of the target system on the same footing. Second,
we apply this theory to the EELS of the Ag surface, which is
exactly the case when the interplay of the response of the target
with the details of the probe’s motion is especially important
due to the overlap of the bulk and the surface features in the
excitation spectrum of this material, as illustrated in Fig. 1. By
this we both further advance the theory of EELS and achieve an
improvement in the understanding of the experimental spectra
of the Ag surface.

Since the fully ab initio solution to the problem of the
dielectric response of d metals still remains a computationally
formidable task, we have to resort to some model considera-
tions. First, we substitute the three-dimensional (3D) problem
with a one-dimensional (1D) one, neglecting the system’s
nonuniformity in the surface plane. Second, the d electrons
are included in a phenomenological way, using the model
of Liebsch [9,19] for the background DF. This work should
therefore be considered a step forward toward the full-feature
3D implementation of the same method, also treating d

electrons ab initio. However, the main ingredients of the
theory (among them, importantly, the necessary inclusion of
the optical potential) are presented and discussed in this work,
facilitating the future implementation of the method in full.

This paper is organized as follows. In Sec. II we review
and further work out details of including the motion of the
scattered electrons in the theory of EELS. In Sec. III, results
of the calculations conducted with the use of our theory are
presented and discussed. Conclusions are collected in Sec. IV.
In the Appendix we detail some important properties of the
model utilized in the calculations. We use atomic units (e2 =
� = me = 1) throughout unless otherwise indicated.

II. FORMALISM

A formal solution to the problem of the inelastic scattering
of an electron in the EELS setup, which incorporates the
detailed quantum-mechanical motion of the projectile, can be

quite generally written as [12,16]

d2σ

dωd�
(p′ ← p) = −16π3p′

p
Im

∫
ρ∗

ext(r
′′)

|r′′ − r|χ (r,r′,ω)

× ρext(r′′′)
|r′ − r′′′|drdr′dr′′dr′′′, (2)

where the left-hand side of Eq. (2) is the differential cross
section of the scattering from the state of the momentum p
to a state of the momentum within the solid angle d� around
p′, with an energy loss within dω around ω = (p2 − p′2)/2.
On the right-hand side of Eq. (2), χ (r,r′,ω) is the interacting-
electron [20] density-response function of the target, and the
complex-valued “external charge density”

ρext(r) = 〈r|p+〉∗ 〈r|p′−〉 (3)

is determined by the elastic scattering incoming and outgoing
wave functions, |p+〉 and |p−〉, respectively, which are the
solutions to the Lippmann-Schwinger equation [13]

〈r|p±〉 = 〈r|p〉 + G0

(
p2

2
± i0+

)
Vl(r)〈r|p±〉, (4)

where G0(E) is the noninteracting Green’s function, Vl(r)
is the single-particle static lattice potential, and 〈r|p〉 =
eip·r/(2π )3/2 are plane waves. [21]

The structure of Eq. (2) has a transparent physical interpre-
tation: The external charge ρext creates an external Coulomb
potential, which, through the density-response function χ ,
induces the charge fluctuation in the target. Finally, the
Coulomb potential of that fluctuation couples to the external
charge itself, causing the inelastic scattering of the latter.

It must be, however, emphasized that the above picture
is no more than a convenient verbal description of the strict
mathematical formalism presented in Ref. [12]: The derivation
of Eq. (2) does not rely on the substitution of the true
quantum-mechanical scattering problem for an electron with
an artificial charge density. It rather solves the problem of
the combined elastic and inelastic scattering of a charge
in an arbitrary many- (or few-) body system, which, with
the mild assumption that the impinging electron can be
considered distinguishable from those of the target, can be put
into the terms of the density-response function of the target
and the elastic scattering states of the projectile. Obtained
within the distorted-wave approximation [13], Eq. (2) is
exact to first order in the inelastic processes (the first Born
approximation), and it is exact to all orders in the elastic
scattering. It includes both the long- and the short-range
interactions of the probe electron with the target, i.e., the
dipole and impact scattering [10], respectively, within, most
importantly, the quantum-mechanical treatment of the probe
itself.

Of course, practically, the quality of specific calculations
by Eq. (2) depends on the accuracy of the approximations used
to calculate its ingredients, i.e., the density-response function
of the target χ and the wave functions of the incoming and
outgoing electrons utilized in the construction of ρext. We now
turn to the use of specific models.
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A. Model of a laterally uniform target

In this work we will use a simplification of the potential
Vl(r) = Vl(z) averaged in the plane parallel to the surface,
which is chosen as the xy plane, with the z axis normal to the
surface and directed into vacuum. In this case the wave func-
tions are plane waves in the direction parallel to the surface,

〈r|p±〉 = 〈z|p±
z 〉e

ip‖·r‖

2π
, (5)

where the subscript parallel symbol denotes the xy projection
of a vector. To take advantage of the scattering theory
framework, in the following we represent the target with a
sufficiently thick slab, with vacuum both above and below,
which is also consistent with our numerical implementation
of the method. Then 〈z|p+

z 〉 can be conveniently found as
a solution to the Schrödinger equation with the following
asymptotic boundary conditions:

〈z|p+
z 〉 = 1

2π

{
a+eipz z + b+e−ipz z, z → +∞,

c+eipz z + d+e−ipz z, z → −∞,
(6)

pz > 0 : c+ = 1, b+ = 0,
(7)

pz < 0 : a+ = 1, d+ = 0.

The asymptotic of 〈z|p′−
z 〉 is easily obtained from the relation

〈z|p′−
z 〉 = 〈z| − p′+

z 〉∗. (8)

Therefore, using Eqs. (6) and (7), we have

〈z|p′−
z 〉 = 1

2π

{
a−eip′

z z + b−e−ip′
z z, z → +∞,

c−eip′
z z + d−e−ip′

z z, z → −∞,
(9)

p′
z > 0 : a− = 1, d− = 0,

(10)
p′

z < 0 : c− = 1, b− = 0.

Equation (6) together with the bottom line of Eq. (7) describes
the electron incident on the surface, as in the low-energy
electron diffraction (LEED) experiment. Interestingly, the
wave function of Eq. (9) together with the top line of Eq. (10)
is a time-reversed LEED state. This kind of function describes
the photoelectron (PE) final state in the one-step theory of
photoemission [22]. Note that in vacuum it contains both
outgoing and incoming beams. Thus, while in the LEED and
PE setups each of these kinds of the wave functions enters
separately, in EELS they are present together.

For ρext(r) we can write

ρext(r) = ρext(z)
eiq‖·r‖

(2π )2
, (11)

where

ρext(z) = 〈z|p+
z 〉∗〈z|p′−

z 〉, (12)

and q‖ =p‖ − p′
‖. Then, finally, Eq. (2) takes the convenient

form
1

A

d2σ

dωd�
(p′ ← p) = − p′

πp q2
‖

Im
∫

ρ∗
ext(z

′′)e−q‖|z′′−z|

×χ (z,z′,q‖,ω)e−q‖|z′−z′′′ |ρext(z
′′′)

× dzdz′dz′′dz′′′, (13)

where A is the surface normalization area.

d-electrons
edge z=b

1st atomic
layer z=0

z

I

II

p
p′

εd(ω)

FIG. 2. Schematics of the model used in the calculation.

B. Real-space solution with the background dielectric function

According to Eq. (13), the external potential applied to our
system is

φext(z) = 2π

q‖

∫
e−q‖|z−z′ |ρext(z

′)dz′. (14)

Therefore, Eq. (13) can be rewritten as

1

A

dσ

dωd�
(p′ ← p)=− p′

4π3p
Im

∫
ρ∗

ext(z
′′)φind(z)dz, (15)

where

φind(z) = 2π

q‖

∫
e−q‖|z′−z|χ (z′,z′′,q‖,ω)φext(z

′′)dz′dz′′ (16)

is the potential induced in the system in response to the external
charge density ρext(z). To determine φind(z), a simplified model
of the Ag surface, introduced by Liebsch [9,19], is used,
in which only s electrons are treated quantum mechanically
through the calculation of their response function, while the
influence of d electrons is included effectively by the use
of a background DF εd (ω) comprising the half-space z � b,
as schematized in Fig. 2. Then, for the total scalar potential
φ(z) = φext(z) + φind(z) we can write separately in regions I
(with z � b) and II (with z � b)

φ(z) =
{

φ̃(z) + Ae−q‖z, z � b,

φ̃(z)
εd

+ Beq‖z, z � b,
(17)

where

φ̃(z) = φext(z) + φs(z), (18)

φs(z) is the potential of the response of only s electrons, and
A and B are constants to be determined from the boundary
conditions of the continuity of the tangential component of
the electric field and the normal component of the electric
displacement vector, which give, respectively,

φ̃(b) + Ae−q‖b = φ̃(b)

εd

+ Beq‖b,

−Ae−q‖b = Beq‖bεd . (19)

For φs we can write

φs(z) = 2π

q‖

∫
e −q‖|z−z′ |χs(z

′,z′′,q‖,ω)

× [φ(z′′) − φs(z
′′)]dz′dz′′, (20)
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where χs is the density-response function of only s electrons.
By further rewriting Eq. (17) as

φ(z) − φs(z)

=
{
φext(z) + Ae−q‖z, z � b,
φext(z)

εd
+(

1
εd

−1
)
φs(z)+Beq‖z, z � b,

(21)

and substituting Eq. (21) into the right-hand side of Eq. (20)
and Eq. (18) into Eqs. (19), we arrive at a closed system of
equations for φs(z), A, and B, which is numerically solved on
a grid of z. Then from φs(z) we obtain φ̃(z) from Eq. (18),
φ(z) from Eq. (17), and φind(z) as φ(z) − φext(z). The latter is
finally used in Eq. (15) to calculate the EEL spectrum.

III. CALCULATIONS, RESULTS, AND DISCUSSION

Our calculation of the ground state of the s electrons of
Ag(111) uses the 1D interpolation of the surface and the bulk
potential of Ref. [23]. A supercell with period d = 221.7 a.u.
was used, which included 31 layers of the model s subsystem of
Ag; the rest were occupied with vacuum. The time-dependent
density-functional theory (TDDFT) calculation of the density-
response function χs(z,z′,q‖,ω) is performed on the level
of the random-phase approximation (RPA), i.e., setting the
exchange-correlation kernel [24] fxc to zero. Then we apply
the procedures from Secs. II B and II A to account for the
response of d electrons and to finally obtain the EEL spectra.
The edge of the d electrons was set at b = 0.717 a.u. above
the upper atomic layer. For εd (ω) we take

εd (ω) = εAg(ω) − [εs(ω) − 1] = εAg(ω) + ω2
p

ω2
, (22)

where εAg(ω) is the experimental optical DF of silver [18] and
εs(ω) = 1 − ω2

p/ω2 is the Drude DF of s electrons with the
plasma frequency ωp = 9 eV.

To construct ρext(z) by Eq. (12), we solved the Schrödinger
equation with the asymptotic boundary conditions of Eqs. (6)
and (9). The scattering wave functions were obtained by
solving the inverse band-structure problem as explained in
Ref. [25] and matching the Bloch solutions in the crystal to
the linear combination of the incident and reflected waves in
the vacuum. The same crystal potential as for the evaluation
of χ was used, with the addition of the absorbing imaginary
potential −iVi, as explained below. Importantly, similar to the
LEED theory [26], the inclusion of the optical potential (OP)
in the Hamiltonian is necessary for EELS theory as well. This
can be understood considering that, without OP, electrons that
have taken an arbitrarily long round-trip into the depth of the
sample would contribute to the spectrum. Since, in the first
Born approximation, the probability of the bulk energy loss is
proportional to the path length traveled, this would make the
intensity of the bulk losses infinitely high. The influence of the
deep interior of the sample is, however, suppressed in LEED
by all the inelastic processes and in EELS by the inelastic
processes beyond the first Born approximation. In the present
calculation Vi was taken to be spatially constant in the solid
and zero in vacuum. At Ep = 40 eV, we used Vi = 0.3 eV
for an angle with the normal to the surface of 80◦, 75◦, 70◦,
Vi = 0.5 eV for 85◦, and Vi = 0.1 eV for 55◦. In Fig. 3 ρext(z)

-d
2 -50 0 50b d

2

Re ρext(z)

z (a.u)

Im ρext(z)

Re φext(z)

Im φext(z)

FIG. 3. The complex-valued density of Eq. (12) (left) and the
corresponding potential (right) as a function of the coordinate z at ω =
3.7 eV, θi = 80◦, θs = 75◦, and Ep = 40 eV. At these parameters,
q‖ = 0.111 a.u. The edge of the d electrons is at b = 67.2 a.u., and
the period of the supercell used in the calculation of the response of
s electrons is d = 221.7 a.u. In the calculation, the origin is chosen
in the center of the supercell.

and the corresponding φext(z) are shown for representative
values of the parameters of the EELS experiment.

In Figs. 4 and 5 results of calculations of the EEL reflection
spectra are presented. They are compared to experimental
HREELS of the system of ten monolayers of Ag on the (111)
surface of the Ni substrate [17]. In Fig. 4 the theoretical and
experimental EEL spectra are shown for a primary energy
of electrons Ep = 40 eV, an angle of incidence θi = 80◦,
and three values of the angle of scattering θs , 85◦, 75◦, and
70◦. In Fig. 5 the results for the specular geometry with
θi = θs = 55◦ and the same primary energy are presented. The
comparison of the theory with the experiment is reasonably
good. Most importantly, the sharp bulk and surface plasmon
peaks near 3.7 eV, which are separately present in the plots
of the corresponding energy-loss functions (Fig. 1), are never
resolved from each other in our calculations, but they form
a joint broadened peak with a contribution from both types
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FIG. 4. HREEL spectra of the Ag(111) surface calculated within
the framework of our theoretical approach (solid lines) compared to
the experimental spectra of ten monolayers of Ag on the Ni(111)
surface, the latter compiled from Ref. [17] (symbols). The energy of
electrons in the incident beam is Ep = 40 eV.
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FIG. 5. The same as Fig. 4, but for the specular reflection θi =
θs = 55◦.

of excitations. This is in full agreement with the HREELS
experiments [17,27–29]. A notable exception from the agree-
ment between the theory and the experiment is the case of
θi = 80◦ and θs = 70◦, the top spectrum in Fig. 4, where,
surprisingly, the lower-energy plasmon peak, which is strong
in the experimental spectrum, is absent in the theoretical one.

To examine the latter discrepancy more closely, in Fig. 6
we plot theoretical spectra for the angle of scattering gradually
changing from 75◦, when the peak in question is pronounced,
to 70◦, when this peak disappears. These results show that the
strength of the peak near 3.7 eV decreases systematically when
the scattering angle θi − θs increases. We note that a similar
effect of the disappearance of the 3.7 eV peak with the growing
momentum can be observed in the results of the calculations of
Ref. [30], performed in the dipole-scattering mode within the
same model of d electrons. We analyze this tendency in detail
in Appendix with the conclusion that, although the background
DF model is applicable in the higher energy range around
8 eV to account for the bulk, surface, and multipole plasmons
in Ag [9,19], it fails for the lower-energy plasmons at larger
values of the wave vector. Obviously, the future theory, which
will include d electrons from first principles, will be free from
this deficiency.
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FIG. 6. The calculated EEL spectra for the angle of scattering
changing from 75◦ to 70◦ with a step of 1◦. The gradual disappearance
of the peak around 3.7 eV can be observed.
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FIG. 7. Primary energy dependence of HREELS of Ag(111).
Peaks on the experimental spectra are attributed to the double-
plasmon excitation and are, accordingly, absent from the theoretical
spectra. The inset shows the same spectra for Ep = 170 eV in
a narrower energy range. The experimental data compiled from
Ref. [17] are used.

Since our calculations based on Eq. (2) are linear with
respect to the interaction between the probe electron and
the electronic subsystem of the target (distorted wave [13]
with the first Born approximation for inelastic processes), the
multiple energy losses, e.g., multiple plasmon excitations, are
beyond the capacity of this approach. Nonetheless, especially
at higher primary energies, multiple losses can be expected in
the experimental spectra. In Fig. 7 we plot the theoretical
spectra together with the corresponding experimental ones
for three different primary energies of 170, 100, and 70 eV
at the specular geometry of θi = θs = 80◦, where we now
focus on the higher energy range. While the theoretical lines
are rather smooth in this range, the experimental spectra at
Ep = 170 and 100 eV have prominent peaks around 7.6 eV.
Considering that (i) the positions of these peaks are very
close to twice the energy of the strong single-plasmon peaks
around 3.7 eV, (ii) their intensities change with Ep consistently
with those of the corresponding single-plasmon peaks, and
(iii) these peaks are present in the experiment but absent
in the linear-response-based calculations, we are led to the
conclusion that these peaks are due to the double-plasmon
excitations.

To reproduce the multiple plasmons theoretically, a theory
of EELS beyond the first Born approximation is required.
We note that the formal theory of inelastic scattering of a
quantum-mechanical particle to the second Born approxima-
tion, expressed in terms of the quadratic density-response
function of a target, was constructed in Ref. [31]. The practical
implementations of this theory have not, however, been yet
developed.

IV. CONCLUSIONS

We have revisited the problem of energy losses by electrons
in reflection electron energy-loss spectroscopy with the focus
on the role of the probing electrons’ kinematics. The inade-
quacy of the description of EELS in terms of the energy-loss
functions has been emphasized for materials where the bulk
and the surface features overlap or are close in energy in the
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excitation spectra. We have implemented the theory including
the effect of the detailed quantum-mechanical motion of the
probe electrons during their energy losses, using the Ag surface
as a representative example of a system where the kinematic
aspect of the problem is particularly important.

Since our primary interest lies in the role of the kinematic
effects, for the sophisticated problem of the d electrons’
response, we have used a simplified model of the back-
ground dielectric function, which has immensely simplified
the numerical implementation. As a side effect, although we
have found reasonably good overall agreement with HREELS,
at strongly off-specular geometries of the experiment, the
theory and the measurements disagree. We have tracked this
discrepancy down to the failure of the substitution of the d

electrons with the background dielectric function to describe
the dispersion of the main loss feature of 3.7 eV in Ag
at larger values of the momentum. Thus the limits of the
applicability of that otherwise very useful model have been
set. This difficulty is anticipated to be overcome in the future
theory, with all the ingredients included within the ab initio
approach.

Another deviation of the theory from experiment we have
found can be qualified as evidence of the consistency of the
former rather than its deficiency. Namely, the experiment
shows peaks at EEL spectra that, from all the evidence,
can be attributed to the double-plasmon excitations. The
linear-response theory, which our approach is based on,
fundamentally cannot account for such losses, and we do
not, accordingly, obtain the double-excitation peaks in the
calculations. Future implementations of the theory of quadratic
and higher-order response will be able to account for these
processes.
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APPENDIX: PROPERTIES OF THE MODEL
OF THE BACKGROUND DF

In this Appendix we scrutinize the model of the background
DF used in this paper to account for the d electrons in
the dielectric response of silver [9,19]. For the sake of
maximal clarity, we do this analytically by considering the
bulk response. In this case the same model is determined by
the DF

ε(q,ω) = εAg(ω) −
[

1 − ω2
p

ω2

]
+ εLs(q,ω)

= εd (ω) + [εLs(q,ω) − 1], (A1)

where εAg(ω) is the optical experimental DF of Ag, εd (ω)
is given by Eq. (22), and εLs(q,ω) is Lindhard’s DF of the
homogeneous electron gas [32], taken at the density of the s

electrons of Ag.
In Fig. 8 we plot the energy-loss function using the DF

of Eq. (A1) for several values of the wave vector q. The
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FIG. 8. The bulk energy-loss function using the DF of Eq. (A1)
plotted for several values of the wave vector q. The plasmon peak
near 3.7 eV clearly weakens and finally disappears with the increase
of q.

plasmon peak near 3.7 eV weakens with the increase of q

until it disappears at q ≈ 0.2 a.u. This is consistent with the
behavior of the DF itself, which is plotted in Fig. 9. Indeed, for
q = 0 and 0.1 a.u., Re ε(q,ω) crosses zero in the corresponding
energy range, thereby producing the plasmon peak in the loss
function. This is not the case any longer for q = 0.15, 0.175,
and 0.2 a.u., although for the former two wave vectors, the
peaks in question still persist in the loss function due to Re ε

approaching the zero axis (see Ref. [11]). Last, at q = 0.2 a.u.,
Re ε is very far from zero in this ω range, and no peak in the
loss function can be discerned any longer.

The above results are consistent with those of Sec. III of
this paper. Indeed, the main contribution to the z component of
the wave vector of the external perturbation can be estimated
from Eqs. (12), (6), and (9) as pz + p′

z (note that pz < 0
and p′

z > 0). When Ep = 40 eV and θi = 80◦, this is equal
to 0.123 and 0.259 a.u. for θs = 75◦ and 70◦, respectively.
The corresponding values of q‖ are 0.117 and 0.160 a.u.,
respectively. Then q = [(pz + p′

z)
2 + q2

‖ ]1/2 are 0.170 and
0.304 a.u., respectively, explaining the presence of the plasmon
near 3.7 eV in the theoretical spectra in the former and its
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FIG. 9. The dielectric function of Eq. (A1). Lines without labels
are the real parts of the DF at the corresponding values of q. Lines
with the label “Im” are imaginary parts, which, for all values of q,
largely coincide with −Im ε(q = 0,ω) since the Lindhard’s DF is real
in the corresponding energy ranges.
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absence in the latter case. For the specular geometry in Fig. 5,
the corresponding value is q = 0.09 a.u., consistent with the
strong theoretical lower-energy plasmon peak in this figure.
The same argument holds for the spectra in Fig. 7.

Experimentally, however, this prediction of the model is not
supported, as can be seen in Fig. 4 (top experimental spectrum):
the plasmon near 3.7 eV persists in the measurements on Ag at

larger wave vectors. We therefore can conclude that, at larger
wave vectors, the response of d electrons cannot be realistically
substituted with a wave-vector-independent dielectric function
when it concerns the lower-energy plasmon in Ag, while this
model is quite successful in the higher energy range, where the
spectra are dominated by the response of s electrons outside
the d-electron background [9,19].
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