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Statistics of an adiabatic charge pump
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We investigate the effect of time-dependent cyclic-adiabatic driving on the charge transport in a quantum
junction. We propose a nonequilibrium Green’s function formalism to study the statistics of the charge pumped
(at zero bias) through the junction. The formulation is used to demonstrate charge pumping in a single electronic
level coupled to two (electronic) reservoirs with time-dependent couplings. An analytical expression for the
average pumped current for a general cyclic driving is derived. It is found that for zero bias, for a certain
class of driving, the Berry phase contributes only to the odd cumulants. In contrast, a quantum master equation
formulation does not show a Berry-phase effect at all.
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I. INTRODUCTION

It is well known that the effect of adiabatically varying a few
parameters in the Hamiltonian in a cyclic manner enters in the
wave function in the form of a phase factor. This phase factor
consists of two parts; one is called the dynamical part (which,
in general, depends on how fast the parameters are varied)
and the second one is generally known as the Berry phase
(also called the geometric phase), which depends only on the
path (area) traced in the parameter space and is independent
of how fast it is traced provided the adiabatic condition is
satisfied [1–3]. Somewhat counterintuitively, this phase factor
may lead to changes in macroscopic observables, such as finite
spin or charge currents in one-dimensional phase-coherent
rings at equilibrium [4–6]. Originally developed in the context
of closed quantum systems, recent works have extended
the geometric phase concept to the case of open quantum
systems out of equilibrium [7,8]. Adiabatic cyclic variation
of parameters in the Hamiltonian leads to finite flux [9–11]
in open systems. Switkes et al. [12] have experimentally
demonstrated an adiabatic quantum pump by modulating
the confining potential of an open quantum dot in a cyclic
manner, leading to a finite voltage drop across the quantum
dot. Modifying the potential at two ends of the dot changes
the character of the wave function and therefore modifies
the couplings to the electron reservoirs. In this work we
explore this aspect within the most general framework based
on the nonequilibrium Green’s function [13]. The adiabatic
driving may also affect the statistics of charge transfer, and the
steady-state fluctuation relation due to Gallavoti-Cohen (GC)
type symmetry [14] may also get modified. Ren et al. [11] have
recently used quantum master equations (QMEs) to study heat
pumping and fluctuations of heat transfer in a two-level system
sandwiched between two thermal reservoirs. It was shown
that in the case of time-dependent temperature modulations
of the two heat reservoirs, heat transfer statistics do not
admit GC-type symmetry. It was also argued that modulating
couplings to thermal reservoirs does not lead to any pumping.
Several methods such as scattering theory [15,16], Floquet
scattering theory [17], and the adiabatic master equation
approach [8,10] have been developed for studying the statistics
of adiabatic pumping. But each of these methods has its own
advantages and shortcomings. We note that in Ref. [18], the
nonequilibrium Green’s function (NEGF) method (which in

principle is exact) has been used to study the pumped charge
flux in interacting quantum dots. In this work we develop a
scheme within the NEGF formalism to study statistics of the
pumped charge transfer due to cyclic-adiabatic driving and
apply it to a resonant level model. We present an analytic
expression of the pumped charge for a general adiabatic-
cyclic modulation of the level couplings with reservoirs. The
direction of the net charge flow can be varied by changing the
sign of the phase difference between the two time-dependent
couplings. We find that the flux direction also depends on the
energy difference, μ − ω0, between the chemical potentials
(μ) of reservoirs and the level energy (ω0). In general, the
charge transfer fluctuations are modified due to the Berry
phase. However, at equilibrium, for a certain class of drivings,
only asymmetric fluctuations (odd cumulants) are generated
due to the Berry phase. The full statistics of the pumped charge
satisfy a steady-state fluctuation relation. We emphasize that
the present formulation shows that it is possible to pump a finite
net charge in noninteracting open quantum junctions, unlike a
simple QME formulation which does not lead to any pumping
due to the Berry phase [10,11]. Although we use the term
Berry phase, it is used in the sense of geometric contribution.

In Sec. II we introduce the model Hamiltonian to describe
electron transport in molecular junctions, and give a brief
sketch of the two-point measurement method and derive a
generating function (GF) to study full the statistics of charge
transfer due to adiabatic time modulation. In Sec. III, we
express the GF in terms of the Green’s function of the
system and then present an approximate scheme to compute
the Green’s function analytically. In Sec. IV we apply this
formulation to study the statistics of the pumped charge in a
resonant level model. Conclusions are drawn in Sec. V.

II. HAMILTONIAN AND TWO-POINT
MEASUREMENT SCHEME

A general Hamiltonian for the description of electron
transport in a quantum junction where a molecular system
is coupled to two (noninteracting) electronic reservoirs is

Ĥ (t) =
∑

r

εr (t)d†
r dr + Hint +

∑
αk

εα,kc
†
αkcαk

+
∑
r,αk

[g∗
αk,r (t)c†αkdr + gαk,r (t)d†

r cαk], (1)
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where d
†
r (dr ) stands for the electron creation (annihilation)

operator in the rth system orbital while c
†
α,k (cα,k) is for

the electron creation (annihilation) operator on the left or
right (α = L/R) reservoir in the energy state εα,k . Hint is
the Hamiltonian to account for all other possible interactions
in the system, such as Coulomb and electron-phonon inter-
actions. Here system lead couplings and/or single electron
orbital energies can be periodically modulated (which can
be experimentally realized by applying time-dependent gate
voltages). In this work we consider the case when the driving
time period is large compared to the internal relaxation time
scales in the system such that the system at any time is at
steady state with respect to reservoirs.

Under these conditions, we consider two simultaneous
measurements of electron number in the left and the right
reservoirs (as [NL,NR] = 0, simultaneous measurement is
quantum mechanically allowed) at time T0 and T > T0. The
probability of change in the number of particles (nα) in the left
and the right reservoirs during the measurement time, T − T0,
can be computed using the generating function (GF) containing
corresponding counting parameters λL and λR as

P (nL,nR,T − T0) =
∫ 2π

0

dλL

2π

∫ 2π

0

dλR

2π

Z(λL,λR,T − T0)ei(λLnL+λRnR ). (2)

Using the two-time quantum measurement formalism the
generating function for particle number counting on both
reservoirs can be written as [14]

Z(λ,T − T0) = 〈
e−i[λLNL(T )+λRNR(T )]ei[λLNL(T0)+λRNR (T0)]〉

ρ(T0),

(3)

where ρ(T0) is the density matrix of the system+reservoirs at
time T0 and NL = ∑

k c
†
LkcLk , NR = ∑

k c
†
RkcRk are the parti-

cle number operators corresponding to left and right reservoirs,
respectively. Assuming [ρ(T0),NL] = 0 and [ρ(T0),NR] = 0
(or, more generally, system and reservoirs are decoupled at
time T0 and each are at equilibrium independently), Eq. (3)
can be recast as

Z(λL,λR,T − T0)

= 〈
U( λL

2 ,
λR
2 )(T0,T )U(− λL

2 ,− λR
2 )(T ,T0)

〉
ρ(T0)

= 〈
Tce

− i
�

∫
c
H

λ(τ )
T (τ )dτ

〉
ρ(T0), (4)

where in the last line time-dependent λ(τ ) has been defined on
the Keldysh contour [19,20] (which goes from T0 to T and back
to T0) [21] as λ(τ ) = (− λL

2 , − λR

2 ) on the forward contour and
λ(τ ) = ( λL

2 , λR

2 ) on the backward contour. Tc refers to the time
ordering operator on the Keldysh contour. The evolution on the
Keldysh contour is with respect to the λ(τ )-dependent Hamil-
tonian (note that λ-dependent evolution is no longer unitary),
and evolves the ket and the bra with different λ-dependent
Hamiltonians [22], which can be obtained by replacing
the last line in Eq. (1) with

∑
r,αk [g∗

αk,r (τ )eiλα(τ )c
†
αkdr +

gαk,r (τ )e−iλα (τ )d
†
r cαk]. Hence the effect of measurement is

reflected in the form of modified (λ-dependent) couplings to
the reservoirs [23].

III. GENERATING FUNCTION IN TERMS OF THE
NONEQUILIBRIUM GREEN’S FUNCTION AND AN

APPROXIMATE SCHEME TO COMPUTE THE
NONEQUILIBRIUM GREEN’S FUNCTION

Taking the λR derivative [21] of the logarithm of Eq. (4),
we get

[
∂lnZ(λL,λR,T − T0)

∂(iλR)

]

= 1

2

∑
k,r

∫ T

T0

dt1
[
g∗

Rk,r (t1)e−i
λR
2 G++

r,Rk(t1,t1)

− gRk,r (t1)ei
λR
2 G++

Rk,r (t1,t1) + g∗
Rk,r (t1)ei

λR
2 G−−

r,Rk(t1,t1)

− gRk,r (t1)e−i
λR
2 G−−

Rk,r (t1,t1)
]
, (5)

where G++
Rk,r (t,t ′), G++

r,Rk(t,t ′), G−−
Rk,r (t,t ′), and G−−

r,Rk(t,t ′)
are appropriate real-time projections of mixed contour or-
dered Green’s functions between system orbitals and reser-
voir states defined as Gc

Rk,r (τ,τ ′) = − i
�
〈TccRk(τ )d†

r (τ ′)〉 and

Gc
r,Rk(τ,τ ′) = − i

�
〈Tcdr (τ )c†Rk(τ ′)〉. Here the + (−) index

refers to the time variable located on the upper (lower) Keldysh
contour [19]. Equation (5) can be recast in terms of the
system Green’s function matrix alone [20], which can be
expressed in terms of Wigner-transformed quantities [13]. In
the large measurement time limit, Eq. (5) can be recast as
(see Appendix)

[
∂lnZ(λL,λR,T − T0)

∂(iλR)

]

=
∫ T

T0

dt

∫ +∞

−∞

dω

2π

× Tr[
̆+−
R (ω,t)Ğ

−+
(ω,t) − Ğ

+−
(ω,t)
̆−+

R (ω,t)]. (6)

Here the trace is over all the system orbitals and 
+−
R (ω,t) and


−+
R (ω,t) are (Wigner-transformed) self-energy matrices (in

system orbital space) arising due to interaction with the right
reservoir. G+−(ω,t) and G−+(ω,t) are Wigner transforms
of real-time projections of system contour ordered Green’s
function matrices with elements

Gc
mn(τ,τ ′) = − i

�
〈Tcdm(τ )d†

n(τ ′)〉, (7)

where 〈· · · 〉 is the average with respect to the density matrix
evolving on the Keldysh contour as defined in Eq. (4). In
Eq. (6) we have used the notation Ă−η = −A−η and Ă+η =
A+η, where η = ±, to simplify the following expressions. The
expression for [ ∂ lnZ(λL,λR,T −T0)

∂(iλL) ] can be obtained by replacing
R with L in Eq. (6). Hence all that we have to do to get the
final expression for the GF is to calculate the λ(τ )-dependent
Green’s functions appearing in Eq. (6). This is done in the
following.

035312-2



STATISTICS OF AN ADIABATIC CHARGE PUMP PHYSICAL REVIEW B 93, 035312 (2016)

The λ-dependent Green’s function matrix defined on the
Keldysh contour [with matrix elements in the system orbital
space defined in Eq. (7)] satisfies the following equation of
motion [20] (also known as the left-Dyson equation) on the
Keldysh contour:

∫
c

dτ1
[
G−1

0 (τ,τ1) − 
c(τ,τ1)
]
Gc(τ1,τ

′) = δc(τ,τ ′), (8)

where [i� ∂
∂τ

− H0(τ )]G0(τ,τ ′) = δc(τ,τ ′) and 
c(τ,τ ′) =

c

int(τ,τ
′) + 
c

leads(τ,τ
′) is the total self-energy due to Hint and

system-reservoir coupling. 
c
leads(τ,τ

′) has matrix elements


c
leads,rr ′ (τ,τ ′) =

∑
α

∑
k,k′

gαk,r (τ )e−i[λα (τ )−λα(τ ′)]

×G0
αk,αk′ (τ,τ ′)g∗

αk′,r ′ (τ ′). (9)

Here G0
αk,αk′ (τ,τ ′) is the contour-ordered Green’s functions

of the free reservoir. An explicit expression for 
c
int depends

on Hint which we keep general. The above equation can be
projected onto the real times to obtain equations of motion
for the Keldysh matrix Ğ(t,t ′). By employing the Wigner
transformation [19,20] Eq. (8) can be recast as

Ğ(ω,t) = Ğad (ω,t) + Ğad (ω,t)

(
Ğ

−1
ad (ω,t)

×
{

1 − exp

[
− i

2
(
←−
∂ t

−→
∂ ω − ←−

∂ ω

−→
∂ t )

]}
Ğ(ω,t)

)
,

(10)

where Ğ(ω,t) is the system Green’s function matrix.
←−
∂ t ,

−→
∂ t

represent the classical time t derivative acting on the function
to its left or to its right, respectively; similarly

←−
∂ ω,

−→
∂ ω

represent ω derivatives. The adiabatic contribution, Ğad , to
the Green’s function satisfies the matrix equation,

Ğad (ω,t) = [
Ğ

−1
0 (ω,t) − 
̆(ω,t)

]−1
. (11)

This is similar to the usual steady-state Green’s function but the
parameters are replaced with time-dependent parameters. Here

̆(ω,t) and Ğ0(ω,t) are, respectively, the self-energy and the
noninteracting system Green’s function matrices. The second
term in Eq. (10) represents a correction due to time variation of
the parameters. Note that Eq. (10) is exact. We solve Eq. (10)
to lowest order in the time derivative by iterating the equation
for Ğ perturbatively in terms of time derivatives of Ğad and

retaining only terms linear in first derivative in (classical) time:

Ğ(ω,t) = Ğad (ω,t) + i

2
Ğad (ω,t)

{
Ğ

−1
ad (ω,t),Ğad (ω,t)

}
,

(12)
where { , } stand for Poisson bracket in t and ω variables.
We note that both the left- and the right-Dyson equations
lead to the same approximate Eq. (12). We also note that
Eq. (12) for the λ = 0 case preserves all the symmetries (as a
consequence of the unitary evolution) of the Green’s functions
(see Appendix). Equations (11) and (12) can be solved to
obtain the λ-dependent Green’s functions which can be used
to compute charge transfer statistics using Eq. (6). In the
following, we apply this formalism to study the Berry effect
on the charge transfer statistics in a resonant level model. The
approximation in Eq. (12) allows us to analyze the pumped
current analytically.

IV. ADIABATICALLY DRIVEN RESONANT
LEVEL MODEL

Consider a single electronic site connected via time-
dependent hopping to two electronic reservoirs. The Hamil-
tonian describing this model is the same as in Eq. (1)
with Hint(t) = 0 and only a single system orbital with
time-independent energy ε = ω0. We assume that only the
amplitudes of the system-reservoir couplings are varied adi-
abatically. We put � = 1 in this section. We compute the
adiabatic Green’s functions and the lowest order nonadiabatic
corrections using Eqs. (11) and (12) (see Appendix). Using
these Green’s functions in Eq. (6), we obtain an expression for

1
(T −T0) [

∂ lnZ(λL,λR,T −T0)
∂(iλR) ] (see Appendix). In order to emphasize

the Berry-phase effect, we consider the two reservoirs at
the same thermodynamic equilibrium (μL = μR = μ, i.e.,
zero external bias and the same inverse temperatures, βL =
βR = β). From nL and nR measurements, we can obtain the
statistics of net charge, n = (nL − nR)/2, transferred between
the two reservoirs and the change in charge, N = nL + nR ,
on the system. The transformation (nL,nR) ↔ (n,N ) leads to
P (N,n,T − T0) (see Appendix).

Statistics of particle change on the system. Since
P̃ (N,T − T0) = ∑

n P̃ (N,n,T − T0), the GF, Z̃(�,T − T0),

for P̃ (N,T − T0) satisfies 1
(T −T0) [

∂ ln Z̃(�,T −T0)
∂(i�) ] = 0; thus

Z̃(�,T − T0) = 1 and therefore P̃ (N,T − T0) = δN0. This
means that fluctuations in the electron change on the system die
in the long-time limit. This is due to the finite dimensionality
of the system Hilbert space.

Statistics of particles exchanged between reservoirs. The
generating function Z̃(λ,T − T0) for the probability distri-
bution of n electrons transferred from the right to the left
reservoir, P̃ (n,T − T0) = ∑

N P̃ (N,n,T − T0), is obtained as
(see Appendix)

1

(T − T0)

[
∂ lnZ(λ,T − T0)

∂(iλ)

]

= 1

Tp

∫ Tp

0
dt

∫ +∞

−∞

dω

2π�(ω,t)
{ �L(t)�R(t)f (ω)[1 − f (ω)](eiλ − e−iλ)}
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+ 1

Tp

∫ Tp

0
dt

∫ +∞

−∞

dω

2π

[
[�̇L(t) + �̇R(t)]

4[�(ω,t)]2
(ω − ω0)f ′(ω)

{
�2

R(t) − �2
L(t) + �L(t)�R(t)[1 − 2f (ω)][eiλ − e−iλ]

}

− �L(t) + �R(t)

2[�(ω,t)]2
[�L(t)�̇R(t) − �R�̇L(t)]f (ω)[1 − f (ω)][eiλ + e−iλ − 2]

{
[0.5 − f (ω)] + (ω − ω0)f ′(ω)

}]
, (13)

where f ′(ω) = ∂f (ω)
∂ω

, �α(t) = 2π |gα(t)|2ρ, �̇α(t) = ∂�α (t)
∂t

,
�(ω,t) = (ω − ω0)2 + (�L(t)+�R (t)

2 )2 + �L(t)�R(t)f (ω)[1 −
f (ω)][eiλ + e−iλ − 2], and Tp is the time period of driving
which is assumed to be much larger than the internal
relaxation time of the system. Here it is assumed that the
second measurement is carried out after q = T −T0

Tp
number

of cycles of driving (even if it is not the case the error
is insignificant for large measurement time, for which the
present formalism is developed). The first integral in Eq. (13)
is the so-called dynamical contribution (similar to steady-state
contribution with parameters replaced with time-dependent
quantities with a time averaging). The second integral can
be converted to parameter integral in (�L,�R) space and is
independent of how fast the parameters are varied provided
we are in the cyclic adiabatic limit; thus it represents a
Berry contribution. When the two drivings are identical
�L(t) = �R(t), the Berry contribution vanishes identically,
and the area traced in the parameter space (�L,�R) is zero.
Equation (13) allows us to compute the full statistics of net
particles transferred between the left and right reservoirs. For
example, the expression for the average pumped charge is
obtained by setting λ = 0 in Eq. (13). The average number of
electrons pumped per cycle is obtained as

Npump = β

8π2

∫ Tp

0
dt∂t [�L(t) − �R(t)]Im �(1)(Z), (14)

FIG. 1. Average number of particles pumped per cycle, Npump,
as a function of μ − ω0 and φ. Here �L(t) = 1 + 10 sin2( πt

Tp
− φ

4 ),

�R(t) = 1 + 10 sin2( πt

Tp
+ φ

4 ). Parameters �α,μ, and ω0 are in units

of β−1.

where Z = 1
2 + i

β

2π
[μ − ω0 − i(�L(t)+�R (t)

2 )] and Im �(1)(Z)
is the imaginary part of the trigamma function �(1)(Z) of
Z [24]. Note that Eq. (14) is valid for an arbitrary adiabatic
driving, �α(t). It is clear that Npump = 0 when ω0 = μ since
Im �(1)(Z) = 0 in this case. This result may be useful in
identifying resonance energy, ω0, of an unknown quantum
system at the junction by applying an external gate voltage
on the system such that the net pumped charge is zero.
Indeed, also when �L(t) = �R(t), there is no net pumping
of electrons between the two reservoirs. Thus the flux is
purely driven due to Berry-phase effects. Additionally, the
flux changes sign from μ > ω0 to μ < ω0 similarly to the
case of small-amplitude driving [25]. This is demonstrated in
Fig. 1 for sinusoidal drivings. Thus, both the phase difference
between the drivings and the detuning act as driving forces
that give rise to a net charge flux. Note that these forces
are nonthermodynamic. The Berry phase changes sign as the
driving is reversed (the area in parameter space is traced
in reverse manner) and, as a consequence, the flux reverses
the direction. Note that the dynamical part in Eq. (13) only
contributes to the even cumulants. The Berry-phase part, on
the other hand, in general, contributes to all the cumulants.
However for even-cyclic drivings, i.e., �L(R)(−X) = �L(R)(X)
and �L(R)(t) ≡ �L(R)(t/Tp ± φ/2), where φ is the phase
difference, the Berry part contributes only to the odd cumu-
lants. This fact may be helpful in designing experiments to
distinguish the Berry contribution from the dynamical part. A
plot of the first four cumulants as a function of phase difference
between drivings φ is shown in Fig. 2. This figure demonstrate
the periodicity of cumulants as a function of φ. It also shows
that the magnitude of odd cumulants (purely due to the Berry

FIG. 2. Plot of first four cumulants (〈n〉 and 〈(n − 〈n〉)k〉 for k =
2,3,4) per cycle as a function of φ. The drivings are the same as in
Fig. 1. Here μ − ω0 = 3 and Tp = 100. Odd cumulants are magnified
by 100 times for visual clarity.
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FIG. 3. Probability distribution for the net charge (n) transferred
from the right to the left reservoir during the measurement time
corresponding to q = 100 with Tp = 100, φ = π/2, μ = 0, and
ω0 = 3. Time is in units of hβ. Drivings are the same as in Fig. 1.

contribution) are order of 1
Tp

smaller than the magnitude of the
even cumulants. Further it is also clear from the figure that odd
cumulants are odd functions of φ and even cumulants are even
functions of φ.

In Fig. 3 we present numerical result for the full distri-
bution function P (n) for measurement time corresponding
to q = 100. The distribution seems symmetric (second and
third cumulants are ∼18 and ∼0.05, respectively) and is
peaked around the value n ∼ qNpump. In the inset we show
ln[P (n)/P (−n)] which grows linearly with n, confirming the
GC-type fluctuation symmetry. However this symmetry origi-
nates due to nonthermodynamic forces and, as a consequence,
the GFs for the forward (ZF ) and backward (ZB) drivings
satisfy ZF (λ) = ZB(−λ) (see Appendix).

V. CONCLUSIONS

We developed an approximation scheme for comput-
ing the full counting statistics of adiabatic charge pumps
within the NEGF formalism. We applied this formalism to
study the statistics of pumped charge in a single-level model
where the coupling to the reservoirs is driven adiabatically
in time. It is found that a net (nonzero) number of electrons
can be transferred between two reservoirs kept at the same
thermodynamic states by adiabatically modulating the ampli-
tudes of system-reservoir couplings. An analytic expression is

derived for the net charge pumped per cycle entirely due to the
geometric (Berry) phase. The phase difference between the
drivings as well as the energy difference between the resonant
level and reservoir chemical potential (at zero bias) are the im-
portant parameters that determine the direction of the pumped
current. The statistics of the pumped charge is also influenced
by the Berry phase, and the corresponding distribution function
follows the Gollavati-Cohen type symmetry.

Note that in the present application we have assumed
that only the amplitude of the system-reservoir couplings is
varied adiabatically while the phase is constant. It is known
that a simple linear time-dependent phase can be effectively
transformed to the time-independent chemical potentials of
the reservoirs [26]. Thus if phase is varied linearly with
the same frequency, there is no net pumping of charge. For
different frequency modulations, the net charge pumped per
unit time is proportional to the difference of frequencies.
This also can be obtained within the presented formulation in
Sec. III. Consider system (resonant level)–reservoir couplings
with a general time-dependent phase factor |gαk|eiφα (t) (where
α = L/R) such that the Hamiltonian is periodic in time with
period Tp, assuming that the amplitude of φα(t) is small so
that adiabaticity remains valid at all times. Then, to first-order
correction, Wigner-transformed self-energy due to couplings
with the reservoirs in Eq. (11) is nonzero, unlike the case when
only amplitudes are varied. This then leads to an expression
for average pumped charge per cycle at zero bias as

Npump =
∫ +∞

−∞

dω

2π

�L�Rf ′(ω)

(ω − ω0)2 + (
�L+�R

2

)2

×
∫ Tp

0
dt[φ̇L(t) − φ̇R(t)], (15)

where �α = 2π |gα|2ρ. This clearly demonstrates that if φα(t)
are considered as linear functions of t , i.e., φα(t) = ωαt +
φ, there will be pumping only if ωL �= ωR . Note that this
result agrees with the exact result obtained by a time-dependent
unitary transformation which transforms the linear phases in
couplings to chemical potentials. On the other hand, if φα(t)
themselves are periodic functions in time, it is clear from
Eq. (15) that the average pumped charge vanishes.
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APPENDIX

1. Derivation of Equation (6)

Equation (5) can be recast in terms of the system Green’s function matrix alone by substituting the mixed Green’s functions
in terms of the system Green’s functions [20]. We get[

∂ lnZ(λL,λR,T − T0)

∂(iλR)

]
=

∫ T

T0

dt1

∫ T

T0

dt2Tr[
+−
R (t1,t2)G−+(t2,t1) − G+−(t1,t2)
−+

R (t2,t1)]. (A1)

Here the trace is over all the system orbitals and 
+−
R (t,t ′), etc., are real-time projections of self-energy matrix 
R(τ,τ ′) due to

interaction with the right reservoir. It has matrix elements


R;rr ′ (τ,τ ′) =
∑
k,k′

gRk,r (τ )e−i[λR(τ )−λR (τ ′)]G0
Rk,Rk′ (τ,τ ′)g∗

Rk′,r ′ (τ ′), (A2)
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where G0
Rk,Rk′(τ,τ ′) are contour-ordered Green’s functions of the free right reservoir. G+−(t,t ′), etc., are real-time projections

of the system contour-ordered Green’s function matrix with elements defined in Eq. (7). Now we use the Wigner representation
of the quantities in the integrand of Eq. (A1) [19]; i.e., we use the transformation pair A(t,t ′) = ∫ +∞

−∞
dω
2π
A(ω,tc)eiωtq and

A(ω,tc) = ∫ +∞
−∞ dtqA(t,t ′)e−iωtq (here tc = t+t ′

2 and tq = t − t ′ are classical and quantum times, respectively) to get[
∂ lnZ(λL,λR,T − T0)

∂(iλR)

]
=

∫ T

T0

dtc

∫ (T −T0)

−(T −T0)
dtq

∫ +∞

−∞

dω1

2π

∫ +∞

−∞

dω2

2π
ei(ω1−ω2)tq

× Tr[
+−
R (ω1,tc)G−+(ω2,tc) − G+−(ω1,tc)
−+

R (ω2,tc)]. (A3)

Here tc = t1+t2
2 and tq = t1 − t2. We neglect the effect of transients by assuming that the measurement time T − T0 is large

compared to internal relaxation times and the driving time period (hence we send the tq integral from −∞ to ∞). This leads to[
∂ lnZ(λL,λR,T − T0)

∂(iλR)

]
=

∫ T

T0

dt

∫ +∞

−∞

dω

2π
Tr[
+−

R (ω,t)G−+(ω,t) − G+−(ω,t)
−+
R (ω,t)]. (A4)

2. Symmetrization of generating function

From Z(λL,λR,T − T0) we can obtain the combined distribution function P (nL,nR,T − T0) for the electron number change
on the left and right reservoirs over the measurement time period of (T − T0) using Eq. (2). However in order to compute the
statistics of the net number (N ) of electrons changed on both reservoirs (which is the same as the number of electrons changed on
the system) and the net number (n) of electrons exchanged between both the reservoirs, we perform a coordinate transformation
(nL,nR) → (N,n) = ( nL+nR

2 , nL−nR

2 ). Performing this transformation in Eq. (2), we obtain

P̃ (N,n,T − T0) = 1

2

∫ 2π

0

d�

2π

∫ 2π

−2π

dλ

2π
Z̃(�,λ,T − T0)ei(�N+λn), (A5)

where the factor 1/2 appears due to the Jacobian of transformation. Z̃(�,λ,T − T0) is obtained from Z(λL,λR,T − T0) by
performing a coordinate transformation (λL,λR) → (�,λ) = (λL + λR,λL − λR). From P̃ (N,n,T − T0) we can get P̃ (N,T −
T0) or P̃ (n,T − T0) by summing over n or N, respectively. Summing over N , we get

P̃ (n,T − T0) = 1

2

∫ 2π

−2π

dλ

2π
Z̃(λ,T − T0)eiλn =

∫ 2π

0

dλ

2π
Z̃(λ,T − T0)eiλn, (A6)

where the second equality follows from the 2π periodicity of Z̃(λ,T − T0).

3. λ-dependent Wigner-transformed Green’s functions for the resonant level model

In this section we describe the procedure to get the λ-dependent Green’s functions (up to lowest linear order correction in
driving) for the resonant level model. We calculate the Green’s functions on the Keldysh contour which goes from −∞ to ∞
and back to ∞ under the large measurement time assumption in order to neglect initial correlations.

The noninteracting Green’s function Ğ0 is defined below Eq. (8). The Wigner-transformed inverse of Ğ0 is given by

Ğ
−1
0 (ω,t) =

(
ω − ω0 + iη 0

0 ω − ω0 − iη

)
,

where η = 0+. The λ-dependent Wigner-transformed self-energy (with terms up to linear in first derivative in classical time) due
to coupling to the reservoirs is 
̆(ω,t) = ∑

α=L,R 
̆α(ω,t) with


̆α(ω,t) =
(

−i�α(t)[0.5 − fα(ω)] i�α(t)fα(ω)eiλα

i�α(t)[1 − fα(ω)]e−iλα i�α(t)[0.5 − fα(ω)]

)
.

Here we assume that the system-reservoir couplings are real (the results remain same even for complex couplings with only
the amplitudes being time dependent) and independent of energy (wide-band approximation). The first-order correction to the
self-energy due to external driving is then zero (for the case when phases of couplings are time dependent, there will be a finite
first order correction to self-energy).

Using Eq. (11) together with the above two equations for Ğ
−1
0 and 
̆α , we get an expression for the adiabatic Green’s function

as

Ğad (ω,t)

= 1

�(ω,t)

(
ω − ω0 − i�L(t)[0.5 − fL(ω)] − i�R(t)[0.5 − fR(ω)] i�L(t)fL(ω)eiλL + i�R(t)fR(ω)eiλR

i�L(t)[1 − fL(ω)]e−iλL + i�R(t)[1 − fR(ω)]e−iλR ω − ω0 + i�L(t)[0.5 − fL(ω)] + i�R(t)[0.5 − fR(ω)]

)

035312-6



STATISTICS OF AN ADIABATIC CHARGE PUMP PHYSICAL REVIEW B 93, 035312 (2016)

with

�(ω,t) = (ω − ε)2 +
(

�L(t) + �R(t)

2

)2

+ �L(t)�R(t){fL(ω)[1 − fR(ω)](ei(λL−λR ) − 1) + fR(ω)[1 − fL(ω)](e−i(λL−λR ) − 1)},

where fL(ω) and fR(ω) are Fermi functions of the left and right reservoirs, respectively.
Using Ğad (ω,t) in Eq. (12) we calculate the lowest-order correction to the Green’s functions. We give expressions only for

+− and −+ components:

Ğ
+−

(ω,t) = i�L(t)fL(ω)eiλL + i�R(t)fR(ω)eiλR

�(ω,t)
− i[�̇L + �̇R](ω − ω0)

2[�(ω,t)]2
[�Lf ′

L(ω)eiλL + �Rf ′
R(ω)eiλR ]

+ i[�L(t)�̇R(t) − �R(t)�̇L(t)]

2[�(ω,t)]2
{[1 − 2fR(ω)]fL(ω)eiλL − [1 − 2fL(ω)]fR(ω)eiλR }

+ i(ω − ω0)

[�(ω,t)]2
[�L(t)�̇R(t)fR(ω)f ′

L(ω) − �R(t)�̇L(t)fL(ω)f ′
R(ω)](eiλL − eiλR ), (A7)

Ğ
−+

(ω,t) = i�L(t)[1 − fL(ω)]e−iλL + i�R(t)[1 − fR(ω)]e−iλR

�(ω,t)
+ i[�̇L + �̇R](ω − ω0)

2[�(ω,t)]2
[�Lf ′

L(ω)e−iλL + �Rf ′
R(ω)e−iλR ]

− i[�L(t)�̇R(t) − �R(t)�̇L(t)]

2[�(ω,t)]2
{[1 − 2fR(ω)][1 − fL(ω)]e−iλL − [1 − 2fL(ω)][1 − fR(ω)]e−iλR }

− i(ω − ω0)

[�(ω,t)]2
{�L(t)�̇R(t)[1 − fR(ω)]f ′

L(ω) − �R(t)�̇L(t)[1 − fL(ω)]f ′
R(ω)}(e−iλL − e−iλR ). (A8)

Using Ğ
+−

(ω,t), Ğ
−+

(ω,t), 
̆+−
R (ω,t), and 
̆−+

R (ω,t) in Eq. (6) we get an expression for 1
(T −T0) [

∂ lnZ(λL,λR,T −T0)
∂(iλR) ] to lowest-order

correction:

1

(T − T0)

[
∂ lnZ(λL,λR,T − T0)

∂(iλR)

]

= 1

Tp

∫ Tp

0
dt

∫ +∞

−∞

dω

2π

{
�L(t)�R(t)

�(ω,t)

{
fR(ω)[1 − fL(ω)]e−i(λL−λR ) − fL(ω)[1 − fR(ω)]ei(λL−λR)}

+
[
�R(t)[�L(t)�̇R(t) − �R(t)�̇L(t)]

2[�(ω,t)]2
[fL(ω) − fR(ω)] − �R(t)[�̇L(t) + �̇R(t)](ω − ω0)

2[�(ω,t)]2
[�L(t)f ′

L(ω) + �R(t)f ′
R(ω)]

+ �R(t)[�L(t)�̇R(t) − �R(t)�̇L(t)]

2[�(ω,t)]2
[1 − 2fR(ω)]

{
fL(ω)[1 − fR(ω)](ei(λL−λR ) − 1) + fR(ω)[1 − fL(ω)](e−i(λL−λR ) − 1)

}

− �L(t)�R(t)[�̇L(t) + �̇R(t)](ω − ω0)

2[�(ω,t)]2
f ′

L(ω)
{
[1 − fR(ω)]

(
ei(λL−λR ) − 1

) + fR(ω)(e−i(λL−λR) − 1)
}

+ �L(t)�R(t)

[�(ω,t)]2
�̇R(t)(ω − ε)f ′

L(ω)fR(ω)[1 − fR(ω)]
[
ei(λL−λR ) + e−i(λL−λR ) − 2

]

− �2
R(t)

[�(ω,t)]2
�̇L(t)f ′

R(ω)(ω − ω0)
{
fL(ω)[1 − fR(ω)]

(
ei(λL−λR ) − 1

) + fR(ω)[1 − fL(ω)]
(
e−i(λL−λR ) − 1

)}]}
, (A9)

where f ′
α(ω) is the ω derivative of fα(ω), �̇α(t) is the time derivative of �α(t), and Tp is the time period of driving which is

assumed to be much larger than the internal relaxation time of the system. A similar expression for 1
(T −T0) [

∂ lnZ(λL,λR,T −T0)
∂(iλL) ] can be

obtained by swapping L and R labels in Eq. (A9). Here it is assumed that the second measurement is carried out after an integer
number of cycles n = T −T0

Tp
of driving has been performed (even if it is not the case the error is minimal for large-time statistics,

for which the present formalism is developed). Using expressions for 1
(T −T0) [

∂ lnZ(λL,λR,T −T0)
∂(iλR ) ] and 1

(T −T0) [
∂ lnZ(λL,λR,T −T0)

∂(iλL) ], the
expressions for the generating function for particle change on the system and particles exchanged between reservoirs can be
obtained. These expressions for the fL(ω) = fR(ω) = f (ω) case are given in Sec. IV.

4. Symmetries of the Green’s functions

As the full system is evolving with respect to a Hamiltonian, the evolution is unitary when λL = λR = 0. As a consequence,
matrix elements of Ğ(τ,τ ′) satisfy the symmetries [19]: (i) [Ğ

++
mn (t,t ′)]∗ = Ğ

−−
nm (t ′,t), (ii) [Ğ

−−
mn (t,t ′)]∗ = Ğ

++
nm (t ′,t), (iii)

[Ğ
+−
mn (t,t ′)]∗ = −Ğ

+−
nm (t ′,t), and (iv) [Ğ

−+
mn (t,t ′)]∗ = −Ğ

−+
nm (t ′,t). These symmetries in the Wigner representation can be
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summarized in a matrix form as

Ğ(ω,t) =
[
Ğ

++
(ω,t) Ğ

+−
(ω,t)

Ğ
−+

(ω,t) Ğ
−−

(ω,t)

]
=⇒ [Ğ(ω,t)]∗ =

[
[Ğ

−−
(ω,t)]T −[Ğ

+−
(ω,t)]T

−[Ğ
−+

(ω,t)]T [Ğ
++

(ω,t)]T

]
.

The approximate Green’s function matrix used in this work can be expressed as

Ğ(ω,t) = Ğad (ω,t) + i

2

[{∂ωĞad (ω,t)}Ğ−1
ad (ω,t)∂tĞad (ω,t) − {∂tĞad (ω,t)}Ğ−1

ad (ω,t)∂ωĞad (ω,t)
]
. (A10)

This approximate Green’s function satisfies all the above symmetries provided Ğad (ω,t) satisfies the above symmetries
which in turn requires Ğ0(ω,t) and 
̆(ω,t) to satisfy the above symmetries, which they do. Another important symmetry
is Ğ

++
mn (t,t ′) − Ğ

−−
mn (t,t ′) = Ğ

+−
mn (t,t ′) − Ğ

−+
mn (t,t ′) which in the Wigner representation becomes Ğ

++
mn (ω,t) − Ğ

−−
mn (ω,t) =

Ğ
+−
mn (ω,t) − Ğ

−+
mn (ω,t), which is also satisfied by the above approximate Green’s function provided Ğ0(ω,t) and 
̆(ω,t) also

satisfy it, which they do.

5. Detailed fluctuation theorem for pumped charge

We consider a special case when both the reservoirs are at the same thermodynamic states (i.e., βL = βR = β and μL =
μR = μ) and drivings are of the form �L(t) = �( 2πt

Tp
− φ

2 ) and �R(t) = �( 2πt
Tp

+ φ

2 ) [where �(x) is an even periodic function
with period 2π ]. During the time-reversed evolution, the drivings at time t are obtained by substituting t → Tp − t for drivings
in the forward evolution. Clearly the Hamiltonian does not have time-reversal symmetry as �L(R)(Tp − t) = �R(L)(t); the left
and right couplings switch roles. Then using Eq. (13), it can be shown that Z̃F (λ,T − T0) = Z̃B(−λ,T − T0), where Z̃F and
Z̃B are moment-generating functions of the probability distribution function for the number of particles exchanged between
two reservoirs with forward and backward driving protocols, respectively. This is the Gallavotti-Cohen type symmetry for the
zero-bias case. This symmetry leads to a detailed fluctuation theorem (FT)

lim
(T −T0)→∞

PF (n,T − T0)

PB(−n,T − T0)
= 1, (A11)

which is consistent with the standard (nondriven) steady-state FT for charge transfer in a single resonant level system at
equilibrium (zero external bias). However, at steady state PF = PB , and the above relation leads to PF (n) = PF (−n) at large
measurement times. However, for a driven case, as we show in the Fig. 3, we find that Z̃F (λ,T − T0) �= Z̃F (−λ,T − T0) due to
the Berry phase which leads to a finite net charge transfer between reservoirs.
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