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Recently, several new materials exhibiting massless Dirac fermions have been proposed. However, many of
these do not have the typical graphene honeycomb lattice, which is often associated with Dirac cones. Here, we
present a classification of these different two-dimensional Dirac systems based on the space groups and discuss our
findings within the context of a minimal two-band model. In particular, we show that the emergence of massless
Dirac fermions can be attributed to the mirror symmetries of the materials. Moreover, we uncover several novel
Dirac systems that have up to 12 inequivalent Dirac cones and show that these can be realized in (twisted) bilayers.
Hereby, we obtain systems with an emergent SU(2N) valley symmetry with N = 1,2,4,6,8,12. Our results pave
the way to engineer different Dirac systems, in addition to providing a simple and unified description of materials
ranging from square and B-graphynes to Pmmn boron, TiB,, phosphorene, and anisotropic graphene.
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I. INTRODUCTION

The synthesis of graphene has opened the world of Dirac
cones and the physics that derives from them [1]. Since
then, Dirac systems have attracted a huge interest not only
from a fundamental point of view but also with a view to
applications. Indeed, graphene holds promise to revolutionize
nanotechnology because it is ultrathin, light, transparent, and
resilient to bending. Current applications range from sensors
to transparent flexible electronics, field-effect devices, and
spintronics. In addition, many phenomena first discussed in
the realm of elementary-particle physics now find their way to
tabletop experiments. Examples include the Klein paradox,
Zitterbewegung, and connections to gravity [2]. Moreover,
Dirac fermions have been of great importance to the field
of topological quantum matter. First, experiments at very high
magnetic fields revealed that in graphene the quantum Hall
effect may be observed at room temperature [3]. Second,
graphene is the system for which the quantum spin Hall effect
was originally proposed [4].

During the first decade after the initial synthesis of
graphene, the field of Dirac materials has evolved into various
directions. One of these focuses on graphene’s honeycomb
lattice and concerns whether one can obtain different or
more versatile materials by replacing the carbon atoms by
different group-IV elements [5]. This pursuit led to the
successful synthesis of silicene, germanene, and stanene [6—8].
Since these atoms have a larger atomic radius than carbon,
they buckle out of the two-dimensional plane, and this
buckling is useful for applications in electronic devices. In
particular, one can generate a mass for the Dirac fermions
in silicene by the application of an external electric field,
which is exploited in field-effect transistors [9]. Moreover,
stanene is supposedly a near-room-temperature topological
insulator [10]. Furthermore, honeycomb lattices composed of
alternating boron (silicon) and nitrogen (carbon) atoms have
been synthesized [11,12]. In these binary compounds, the
asymmetry between the different atoms induces a large gap
in the spectrum, such that SiC is a semiconductor and hBN is
an insulator.

Although the honeycomb lattice has proven to be a very
successful platform for designing novel Dirac materials,
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a great deal of progress has been made in the field of
nonhoneycomb systems as well. A very promising class of
materials in this respect is provided by graphynes [13]. These
are two-dimensional carbon allotropes that are characterized
by the presence of acetylene bonds (—C=C—) in their lattice
structure. In particular, the alternating presence and absence
of the acetylene bond leads to more complicated lattice
structures and, consequently, to a richer band structure. For
example, B-graphyne exhibits six inequivalent Dirac cones
in the Brillouin zone (BZ), whereas the recently proposed
square graphynes have four [14]. Although graphynes have
not yet been experimentally realized, the structurally similar
graphdiyne has already been successfully synthesized [15].
Recent studies show that similar Dirac systems can also be
realized in noncarbon materials. Indeed, a monolayer of the
metal diboride TiB, exhibits six Dirac cones [16], and the
rectangular boron allotrope pmmn boron has one pair of Dirac
cones [17].

The above examples show that Dirac materials can thus
have very different crystalline lattices and may even be
composed of different elements. If we set aside the chemical
composition and focus instead on symmetries, we may
distinguish three different classes of Dirac materials. The first
class is formed by graphene and the other materials that have
the Dirac cones located at the high-symmetry (HS) K and K’
points. Similarly, we may group together the Dirac systems
that have their cones located along the HS lines. 8-graphyne,
square graphynes, pmmn boron, and TiB, belong to this class.
Finally, one may consider the systems that have their Dirac
cones located at generic points in the BZ. A typical example
of those is the organic conductor a-(BEDT-TTF),I5 [18].

Given the diversity of chemical composition and lattice
structure of the current Dirac materials, it is essential to acquire
a better understanding of the conditions for the emergence of
Dirac cones. This is precisely the aim of this paper. Therefore,
we first discuss in Sec. II the occurrence of band-crossing
points in two-dimensional crystals. Then, in Sec. III, we show
that the Dirac cones along HS lines are a mere consequence
of the mirror-reflection symmetry of the different materials.
This allows us to promptly engineer Hamiltonians that display
Dirac behavior and, in particular, to realize a multitude of
Dirac cones, which bring us from the SU(4) case in graphene
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to a generic SUQ2N) for N-valley degrees of freedom (N =
1,2,4,6,8,12). Then, in Sec. IV we extend the discussion to
systems that have Dirac cones located at arbitrary points in
the BZ. Throughout this paper, we illustrate our analysis by
discussing the various cousins of graphene. Our conclusions
are presented in Sec. V.

II. BAND CROSSING POINTS

Dirac systems are characterized by a band-crossing point
(BCP), from which the two bands disperse linearly. Such a BCP
can be studied using a minimal two-band model, for which the
Hamiltonian is given by a Hermitian 2 x 2 matrix Hy, with
elements H;;,i,j = 1,2. The presence of a degeneracy means
that there exist two eigenvectors |\W) and |®) with the same
energy E. This requires the following relations to hold:

Hyi = Hy, Im[H|;] =Re[H;] =0. (1)

Hence, three conditions must be fulfilled for the degeneracy to
occur, while there are only two variables, k, and k,, to tune.
This result is known as the Wigner—von Neumann theorem [19]
(see also Ref. [20] for a generalized Wigner—von Neumann
theorem). Therefore, for a BCP an additional symmetry is
required to ensure that at least one of these conditions is
automatically satisfied. We will now discuss three different
possibilities that may occur. Here and in the remainder of this
text, we restrict ourselves to spinless fermions in the presence
of time-reversal symmetry (TRS).

(D In the case of the honeycomb lattice, the BCP occurs
at the K and K’ points, which are located at the corners
of the hexagonal BZ. At these HS points, the symmetry of
the lattice ensures that all three conditions are automatically
satisfied. This is due to the combination of a threefold
rotational symmetry around each lattice point and the reflection
symmetry relating the two sublattices. For this reason, the
Dirac cone in graphene is called an essential degeneracy. Other
systems with Dirac cones at the K and K’ points include the
ruby and kagome lattices [21]. Moreover, the kagome lattice
exhibits a quadratic BCP at the I" point [22].

(IT) Let us consider a system that is governed by the
Hamiltonian H in the presence of a mirror symmetry R. For a
momentum k that lies along the HS lines, we have [R,H] =
0 [23]. Now, by combining this commutation relation with
the fact that R% = I, where I is the identity, we can block

diagonalize Hy,
_(He+ O
Hk - ( O Hk,—) b (2)

where Hj i corresponds to the even and odd states, re-
spectively. If we assume that near the Fermi energy one
may describe the system by two bands (even/odd), then the
condition for the existence of a Dirac cone along the HS
line reduces simply to Hy y = Hy _. Hence, the number of
conditions matches the number of variables, and there might
be Dirac cones in such a system for a finite region in the
parameter space of hopping- and on-site energies.

This discussion leads us to the following requirements for
constructing a Dirac system with cones along the HS lines:
(i) The system should exhibit mirror symmetry R, (i) the
two bands closest to the Fermi level should have opposite
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eigenvalues under the mirror symmetry R, and (iii) the bands
should cross.

Notice that we have not made use of the TRS. However,
in the absence of TRS the hopping parameters can pick up a
phase, which may break the mirror symmetry.

(III) Finally, we consider a system that exhibits both
inversion and TRS. TRS implies that H, = H*,, whereas,
typically, the inversion symmetry imposes that H, = o; H_; 07,
with i = 0,1, or 3, where o; denote the Pauli matrices and oy
denotes the identity matrix. Hence, if we combine the two
relations, we obtain H; = o; H ;. In this case, just one of the
relations in Eq. (1) is automatically satisfied, and one might
find Dirac cones because the number of equations matches the
number of variables.

Finally, we remark that in the remainder of this paper we
limit ourselves to Dirac systems for which the cones are related
by symmetry. In particular, this ensures that all Dirac cones lie
precisely at the Fermi level.

III. TWO-DIMENSIONAL LATTICES WITH CONES
ALONG HIGH-SYMMETRY LINES

Here, we investigate the various Dirac systems belonging
to class II. Given such a system, we may classify it depending
on the symmetry of the crystal lattice and the set of HS lines
along which the Dirac cones are located. Equivalently, we
need to specify the mirror symmetries for which the valence
and conduction bands have opposite parity.

The full symmetry of the crystal lattice is given by the space
group. A crystal can be seen as a Bravais lattice that encodes
the translational symmetry together with a basis that specifies
the positions and chemical composition of the atoms in the unit
cell. For example, graphene consists of a two-atom basis of
carbon with an underlying triangular Bravais lattice. In general,
the crystal corresponds to a decorated Bravais lattice. Hence,
the space group that describes the combined symmetry of the
Bravais lattice and the basis does not need to coincide with
the underlying Bravais lattice. In particular, in two dimensions
there are 17 different space groups (see, e.g., Ref. [24]). Since
the class-II Dirac systems can only occur for crystals with
mirror symmetry, we will only encounter nine of them.

Given the space group, we can identify the sets of HS
lines and study the corresponding Dirac systems. Moreover,
for each realization we construct a minimal Hamiltonian.
This Hamiltonian is only valid at low energies around the
Dirac cone because away from the Dirac cone other bands
may become important. These minimal models can always be
chosen to be chiral, meaning that the Hamiltonian is a linear
combination of just two Pauli matrices. For each model, we
discuss a novel Dirac material as a concrete example. Our
analysis focuses on the four primitive Bravais lattices depicted
in Fig. 1. Here, we do not consider the oblique lattice, as it
does not have any mirror symmetry. Then, for each Bravais
lattice we extend the discussion to the space groups that have
the same underlying lattice. We discuss the different Bravais
lattices in the following order: (i) square, (ii) rectangular, (iii)
triangular, and (iv) centered rectangular. The results of this
section are schematically summarized in Fig. 1.

035401-2



DIRAC CONES BEYOND THE HONEYCOMB LATTICE: A ...

PHYSICAL REVIEW B 93, 035401 (2016)

Lattice Brillouin zone Representation  Space group Examples
(a) square . X M s/d,
0000 y. v, p4mm square-graphynes
° ) X N
eo e /ey
o o0 @ - " pdmg & p4mm
(b) rectangular s/p
) ® i o ® S M ' ) pm, p2mg pmmn-Boron
§ - & p2mm
] ] () ® r X '
.................................. P,
o o [ J @ P om, p2mg
) e ' o [ ) » - - & p2mm
(c) triangular s/ Fay2)
LI ) v poémm & p3mi B-graphyne
. . » .".
S/fy(3><2 y2) A
" e pomm & p3Tm TiB,
'.\
s/py
® ' cm & c2mm strained graphene
'
/Py
. - - cm & c2mm

FIG. 1. Table displaying different realizations of Dirac system with cones along high-symmetry lines. The first column shows four different
Bravais lattices. Here, the mirror symmetry is indicated by the red and blue dashed lines. The corresponding high-symmetry lines are displayed
in the Brillouin zone in the second column. For each lattice, we can choose two different representations for the valence and conduction bands,
which we label by the corresponding atomic orbitals. Furthermore, we denote the different space groups that can host these Dirac cones and

give examples of materials where they occur.

A. Square lattice

A prototypical example of a Dirac system with a square
Bravais lattice is square graphyne. Its crystal lattice and band
structure are shown, respectively, in Figs. 2(a) and 2(b).
Whereas in graphene each unit cell contains two carbon
atoms, for square graphyne there are 24 carbon atoms. Its
band structure exhibits four highly anisotropic Dirac cones,
all located at the boundary of the BZ [B point in Fig. 2(b)].
Moreover, along the lines connecting the I' and M points, the

(a)r,

r A M

B X r

FIG. 2. (a) Lattice structure of square graphyne. (b) Band
structure along HS lines, obtained from ab initio calculations.
Reprinted (adapted) with permission from Ref. [14]. Copyright
(2015) American Chemical Society.

band structure exhibits a small gap. The location of the Dirac
cones hints at the fact that the existence of these cones can
be understood from the mirror-reflection symmetries of the
square lattice.

(i)sand d,,. Inspection of Fig. 1(a) shows that the boundary
of the BZ together with the lines connecting the I'-X and
I'-Y points is associated with the mirror symmetries indicated
by the red dashed lines. In particular, one can realize Dirac
cones along the red dashed lines by constructing a two-band
model composed of two Bloch waves, of which one is even
with respect to all mirror-reflection symmetries and the other
is odd with respect to the symmetries indicated by the red
dashed lines, even with respect to the remaining ones. This is
achieved, for example, in a two-band model composed of s
and d,, orbitals. The minimal Hamiltonian for such a system
is given by

H=Y"gk)sise —dld)+ > h(k)sldi +He.,  (3)
k k

with g(ky,ky) = €9 + Van[cos(ky) + cos(ky)] and h(ky,k,) =
Vialcos(ky + ky) — cos(k, — k,)]. Here, €y is an on-site en-
ergy, V,, is the nearest-neighbor hopping parameter, and Vi,
accounts for the hybridization among next-nearest-neighbor
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FIG. 3. (a) Lattice structure of pmmn boron. (b) Band structure
along HS lines, obtained from ab initio calculations. Figures extracted
and edited from Ref. [17].

s and d orbitals. In particular, this model exhibits Dirac cones
if l€ol < 2[Vial.

Note that one does not require specifically atomic s and d,,,
orbitals; this only illustrates under which representation the
bands should transform. For example, in square graphynes the
bands are composed of the atomic p, orbitals.

(ii) s and dy>_>. To realize Dirac cones along the blue
dashed lines connecting the I'-M points, the Bloch waves
should transform under the same representation as the s and
d,>_> orbitals, such that they have opposite parity with respect
to the symmetries indicated by the blue dashed lines in Fig. 1.
To our knowledge, there are no known materials that realize
this model, although it may be promptly engineered using
cold atoms. Here, the minimal Hamiltonian with the desired
properties is still given by Eq. (3), but now one has to replace
the d,,, orbital by a d,2_,- orbital. As aresult, the hybridization
is between nearest-neighbor s and d orbitals and h(k,,k,) =
Vsalcos(ky) — cos(ky)]. This model also exhibits Dirac cones
for |€g| < 2|V,,|. In addition, the full symmetry of the square
Bravais lattice is not required, as this model can also be realized
for the space group p4mg.

B. Rectangular lattice

Rectangular crystals with Dirac cones are pervasive; some
recent examples that have attracted much attention include
multilayer phosphorene, pmmn boron, and 6,6,12-graphyne.
Whereas pmmn boron and biased multilayer phosphorene ex-
hibit a single pair of Dirac cones [25,26], the 6,6, 12-graphyne
has two pairs. Because these two pairs of Dirac cones are not
related by any symmetry, we will not discuss 6,6,12-graphyne
here. In phosphorene, the Dirac cones actually arise due to the
presence of glide-reflection symmetry. Therefore, we defer its
discussion to Sec. V.

The rectangular lattice exhibits mirror-reflection symmetry
in the vertical and horizontal directions, which is represented,
respectively, by the red and blue dashed lines in Fig. 1(b).
For the rectangular Dirac system pmmn boron [see Figs. 3(a)
and 3(b), where the lattice and band structure are depicted,
respectively], the Dirac cones are located along the HS line
connecting the I'-X points. This indicates that these Dirac
cones are a consequence of the mirror symmetry in the vertical
direction.

s and p; (py). The HS lines connecting the I'-X (Y)
points and the Y (X)-M points are associated with the mirror
symmetry indicated by the blue (red) dashed lines in Fig. 1(b).
A two-band model with Dirac cones along these HS lines
should be composed of Bloch waves with opposite parity under
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FIG. 4. (a) Lattice structure of S-graphyne. (b) Band structure
along HS lines, obtained from ab initio calculations. Figures extracted
and edited from Ref. [13].

reflection in the y(x) direction. In particular, this is realized
in a two-band model composed of s and p, (p,) orbitals, for
which the minimal Hamiltonian reads

H =Y gW)sis — plp)+ Y hk)sipe +He., (@)
k k

with  g(ky,ky) = €9 + Vi x cOs(ky) + Vi, y cos(k,)  and
h(ky,ky) =iV, sin(ky) or h(ky,ky) =iVy,sin(ky). Here,
Van,x(y) denotes the hopping parameter in the x (y) direction,
and V;, is the nearest-neighbor hopping parameter that
hybridizes the s and p orbitals. This band structure
exhibits Dirac cones for ey + V| < [Vun,y| and
|€0 = Vanx| < [Vin,yl. Note that this Dirac system can
be realized in the absence of spatial inversion symmetry, as
it can occur for the space groups pm, p2mg, and p2mm.
Here, we have assumed that the translation vectors of the
rectangular lattice are still given by the unit vectors pointing
in the x and y directions.

C. Triangular lattice

Most of the already synthesized two-dimensional materials
have a triangular Bravais lattice. In particular, this applies
to graphene, silicene, germanene, and stanene. However, for
these systems the Dirac cone is an essential degeneracy. A
typical example of a material with a triangular lattice and
Dirac cones along HS lines is S-graphyne [see Fig. 4(a)]. Its
unit cell consists of 18 carbon atoms and has the shape of
a hexagon. This carbon allotrope has six inequivalent Dirac
cones located along the lines I'-M [see Fig. 4(b)]. A different
example is provided by TiB, [see Fig. 5(a)]. This material also

FIG. 5. (a) Lattice structure of TiB,. (b) Band structure along
HS lines, obtained from ab initio calculations. Figures extracted and
edited from Ref. [16].
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has six Dirac cones, but they are located along the HS lines
I'-K and I'-K’ [see Fig. 5(b)]. Each of these systems can be
seen as a typical example of a triangular Dirac system.

(i) s and f,3y2—»). From Fig. 1(c), we infer that the HS
lines connecting the I'-M points are associated with the
mirror-reflection symmetry indicated by the red dashed lines.
To realize Dirac cones along this set of HS lines, one should
construct a two-band model for which the Bloch waves have
equal (opposite) parity with respect to the blue (red) dashed
lines. This can be realized in a model composed of s and
fx3y2—x2) orbitals, for which the minimal Hamiltonian reads

H=Y gW)sisi — £ fo+ > h®s) fi +he.. ()
k k

with  g(ky,ky,) = €o + Viyulcos(ky) + cos(k, /2 + ky\/§/2) +
cos(ky /2 — ky«/§/2)] and h(ky,ky) = iVir[sin(k,) +
sin(—k, /2 — ky+/3/2) + sin(—k, /2 + k,v/3/2)]. Here,
Vi denotes the nearest-neighbor hopping between s and
f orbitals. This Hamiltonian exhibits Dirac cones for
l€o + Vanl < 2[Vinl.

Note that one does not require the full sixfold rotational
symmetry of the triangular Bravais lattice because this model
can be realized for the space group p3m1.

(ii) s and f,3,2_,2). The remaining set of HS lines connects
the '-K and T'-K’ points. These HS lines are associated
with the mirror-reflection symmetry indicated by the blue
dashed lines in Fig. 1(c). Now, instead, one requires that
the two relevant Bloch waves transform as the atomic s
and fy3,2_,2) orbitals. In particular, this is realized in TiB,.
The minimal Hamiltonian is also given by Eq. (5), but
now h(ky,ky) = i Vis[sin(k:3/2 + ky/3/2) + sin(—+/3k,) +
sin(—k,3/2 + ky V/3/2)]. Due to the symmetry, the hybridiza-
tion between s and f orbitals here involves next-nearest-
neighbor hopping parameters. This minimal model exhibits
Dirac cones for |eg + 1.75V,,,| < 2.25|V,,].

D. Centered-rectangular lattice

We finalize our analysis with the centered-rectangular
lattice. One can obtain this lattice in graphene strained along
the armchair direction. The lattice exhibits mirror-reflection
symmetry in the horizontal and in the vertical directions,
indicated by the red and blue dashed lines in Fig. 1(d).

(i) s and py. The HS lines connecting the I'-X and the
Y-M points are associated with the vertical mirror-reflection
symmetry. To construct a model with cones along these HS
lines, one should ensure that the Bloch waves have opposite
parity with respect to the vertical mirror reflection. This is, for
example, realized in a system composed of s and p, orbitals.
In this case, the minimal Hamiltonian is given by

H =Y gk)sise — pipi) + Y h(k)s]pi +He.,  (6)
k k

with glky,ky) = €0 + Vyp,y[cos(ky /2 + ky\/§/2) +
cos(ky/2 = kyv/3/2)] + Vi x costky)  and  h(ky,ky) =
i Viplsin(k, /2 + kyn/3/2) + sin(—k, /2 + ky+/3/2)].  This
system may also be realized for the space group cm.

(ii) s and p.. The remaining HS line connects the I'-Y
points. In this case, the Hamiltonian should be composed of
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FIG. 6. The class-III Dirac systems, which do no exhibit mirror
symmetry.

Bloch waves that transform in the same way as the s and p,
orbitals. The corresponding minimal Hamiltonian is still given
by Eq. (6) but now with a(ky,ky) = i V;, sin(k,). Note that for
the centered rectangular lattice we have taken the same lattice
vectors as for the triangular lattice.

IV. AWAY FROM HIGH-SYMMETRY LINES

The Dirac systems that we have just presented do not form
an exhaustive list by any means, as we have limited ourselves
to systems with cones along the HS lines. From our analysis
in Sec. II, we know that the systems with Dirac cones away
from HS lines must exhibit inversion symmetry. Unless such a
system has a single pair of Dirac cones, one needs an additional
symmetry that relates the different Dirac cones. In particular,
this symmetry can be the rotational symmetry of the lattice or
the combination of rotational and mirror symmetries. Here, we
discuss these cases separately. Moreover, we show how these
systems may be seen to descend from class-1II Dirac systems.

First, we examine the systems for which the mirror
symmetry is broken but the rotational symmetry is intact.
Specifically, one may obtain such a system by adding a mirror-
symmetry-breaking term to a class-II Dirac Hamiltonian. In
real materials, this may be the case due to a substrate. There
exist three different space groups describing systems without
mirror symmetry but with the inversion symmetry, namely, P6,
P4, and P2. Note that space group P N has N-fold symmetry.
For each of these space groups, we present an elementary
model. The three different Dirac systems are schematically
displayed in Fig. 6.

A. P6

Starting from the minimal Hamiltonian given in Eq. (5),
which describes either B-graphyne or TiB,, we may easily
break the mirror symmetry while preserving the sixfold sym-
metry. In this way, we obtain a Hamiltonian that interpolates
between the two systems, which is given by

H =Y gW)sisi — £ fo+ > h(k)s) f + He, (D)
k k

with  g(ky,ky) = €0 + Vanlcos(ky) + cos(k, /2 + ky/3/2) +
cos(ky/2 — kyﬁ/Z)] and h(ky,ky) =i Vs [sin(ky) +
sin(—k, /2 — kyv/3/2) + sin(—k./2 + kyv/3/2)] + iVigo
[sin(k,3/2 + ky+/3/2) + sin(—+/3k,) + sin(—k,3/2 +
ky«/g/Z)]. For Vi1 =0 or Vi =0, we retrieve the
mirror-symmetric models. Depending on the sign of
Vir2/ Vsr.1, the Dirac cones are shifted to either the left or
right with respect to the original location.
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FIG. 7. The class-1II Dirac systems, with rotational and mirror
symmetry.

B. P4

In a similar fashion, we can smoothly deform the s/d,,
and s/d,>_,2 [see Eq. (3)] models into each other. Then, the
Hamiltonian reads

H =" gk)(s{se —dld)+ Y h(k)sidi + He.,  (8)
k k

with glky,ky) = €0 + Vynlcos(ky) + cos(ky)] and
h(ky,ky) = Vsg1lcos(ky) — cos(ky)] + Vigalcos(ky + ky) —
cos(ky — ky)].

C. P2

Finally, we would like to discuss the least symmetric Dirac
system, which only has a twofold symmetry, as encountered
in ¢ ET,I3. Whereas the two previously discussed systems can
only exist on a triangular lattice and a square Bravais lattice,
respectively, this Dirac system can be hosted on any Bravais
lattice. Hence, this is the most robust Dirac system, for it only
requires the presence of spatial inversion symmetry. A minimal
model defined on the rectangular Bravais lattice reads

H =Y gk)ssi — plp)+ D h(s{pi +He., (9
k k

with  g(ky,ky) = €0 + Vinx cos(ky) + V,y y cos(k,)  and
h(ky,ky) = iVsp 1 sin(ky) + iV, 2 sin(ky). By putting
Vipa1 =0 (Vyp2 =0), we recover the s/p, (s/p,) models
discussed in Sec. III.

These three Dirac systems can be seen to descend from
the more symmetric class-II systems. Yet this is not true for
all the class-1II Dirac systems. In particular, 8-graphyne, in
the presence of Rashba spin-orbit coupling, exhibits 12 Dirac
cones [27,28]. Moreover, proposals have been made to realize
rectangular optical lattices with four Dirac cones located away
from HS lines [29].

The conditions to realize these systems are very restrictive
because both inversion and mirror symmetries are required.
The inversion symmetry protects the BCP, whereas the
mirror symmetry guarantees that all Dirac cones are related.
Specifically, for the space groups pomm, p4mm, and p2mm
one may obtain a system with 12, 8, or 4 symmetry-related
Dirac cones (see Fig. 7). Now, we discuss possible realizations
of these systems for each of the space groups.

D. P6mm

It is possible to obtain a system with 12 symmetry-related
Dirac cones in several ways. The example of B-graphyne
shows that one may start from six spin-degenerate Dirac cones
along HS lines and then use the Rashba spin-orbit coupling

PHYSICAL REVIEW B 93, 035401 (2016)

FIG. 8. (a) A moiré pattern is formed in a twisted bilayer. The
original unit cells for the triangular lattices are denoted by the smaller
solid and dashed hexagons. The red hexagon denotes the increased
unit cell. (b) Here, the dashed (solid) BZ corresponds to the lattice
formed by the solid (open) circles. The reduced BZ is represented
by the red central hexagon. We have drawn also the neighboring
hexagons to illustrate how these are folded. In this example, we have
assumed that the Dirac cones were originally located along the HS
lines connecting the I'-K (K’) points.

to split these into 12 Dirac cones. However, one does not
need to use the spin degree of freedom. In particular, one
might realize such a system in twisted bilayers of class-II
systems. If the two lattices are commensurate, a moiré pattern
is formed [see Fig. 8(a)] [30]. To describe such a bilayer,
one has to enlarge the unit cell. Correspondingly, the new
BZ is reduced in size [see Fig. 8(b)]. More importantly, the
original Dirac cones are not located along HS lines anymore. In
particular, this applies to S-graphyne and TiB,. Furthermore,
the interlayer coupling may shift the position of the Dirac
cones. This construction does not depend on any peculiarities
of the triangular lattice; therefore, this can easily be extended
to the square and rectangular Bravais lattices.

E. P4mm and P4mg

For the square lattice, it is possible to obtain a system with
eight Dirac cones. The previous discussion shows that this
may be realized in twisted-bilayer-square graphynes. However,
this is not the only way to obtain eight symmetry-related
Dirac cones. To see this, we start from a square lattice that
is described by the s/d,, model, for which the Dirac cones
are located at the boundary of the BZ, as in square graphynes.
Now, we imagine for a moment that we are studying two
uncoupled square lattices that are arranged as in Fig. 9(a).
Then, if the solid and open circles are equivalent, the unit cell
is decreased by half, and correspondingly, the BZ is doubled.
The new BZ features eight distinct Dirac cones, located away
from HS lines [see Fig. 9(b)]. The inclusion of a coupling
between the two square lattices moves these cones away from
their original position. Precisely this situation can be realized
in bilayer-square graphynes, stacked in such a way that the
smaller squares (C4 in Fig. 2) are on top of the larger squares
(Cy2 in Fig. 2). Note that such a construction does not apply
to the triangular lattice, as there one has to triple the BZ and
hence the number of Dirac cones.
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FIG. 9. Sketch illustrating the doubling of the BZ and the Dirac
cones for the square lattice. (a) The solid and open dots form a
bipartite square lattice. When the solid and open dots are different
(identical), the unit cell is given by the red (blue) square. (b) The
red (blue) dashed (solid) square shows the BZ, corresponding to the
larger (smaller) unit cell in (a).

F. P2mm, P2mg,and C2mm

For the rectangular lattice, one may easily obtain a system
with four Dirac cones. For example, one may start from
a square lattice with four Dirac cones along the HS lines
connecting the I'-M points. Then, if one transforms the square
lattice into a rectangular one while preserving the mirror
symmetries of the rectangular lattice in the x and y directions,
one keeps the four Dirac cones.

V. CONCLUSIONS AND DISCUSSION

Dirac systems are very interesting because they are the heart
of several unconventional phenomena, like the transparency
of graphene or the Klein paradox. They were recently found
to occur in materials like graphene, square graphyne, and
Pmmn boron, which have different lattice structures, ranging
from honeycomb to square to triangular, and are composed
of different atoms. In this work, we investigate the role of
crystal symmetries in Dirac materials. The different systems
have been classified within a unified two-band model, which
effectively describes the different band structures that one may
obtain for various space groups when one properly accounts
for the symmetries of the valence and conduction bands.

We distinguish between three different classes of Dirac
systems. Graphene belongs to the first class, and these systems
are characterized by a BCP at the HS K and K’ points. The
class-II Dirac systems have their Dirac cones located at HS
lines. We have shown that for these systems the Dirac cones
occur as a simple consequence of the mirror symmetries of the
underlying crystal. This class hosts systems with two, four, and
six Dirac cones. The third class contains materials for which
the Dirac cones occur at generic points in the BZ. We have
shown that these systems can be realized in bilayers composed
of class-II systems. For example, in bilayer-square graphyne
one realizes eight Dirac cones, while this number increases to
12 in twisted-bilayer 8-graphyne.

A careful look at these different classes shows that these
systems do not simply differ by the number of Dirac cones and
by their position in the BZ, and there are other consequences.
For example, in the class-I Dirac systems, one cannot remove

PHYSICAL REVIEW B 93, 035401 (2016)

the BCP unless one breaks one of the symmetries. Instead,
for the class-1II and -III systems, one may gap out the Dirac
cones while preserving all the symmetries. In particular, for
class-II systems the Dirac cones can annihilate at the time-
reversal-invariant momenta, whereas it has been shown that
for class-III systems this can occur at HS lines [27,28].

The classification scheme proposed here relies on certain
assumptions. First, we have constrained ourselves to spinless
fermions. Hence, we have not touched upon the effects of spin-
orbit coupling in these systems. Moreover, we considered time-
reversal-symmetric systems and described them by generic
two-band models. We should stress, however, that this minimal
two-band model should be used with caution, especially when
higher bands cannot be neglected. Another open question is
what happens if we break the TRS. Finally, we did not consider
glide-reflection symmetry in our analysis. Nevertheless, our
results can be promptly extended to this case. Consider a
system described by the Hamiltonian H with glide-reflection
symmetry G. Then, for a momentum k that is invariant under
G we find [Hi,G] = 0. Since G2 = exp(ika), with a being
the lattice constant, the eigenvalues of G are not simply =1
as for reflection symmetry. Instead, we find the eigenvalues
+ exp(ika/2), but the bands along the HS lines with opposite
eigenvalues still do not repel. The Dirac cones in phosphorene
can be understood from such a glide-reflection symmetry.

Our results are relevant to many branches of physics. First
of all, one may revert our analysis and use the understanding
acquired here to design new Dirac materials. In particular,
this approach can be very fruitful in the recently discov-
ered semiconducting nanocrystal superlattices [31]. In these
systems, the lattice is formed by the nanocrystals, which
can be considered artificial atoms. The advantage then is
that one has control over the orbital content and hopping
parameters. In this respect, they may serve as the ideal
platform to realize the minimal two-band models that we have
presented. An even higher degree of control can be obtained in
patterned two-dimensional quantum wells and optical lattices
loaded with cold atoms [32]. Honeycomb optical lattices have
been recently realized [33], and experiments impossible in
graphene have been viable in these systems. An illustrative
example is the merging of Dirac cones upon a deformation
of the honeycomb lattice that introduces anisotropies along
the different hopping directions [34]. This anisotropy may
be driven by shaking [35] or by superposing different square
optical lattices and tuning the relative weight of each of
them [36].

A very important consequence of the study performed here
is that it opens the possibility to realize SU(2N) pseudospin
models, which exploit the multiple valley internal degrees
of freedom. The possibility to realize optical lattices with
high-spin atoms, such as Sr or Dy, has attracted much attention
recently [37]. These systems allows one to study SU2N)
magnetism and were proposed to be a paradigm to engineer
synthetic dimensions [38]. Here, we show that these concepts
can be extended to the valley degree of freedom, with N up
to 12.

Finally, we envision that the minimal models can be used
in calculations to study the effects of disorder and transport
properties or to study the lattice Green’s function beyond the
linear dispersion. In addition, these models can be promptly
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used to study the effects of spin-orbit coupling and to verify
whether this leads to topological states with high-spin Chern
numbers. Similarly, these models are very suited to study the
appearance of edge states in nanoribbons, depending on the
termination. Therefore, we hope that our results will provide
a motivation to realize these more exotic Dirac systems and
trigger further experiments in the field.
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