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Anisotropy of electron and hole g tensors of quantum dots: An intuitive picture based on
spin-correlated orbital currents
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Using single spins in semiconductor quantum dots as qubits requires full control over the spin state. As
the g tensor provides the coupling in a Hamiltonian between a spin and an external magnetic field, a deeper
understanding of the g tensor underlies magnetic-field control of the spin. The g tensor is affected by the presence
of spin-correlated orbital currents, of which the spatial structure has been recently clarified. Here we extend that
framework to investigate the influence of the shape of quantum dots on the anisotropy of the electron g tensor. We
find that the spin-correlated orbital currents form a simple current loop perpendicular to the magnetic moment’s
orientation. The current loop is therefore directly sensitive to the shape of the nanostructure: for cylindrical
quantum dots, the electron g-tensor anisotropy is mainly governed by the aspect ratio of the dots. Through a
systematic experimental study of the size dependence of the separate electron and hole g tensors of InAs/InP
quantum dots, we have validated this picture. Moreover, we find that through size engineering it is possible to
independently change the sign of the in-plane and growth direction electron g factors. The hole g tensor is found
to be strongly anisotropic and very sensitive to the radius and elongation. The comparable importance of itinerant
and localized currents to the hole g tensor complicates the analysis relative to the electron g tensor.
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I. INTRODUCTION

The g tensor describes the fundamental coupling between
a spin and an external magnetic field, and therefore it plays
an essential role in the physics of spins. Manipulation of this
tensor, for example by an electric field, allows for an effective
control over the spin even when an externally applied magnetic
field is static. This proves to be advantageous for the local
addressing of spins [1,2], tilting the spin’s precessional axis
[3–7], or high-speed spin manipulation [8]. Of particular inter-
est is the g tensor of carriers in (self-assembled) semiconductor
quantum dots, as a single spin inside these nanostructures is
a promising candidate for forming a solid-state qubit [9,10].
Although the electric-field sensitivity of the g tensor can be
exploited as a means to control the spin, it can also generate
decoherence when electrical (charge) noise is present [11]. For
optimal performance, control over the absolute value, sign, and
anisotropy of the g tensor is crucial. The effects of quantum
confinement and strain of the quantum dot are usually captured
by a parametrization of the g tensor in terms of size, shape,
and composition [12–17]. A better understanding of the origin
of the g tensor is therefore helpful in the further exploration
of electrical spin control.

The g tensor describes effectively how spin-orbit interac-
tion modifies the magnetic moment of a carrier. In general,
the magnetic moment of a carrier can have contributions from
its spin and orbital degrees of freedom. In the solid state,
the presence of spin-orbit interaction and coupling between
bands leads to a spin-correlated orbital moment [18]. We will
refer to this as just the orbital moment in this article, noting
that we mean the spin-dependent orbital moment and not
the conventional orbital moment in the absence of spin-orbit
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interaction. For a conduction-band electron in narrow-gap
III-V semiconductors, the orbital moment can be much larger
than the spin moment itself; the magnetic response of the
electron ground-state spin is therefore dominated by the orbital
moment [18]. These orbital moments are generated through
orbital currents, of which the spatial structure in nanostructures
has been recently investigated [19]. The dominant current was
found to circulate within the nanostructure. It vanishes at the
edge and center, and it peaks about midway between. This
resembles a current loop, and this intuitive physical picture is
capable of explaining the size and composition dependence
of the spin-correlated orbital moment in various systems [20].
Although the shape of the nanostructure has been predicted to
be influential on the electron g tensor [12,13], an intuitive
picture of this relation is still lacking. In Sec. II of this
article, we will show, using numerical k · p calculations and
the intuitive framework of orbital currents, how the anisotropy
of the electron g tensor is linked to the shape of a nanostructure.

Experimental efforts have been made to characterize the
g factors (i.e., components of the g tensor) of excitons
[21–26], and of individual electron and holes [27–36] confined
in quantum dots. Also, electric control over g factors has
been shown [25,29,33,35–37]; in particular, it was found
that the hole g factor is much more sensitive to an electric
field than the electron g factor. As quantum confinement
and strain affect the g tensor, it is generally found that the
inhomogeneous distribution of quantum dots leads to different
g factors and electric-field sensitivities for each individually
measured quantum dot. Although there are numerous reports
of electron or hole g-factor measurements on individual
quantum dots, there are only limited systematic reports on
the size dependence of the g factors [22–25]. Moreover, these
only involve the exciton g factor in a particular direction, and
therefore they do not reveal the size dependence of the separate
electron and hole g tensors and their anisotropies.
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In Sec. III, we report a systematic experimental study of
the size dependence of the separate electron and hole g factors
of InAs/InP quantum dots in both the growth and in-plane
directions. It provides insight into the possibility to size-
engineer the magnitude and sign of components of the g tensor.
Moreover, it allows us to verify the correlation motivated by
the theory in Sec. II between the nanostructure’s shape and
the anisotropy of the electron g tensor. We have measured the
separate electron and hole g tensors using angle-dependent
magnetoluminescence (Sec. III A). Contrary to what has
been found before [30,31,35,36], we have systematically
measured a strong electron g-factor anisotropy (Sec. III B).
Through the systematic study of the size dependence, we
have been able to understand this behavior, and we find it
to be in good agreement with our theoretical predictions. The
experimentally measured hole g factors (Sec. III C) agree well
with numerical calculations. Also, the exciton diamagnetic
coefficients (Sec. III D) are found to be anisotropic; analogous
to the electron g tensor, this anisotropy can be correlated with
the shape of the quantum dots.

II. THEORY OF SPIN-CORRELATED ORBITAL
MOMENTS IN ANISOTROPIC DOTS

Calculations using analytical perturbation theory [12] and
numerical methods [13] have predicted that the shape of
the nanostructure influences the anisotropy of the electron
g tensor. However, an intuitive explanation of this relation
is lacking. We therefore investigate how the orbital currents
change when the spin of a carrier is oriented in different
directions. Intuitively, one would expect the orbital current
to circulate in a plane perpendicular to the orbital moment. To
verify this intuition, we calculate explicitly the orbital current
density of cylindrical InAs/InP quantum dots.

We compute the electron ground state using strain-
dependent eight-band k · p theory in the envelope approxima-
tion with finite differences on a real-space grid [38–40]. The
strain is calculated using linear elasticity continuum theory.
The calculations are performed at T = 0 K and material
parameters are taken from Ref. [41]. The magnetic field is
included by coupling it to both the spin part (using the Zeeman
Hamiltonian) and the orbital part (using the gauge invariance)
of the wave function [13,14]. Using a small magnetic field of
0.1 T, the electron ground state’s magnetic moment is oriented
an angle η away from the symmetry z axis of the quantum dot
toward the in-plane x axis.

Knowing the real-space wave function of this oriented
electron ground state, we can calculate the orbital current
using the formalism developed in Ref. [19]. We use an
envelope-function formalism to describe the electronic state,
where the wave function is the sum of products of a (slowly
varying) envelope function and a (quickly varying) Bloch func-
tion. When evaluating the spatial dependence of the current
associated with that state, we evaluate the current operator,
which is directly related to the spatial derivative operator. As
a result, the derivative of the Bloch function dominates the
current [19]. The orbital current can be generally decomposed
into localized currents, which are restricted to a unit cell,
and itinerant currents, which are distributed throughout the
quantum dot. Since the electron ground state consists mainly

of conduction-band states that carry no Bloch orbital moment,
the localized currents have a negligible contribution to the
total current. The dominant contribution to the orbital current
comes, therefore, from the itinerant currents related to the
Bloch velocity. For more details, see Refs. [19,20].

In Fig. 1(a), we show selected streamlines of this dominant
orbital current density for three differently sized quantum dots
at three different values of η. We confirm the previous finding
that the current is zero at the center and edge of the quantum
dot, and it peaks somewhere in between. We also observe
that for η �= 0◦, the current density is not uniform along a
streamline, which originates from the divergence-free nature
of the current density. More importantly, however, we indeed
observe that the current circulates in a plane perpendicular to
the magnetic moment. The orbital moment is thus generated
from a current loop perpendicular to its orientation.

This finding has an interesting consequence. The magnitude
of an orbital moment μorb depends on the area A encircled by
the integrated current I , μorb = IA. The orbital moment is
therefore sensitive to the shape of the quantum dot through
the area encircled by its generating current. In particular, we
expect for cylindrically shaped quantum dots with radius R

and height H ,

μz
orb ∝ R2, μx

orb ∝ 1

2
RH = R2

λ
,

where we used the aspect ratio λ = 2R/H .
We find indeed that the orbital moment follows this

expectation; see Fig. 1(b). The orbital moment of the quantum
dot with a near-unity aspect ratio is isotropic, while for large
(small) aspect ratios we observe that μx

orb is smaller (larger)
than μz

orb. We point out that the anisotropy has significant
magnitude; in this example, it is >15% of the orbital moment
itself. Only orbital currents that are distributed throughout
the quantum dot will sense the shape of the nanostructure.
Other contributions [19] to the total magnetic moment (notably
the spin moment) arise mostly from small localized currents,
and indeed they do not exhibit a significant anisotropy; see
Fig. 1(b). The orbital moment also depends, through the
integrated current I , on the geometry of the nanostructure.

To investigate whether the anisotropy is truly governed by
the shape of the quantum dot, we show in Fig. 1(c) how the
anisotropy depends on the aspect ratio and the confinement
energy. The strong dependence on the aspect ratio indicates
directly that the anisotropy is driven by the nanostructure’s
shape. Simultaneously, we observe only a weak dependence
of the anisotropy on the confinement energy. For a fixed aspect
ratio, we expect the confinement energy to depend only on the
volume, and we therefore infer that the anisotropy is relatively
insensitive to the overall size of the nanostructure. This relation
is also showcased by the three quantum dots exemplified in
Figs. 1(a) and 1(b): they have nearly the same confinement
energy yet very different orbital moment anisotropies.

III. EXPERIMENTAL RESULTS

To experimentally verify whether the orbital moment
anisotropy is indeed linked to the shape of nanostructures, we
have measured the g tensor of individual InAs/InP quantum
dots. We have studied these quantum dots in the past, and
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FIG. 1. (a) Selected streamlines of the (itinerant Bloch-velocity-related) orbital current density of the electron ground state of three different
cylindrical InAs/InP quantum dots for three different angles η. The current circulates (gray arrow) in a plane perpendicular to the orbital moment
(black arrow). (b) The orbital moment for the three quantum dots of (a) as a function of the polar angle η. The pronounced anisotropy is
only present for the orbital moment, not for the other contributions to the total magnetic moment. (c) The orbital moment anisotropy depends
strongly on the aspect ratio λ and relatively weakly on the confinement energy, from which it is inferred that the anisotropy is governed mainly
by the shape of the nanostructure. The three colored dots indicate the three quantum dots shown in (a) and (b).

we summarize here for reference some of our previous
findings [24]. These quantum dots were grown by metalorganic
vapor-phase epitaxy, resulting in an inhomogeneous size
distribution and a broad emission energy range. The ensemble
photoluminescence spectrum contained multiple peaks, which
we interpreted as a multimodal height distribution. This
implied that the emission energy of these quantum dots is
strongly correlated with their height. We have measured the
heights of more than 50 dots using cross-sectional scanning
tunneling microscopy (X-STM) to independently verify this
interpretation. The resulting distribution showed that the
heights vary between 5 and 15 monolayers (ML) (1.5–4.5
nm), matching well with the peaks found in the ensemble
photoluminescence. The X-STM measurements also revealed
that the quantum dots resemble cylindrical disks. The lateral
size of the quantum dots was found to be less well defined;
the largest radius measured 15 nm. These quantum dots have
therefore a large aspect ratio and provide a good test ground
for our predicted electron g-tensor anisotropy.

The g tensor g of our quantum dots is diagonal due to
their approximate D2d symmetry. We can relate the g factors
appearing on the diagonal of the g tensor to the orbital moment
via gx,y,z = 2/μB (μx,y,z

spin + μ
x,y,z

orb ). Here μ
x,y,z
spin is the spin

moment, μ
x,y,z

orb is the orbital moment, and μB is the Bohr
magneton. We note that this relation can be derived using the

Zeeman interaction and time-reversal symmetry; the factor
2 arises from Kramer’s degeneracy. It has been shown [20]
that μz

spin is nearly always equal to μB . In Fig. 1(b) we
have also shown that the spin moment does not exhibit any
significant anisotropy. It is therefore a good approximation to
set μ

x,y,z
spin = μB . Measuring a g factor, therefore, determines

effectively the orbital moment in that direction.

A. Experimental methods

The electron and hole ground states of our quantum dots
are doubly degenerate at zero magnetic field due to their ap-
proximate D2d symmetry (neglecting Coulomb and exchange
effects) [21]. A magnetic field lifts this spin degeneracy,
which results in four possible optical transitions between the
eigenstates of the Zeeman Hamiltonian [42]. Both the electron
and hole spin can be effectively described [43] as a spin,
se,h = 1

2 , since the hole state has a strong heavy-hole (HH)
character due to quantum confinement and strain [16]. The
Zeeman Hamiltonian has then the same form for the electron
(e) and hole (h),

He,h
Zeeman = μBB · ge,h · se,h

= 1
2μBB

(
gz

e,h cos η gx
e,h sin η

gx
e,h sin η −gz

e,h cos η

)
, (1)
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(a) (b)

FIG. 2. (a) An ex situ rotatable periscope has been used to change
the angle η between the magnetic field (yellow) and the sample’s
normal (green). (b) Calculations have been performed on InAs
cylindrical disks (red) embedded in InP with radius R and height H ;
for some calculations, the radius in the [110] direction is compressed
by ε; magnetic fields have been applied in the indicated directions.

where se,h = 1
2 (σx,σy,σz) is the spin operator, B =

(B sin η,0,B cos η) is the magnetic field as defined in Fig. 2(a),
and ge,h is the g tensor. Since light-matter interaction conserves
spin, it follows from Eq. (1) that for η = 0◦ (Faraday geometry)
only two of the four transitions are optically addressable, from
which only gz

e + gz
h can be determined. All four transitions

are visible when η �= 0◦. A measurement at η = 90◦ (Voigt
geometry) determines separately gx

e and gx
h . To separate gz

e and
gz

h, it is customary [30,31,42] to do an additional measurement
at an intermediate angle (η = 45◦).

Following this approach, we have investigated the photo-
luminescence as a function of a magnetic field up to 10 T at
4 K of 55 individual quantum dots in the same sample used
in Ref. [24]. We used a small periscope arrangement of four
right-angle mirrors to vary the angle η; see Fig. 2(a). We have
used an Al mask with apertures in order to systematically
relocate the same quantum dot after changing η ex situ.
Photoexcitation is provided by a cw 635 nm laser diode;
the photoluminescence is collected in backscattering geometry
and analyzed using a single grating spectrometer and liquid-
nitrogen-cooled InGaAs linear array detector. The spectra are
fitted to obtain the peak positions of an individual quantum dot
with an accuracy of less than 50 μeV.

In Fig. 3(a), we show the magnetoluminescence of an
individual quantum dot up to 10 T for η = (0◦,45◦,90◦). The
polarization of the luminescence is determined at 10 T and
is found to be circular (σ±) for η = 0◦ and linear (πx,y) for
η = 90◦. From the fitted peak positions, we obtain the Zeeman
energy; see Fig. 3(b). The g tensor can be extracted from these
Zeeman energies by fitting them with the transition energies
[which follow from diagonalization of Eq. (1)]:

Eξe,ξh = E0 + μB

[
ξe

√(
gx

e sin η
)2 + (

gz
e cos η

)2

+ ξh

√(
gx

h sin η
)2 + (

gz
h cos η

)2]|B|
+ (αz cos2 η + αx sin2 η)B2, (2)

where ξe,h = (+,−) depending on the electron or hole spin
orientation, and E0 is the transition energy at zero magnetic
field. We added the η dependence of the diamagnetic shift using

the diamagnetic coefficients at η = 0◦ (αz) and η = 90◦ (αx).
The Zeeman energies at all values of η are fitted simultaneously
with Eq. (2); see Figs. 3(b) and 3(c). Using this procedure, we
have extracted the g factors and diamagnetic coefficients for
55 individual quantum dots having different emission energies
E0, which we will discuss in Secs. III B–III D. We refer
the reader to the Appendix for a detailed discussion on the
assumptions made in the fitting procedure; these influence the
assignment and sign of the various g factors.

To understand the origin and size dependence of the
experimentally measured g factors in detail, we calculated
the g factors using the same k · p model used in Sec. II. The
quantum dots are modeled as pure InAs disks embedded in InP;
see Fig. 2(b). The separate electron and hole energy levels of a
quantum dot have been calculated as a function of a magnetic
field applied in the growth [001] direction or in-plane 〈110〉
directions. We can then directly extract from these energy
levels the Zeeman energy (gx,z

e,h factors) and diamagnetic shift
(αx,z

e,h). Both the size of the quantum dot and elongation of its
footprint, ε = R[11̄0]/R[110], have been varied. We have left
out the remote-band coupling of the hole spin to the magnetic
field in all calculations, as previous work indicated that this is
a better approximation than including them [16].

B. Electron g factors

From Fig. 4, we see that the measured electron g factors are
strongly correlated with the emission energy. As the emission
energy is strongly determined by the height of the quantum
dots [24], these trends can therefore be interpreted as the height
dependence of the g factor. A comparison between the trends
of the experimental data and the calculated electron g factors
confirms this conclusion. We simultaneously conclude that all
quantum dots have more or less the same radius, which agrees
well with the observation that the diamagnetic coefficients
do not depend much on the emission energy (see Sec. III D).
A radius between 7 and 11 nm and a height between 1.8
and 6.0 nm gives the best match between experiment and
calculations. This agrees well with the average height of 3 nm
and maximum radius of 15 nm determined by X-STM [24]. We
would like to stress that the calculations with the k · p model
are fit-free and completely independent from the experimental
results. We attribute deviations between the experimental
and calculated g factors to differences between the real and
modeled shape, size, and composition of the quantum dots.

Recently, InAs/In0.53Al0.24Ga0.23 quantum dots, which also
emit around 800 meV, have been investigated [44]. Although
these quantum dots have a confinement energy comparable
to our quantum dots, their average size (radius of 25 nm and
height of 13 nm) and composition differ substantially. Based
on the framework of the orbital currents, we would expect the
larger size of the InAs/In0.53Al0.24Ga0.23 to result in a larger
orbital moment. Indeed, gx

e was measured to be about −1.9,
which is more negative than our measurements. It shows that
a g factor is more affected by the size of a quantum dot than
by its confinement energy.

A more prominent experimental observation can be made
by comparing Figs. 4(a) and 4(b): for each quantum dot,
gx

e is significantly closer to the free-electron value of +2
than gz

e . Translated in terms of the orbital moment: for every
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FIG. 3. (a) An example of the magnetoluminescence up to 10 T of a single quantum dot for η = 0◦, 45◦, and 90◦. The experimental
data (gray points) and the fits (colored lines) are offset for clarity for increasing magnetic field. We obtain from the fitted peak positions the
Zeeman energies (b) and diamagnetic shifts (c). By simultaneous fitting of these energies using Eq. (2), we find for this particular quantum dot
(gx

e = 0.60,gz
e = −0.51,gx

h = 0.38,gz
h = −0.29) and (αz = 7.2 μ eV/T2,α45◦ = 4.6 μ eV/T2,αx = 1.9 μ eV/T2).

quantum dot, we observe μx
orb < μz

orb. This complies with our
theoretical prediction: as these cylindrical quantum dots have
a large aspect ratio, the orbital current can encircle a much
larger area when the orbital moment is along the symmetry
axis than when it is directed in-plane. Although the anisotropy
of the electron g factor has been measured experimentally
in quantum wells [45] and quantum dots [29–31,35–37], the
reported anisotropies have been generally small and were not
explained using this simple geometrical argument. We point
out that the anisotropy makes it possible to size-engineer
separately gx

e and gz
e close to zero, where an additional electric

field can then be used to change the sign of the g factor.
The behavior of electron g tensors is sometimes explained

using “averaging methods”: the penetration of the state into the
barriers determines, through the difference of the bulk g factors

of the nanostructure and barrier material, the value of the g

factor. Interestingly, the averaging method would predict an
isotropic electron g tensor, since the penetration into the barrier
material is independent of the spin orientation (neglecting
the very small anisotropy of the bulk g tensor). Although
the shortcomings of this approach have been pointed out before
[13,16], our experimentally observed strong anisotropy of the
electron g tensor invalidates this type of approach.

The geometrical argument complies well with some details
in the size dependence of the calculated g factors. First, we
observe in Fig. 4 that for a fixed height, the radius has a much
larger influence on gz

e (sensitive to R2) than on gx
e (sensitive

to RH/2). In particular, we see that for very flat quantum
dots, the radius has very little influence on gx

e and affects only
the emission energy. Secondly, we see that elongation slightly
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FIG. 4. The experimentally measured (black squares, 
g = 0.1)
and calculated (colored curves) electron gz

e (a) and gx
e (b) factors as

a function of the emission energy of the quantum dot. The different
colors indicate different radii of the disks; the height is varied from 1.8
to 6.0 nm along a curve of fixed radius. The continuous lines represent
cylindrical disks, while the dotted curves are for an elongated disk
with ε = 1.2. In the latter case, the in-plane orientation of the
magnetic field ([110] upward triangles, [11̄0] downward triangles)
affects the calculated gx

e factors.

decreases μz
orb, since it limits the total area for the current

to circulate. Simultaneously, we observe that elongation does
not have a great effect on μx

orb, as the area for the current to
circulate in is mainly limited by the height. Lastly, we see that
μx

orb is largest if the magnetic field is along the [110] direction,
since the area for the current to circulate in is now enlarged by
the elongation.

The prominent height dependence of gz
e cannot be in-

tuitively explained using the geometrical argument. This
dependence is therefore related to the size dependence of the
integrated current [20]. For the small heights considered here,
the integrated current gets smaller with decreasing height:
the valence-band contributions to the electron ground state
are quenched through their dependence on the confinement
energy. This explains why the calculated curves for different
radii are more or less falling on top of each other: gz

e is mainly
parametrized by the confinement energy. The confinement

energy scales with the volume of the quantum dot for a fixed
aspect ratio. The gz

e factor depends, therefore, mostly on the
volume, as was found before [13].

C. Hole g factors

From Figs. 5(a) and 5(b), we observe that the experimen-
tally found gx

h and gz
h are very different: the hole g tensor is

even more anisotropic than the electron g tensor. Contrary to
the electrons, the strong (weak) correlation of gz

h (gx
h) with

emission energy makes it possible to size-engineer the hole
g tensor to become isotropic. Moreover, the sign of the gz

h

factors changes around 900 meV, which can be beneficial for
applications.

To explain this behavior, we need to trace the origin
of the orbital moment of the hole ground state. As a first
approximation, the hole state is a pure HH state. Such a state
has, in addition to its spin moment, only a localized Bloch
orbital moment that is projected along the z axis: we would
therefore expect gx

h = 0 and gz
h = +4. From Figs. 5(a) and

5(b) we see that this expectation is not far off for gx
h , but both

the experimental and calculated gz
h behave very differently.

This points to the more complicated nature of the hole orbital
moment compared to the electron orbital moment. In general,
contributions from other bands lead to additional localized and
itinerant orbital currents. For the electron state, it turns out that
the itinerant current dominates all other contributions [19],
such that it solemnly explains the experimentally observed
trends as we have shown in Sec. III B. For the hole state,
however, both types of currents contribute equally, thereby
complicating the analysis.

To make progress, we can semiquantitatively investigate
the first and most important contribution to the hole state:
the light-hole (LH) band. In Fig. 5(c), we show the LH
contribution of the calculated hole ground state for the same
sizes of quantum dots as in Figs. 5(a) and 5(b). We observe
that the LH contribution increases with increasing height,
decreasing radius, and increasing elongation. This behavior
can be understood by inspecting the part of the eight-band
Hamiltonian describing the �v

8 bands [46]:

H�v
8

=

⎛
⎜⎜⎜⎝

EHH L M 0

L∗ ELH 0 M

M∗ 0 ELH −L

0 M∗ −L∗ EHH

⎞
⎟⎟⎟⎠, (3)

where

EHH = −�
2
(
k2
x + k2

y

)
2m0

(γ1 + γ2) − �
2k2

z

2m0
(γ1 − 2γ2), (4)

ELH = −�
2
(
k2
x + k2

y

)
2m0

(γ1 − γ2) − �
2k2

z

2m0
(γ1 + 2γ2), (5)

L =
√

3
�

2(kx − iky)kz

m0
γ3, (6)

M =
√

3
�

2(kx − iky)2

2m0
γ3, (7)

where kx,y ∼ 1/R and kz ∼ 1/H are the wave numbers of
the state [47], and γ1,2,3 are the Luttinger parameters. In
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FIG. 5. The experimentally measured (black squares, 
g = 0.1)
and calculated (colored curves) hole gz

h (a) and gx
h (b) factors as

a function of the emission energy of the quantum dot. The different
colors indicate different radii of the disks; the height is varied from 1.8
to 6.0 nm along a curve of fixed radius. The continuous lines represent
cylindrical disks, while the dotted curves are for an elongated disk
with ε = 1.2. In the latter case, the in-plane orientation of the
magnetic field ([110] upward triangles, [11̄0] downward triangles)
affects the calculated gx

h factors. (c) The LH contribution to the
calculated hole ground state for different heights and radii of the
quantum dots.

the framework of perturbation theory, the amount of LH
contribution in the hole state is proportional to the coupling
between the HH and LH bands (matrix elements L and M)
divided by the energetic splitting between the bands (EHH −
ELH). As for our quantum dots H 
 R, we immediately infer
that the hole state is predominantly HH in character. Moreover,
we see that upon increasing the height (radius), the energetic
splitting EHH − ELH becomes smaller (larger) and hence the
LH contribution becomes larger (smaller), as we observe in
Fig. 5(c). Also, the increase of the LH contribution with
elongation can be explained, since the coupling terms L and
M are proportional to kx − ky ∝ ε.

Comparing Figs. 5(b) and 5(c), we observe a positive
correlation between the LH contribution and the magnitude
of the calculated gx

h factors. Elongation also increases the
calculated gx

h and has a more profound influence than the
LH contribution, pointing out that elongation affects gx

h

also via other bands. The large spread of the measured gx
h

at high emission energy can therefore be attributed to a
larger LH contribution or elongation. In previous experiments,
we found about 20% of our quantum dots to exhibit an
anisotropic exchange splitting at zero magnetic field [24].
Since this splitting increased toward higher emission energies,
we tentatively argued that the elongation is more pronounced
at higher emission energies. Such an effect could explain
the experimentally observed increase of gx

h at large emission
energies.

Both the measured and calculated gz
h show a clear trend with

emission energy. The calculated gz
h also depends strongly on

the radius, which could be related to the area (∝R2) in which
the itinerant orbital current circulates. Also, the integrated
current I itself might depend directly on the radius through
the size dependence of the contributions of other bands. The
combined effect might explain the unexpected strong radius
dependence of the calculated gz

h factors. We again point out
that the localized orbital currents might also play a significant
role here.

D. Diamagnetic coefficients

An external magnetic field induces through the Lorentz
force an orbital current for carriers confined in quantum dots,
analogous to Langevin diamagnetism in atoms. In contrast
to the spin-correlated currents underlying the g tensor, this
magnetic-field-induced current is spin-independent. For a
magnetic field along the z axis, an elementary derivation shows
that this leads to a diamagnetic shift in energy,

μdia = IA =
(−eω

2π

)
πR2 → Edia = −μdiaB = e2R2

4m∗ B2,

(8)

where ω = eB/2m∗ due to Larmor precession, and m∗ is the
effective mass. The factor in front of the B2 dependence is
defined as the diamagnetic coefficient α. In analogy with
the spin-correlated currents (Sec. II), we therefore intuitively
expect

αz ∝ R2

m∗
z (R,H )

, αx ∝ RH

m∗
x(R,H )

. (9)
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FIG. 6. The experimentally measured (black squares) and calcu-
lated (coloured curves) exciton diamagnetic coefficients αz

ex (a) and
αx

ex (b) as a function of the emission energy of the quantum dot.
The different colors indicate different radii of the disks; the height
is varied from 1.8 to 6.0 nm along a curve of fixed radius. The
continuous lines represent cylindrical disks, while the dotted curves
are for an elongated disk with ε = 1.2. In the latter case, the in-plane
orientation of the magnetic field ([110] upward triangles, [11̄0]
downward triangles) affects the calculated diamagnetic coefficients.

Similar to the anisotropy of the electron g tensor, the diamag-
netic energy anisotropy is sensitive to the shape of the quantum
dot through the area encircled by the magnetic-field-induced
current. Note that it also depends, through effective-mass
anisotropy, on the size of the quantum dots.

Experimentally, we measure the exciton diamagnetic co-
efficients αex, which contain the combined electron and hole
diamagnetic coefficients. We still expect that the anisotropy
of αex is largely determined by the aspect ratio, since the
hole effective mass is much larger than the electron effective
mass. It is therefore possible to approximately infer from
the anisotropy of αex what aspect ratio the nanostructures
have. We find from the measurements shown in Fig. 6 that
αz

ex/α
x
ex = (3.7 ± 0.9), meaning that our quantum dots are

indeed flat disks. Moreover, the ratio’s weak dependence on
the emission energy indicates that all quantum dots have a
similar aspect ratio. This independently validates the results
of the structural analysis [24] and the assertions made in the
discussion on the g tensors.

The αz
ex [see Fig. 6(a)] are similar to the previously reported

exciton diamagnetic coefficients [24]. The weak dependence
on the emission energy indicates that the measured quantum
dots have similar radii. This complies well with the comparison
between the measured and calculated electron g factors: also,
we found there that a single radius gives the best match.
We find again that a radius between 7 and 11 nm gives the
best match between experiment and calculations; this can be
improved further by including Coulomb corrections [16]. As
expected, the theoretically calculated αz

ex depend strongly on
the radius and the elongation, as both influence the area the
magnetic-field-induced orbital current circulates. Their less
intuitive height dependence was previously found to be related
to the size (or energy) dependence of the effective mass [16].

The αx
ex [see Fig. 6(b)] has not been previously measured

systematically at different emission energies. There is good
agreement between the experimentally observed and calcu-
lated αx

ex; the deviation at larger emission energies could
be related to the discrepancy found for the gx

h factors at
those energies. The calculated αx

ex depend relatively more
strongly on the height than the αz

ex: this complies with our
expectation that αx

ex is directly proportional to the height.
Indeed, we find from our calculations that the separate electron
and hole diamagnetic coefficients are (approximately) linearly
dependent on both height and radius (not shown here).

IV. CONCLUSIONS

We have predicted that the anisotropy of the electron g ten-
sor is strongly correlated with the shape of the nanostructure in
a fashion traceable to the behavior of the spin-correlated orbital
currents. The orbital current that generates the spin-correlated
electron orbital moment circulates in a plane perpendicular
to the moment’s orientation. The resulting simple current
loop is therefore sensitive to the shape of the nanostructure.
For cylindrical quantum dots, this results in the anisotropic
electron g tensor, which is governed mainly by the aspect
ratio of the quantum dots. Through a systematic study of the
size dependence of the separate electron and hole g tensors of
flat quantum dots, we have verified that this picture is valid.
Moreover, the experimentally observed anisotropy directly
invalidates “averaging methods” for calculating g factors.

We find that through size-engineering it is possible to
independently change the sign of the in-plane and growth
direction electron g factors. The influence of elongation
follows the intuitive picture of the simple current loop, and
it is of small influence for the electron g tensor. The hole g

tensor is strongly anisotropic and very sensitive to the radius
and elongation. Although the underlying hole orbital moment
can be partially understood from the LH contribution, the equal
importance of both itinerant and localized currents complicates
the analysis over the electron case.

The approximate analogous role of circulating currents on
the diamagnetic coefficients and g tensors means that the shape
of the nanostructures also determines the anisotropy of the
diamagnetic coefficients. It is therefore possible to infer from
the anisotropy of the diamagnetic coefficients what aspect ratio
the nanostructures have.
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APPENDIX: COMMENTS ON ASSIGNMENT, SIGN,
AND DETECTION RANGE OF g FACTORS

As can be seen from Eq. (2), only the absolute value of
the g factors is relevant for determining the energy levels in
the η = 45◦ geometry. Therefore, the sign of gz

e,h (gx
e,h) is

determined solely by the η = 0◦ (η = 90◦) measurements. In
the Faraday measurements, the circular polarization state of
light leads directly to the sign of the exciton gz

ex factor:

gz
ex = Eσ+ − Eσ−

μBB
= gz

e + gz
h, (A1)

which complies with the usual definitions [14,24]. As in our
measurements, gz

ex �= 0, this relation determines directly the
sign of the separate electron and hole gz factors.

The situation is more complicated for the Voigt measure-
ments, as it is neither possible to assign the measured g

factors to a specific carrier, nor to establish their sign: it is
a priori not clear which of the two linearly polarized Zeeman
splittings belongs to which transition. It has been shown for
quantum wells [48] and ensembles of quantum dots [49] that
the in-plane orientation of the linear polarization axis depends
on the relative in-plane orientation of the electron and hole
spin. Details of the hole state, such as light-hole intermixing
and the nonlinear remote-band coupling of the magnetic
field to the hole spin, can lead to the peculiar situation in
which the in-plane orientation of the polarization axis depends
nontrivially on the in-plane magnetic-field orientation [49].
Only by measuring this dependence would it be possible to
attribute the Zeeman splittings to a certain carrier.

In Fig. 7 we show that this situation also applies to our
quantum dots: we use the k · p model to calculate the in-plane
orientation of the linear polarization axis of the ground-
state dipole transitions for various in-plane orientations of
the magnetic field. We note that these effects are virtually
absent when the quantum dot is elongated: the polarization
axis is relatively unaffected by the in-plane orientation of
the magnetic field. Since we have no clear experimental
evidence for such elongation in our quantum dots, we opted
pragmatically to rely on the simultaneous fit of the η = 45◦
and 90◦ data, where the goodness of the fit depends on the
assignment of the Zeeman energies to a certain carrier.

[110] [11
0]

[0
01

]
ε  

=
 1

.0
ε 

=
 1

.2

B [100] B [210] B [110]

FIG. 7. The calculated linear polarization pattern (blue/red) for
emission along the z axis when the in-plane magnetic field is rotated
from the [100] direction toward the [110] direction of a quantum
dot with a radius of 11 nm and height of 2.4 nm. In the absence of
elongation (top row), there is an intricate dependence of the emission
pattern on the orientation of the magnetic field, which is absent
when the quantum dot’s footprint (green) is compressed in the [110]
direction (bottom row).

The sign of the gx
e,h factors cannot be determined directly

from the measurements. The inner two peaks of all quantum
dots emitting at energies �825 meV are y-polarized; see, for
example, Fig. 3(a). However, the inner peaks are x-polarized
for quantum dots emitting �825 meV, from which we infer that
the relative sign between gx

e and gx
h changes. The measured gx

e

factor is zero around these energies; see Fig. 4(b). Since we
expect gx

e to tend to the free-electron g factor of +2 at high
emission energy [13] (small quantum dots) and to the strained
bulk InAs electron g factor of about −5 at low emission energy
[50] (large quantum dots), we choose gx

e > 0 for emission
energies >825 meV. The sign of gx

h follows then automatically.
We have found that two of the four peaks below 850 meV in

the η = 45◦ measurements dropped significantly in intensity.
Lacking those two peaks, it was not possible to separate the
electron and hole g factor for the Faraday measurements below
850 meV. Using the eigenstates of the Hamiltonian in Eq. (1),
we have calculated the emission intensity of the peaks for
η = 45◦. As the intensity depends on the g factors, we used the
measured g factors to parametrize the intensity as a function of
the emission energy. We then found indeed that the emission
intensity of two of the four peaks drops sharply below 850 meV,
due to accidental numerical values of the g factors. We predict
that below 700 meV these two peaks have sufficient intensity
to be measured, although this is outside the detection range
of the InGaAs detector. Note that the Voigt measurements do
span the full detection range.
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