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Often, the calculation of Coulomb coupling elements for quantum dynamical treatments, e.g., in cluster
or correlation expansion schemes, requires the evaluation of a six dimensional spatial integral. Therefore, it
represents a significant limiting factor in quantum mechanical calculations. If the size or the complexity of
the investigated system increases, many coupling elements need to be determined. The resulting computational
constraints require an efficient method for a fast numerical calculation of the Coulomb coupling. We present
a computational method to reduce the numerical complexity by decreasing the number of spatial integrals
for arbitrary geometries. We use a Green’s function formulation of the Coulomb coupling and introduce a
generalized scalar potential as solution of a generalized Poisson equation with a generalized charge density
as the inhomogeneity. That enables a fast calculation of Coulomb coupling elements and, additionally, a
straightforward inclusion of boundary conditions and arbitrarily spatially dependent dielectrics through the
Coulomb Green’s function. Particularly, if many coupling elements are included, the presented method, which is
not restricted to specific symmetries of the model, presents a promising approach for increasing the efficiency of
numerical calculations of the Coulomb interaction. To demonstrate the wide range of applications, we calculate
internanostructure couplings, such as the Förster coupling, and illustrate the inclusion of symmetry considerations
in the method for the Coulomb coupling between bound quantum dot states and unbound continuum states.
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I. INTRODUCTION

A microscopic analysis of the Coulomb coupling is es-
sential for the understanding of several physical processes in
condensed matter such as the scattering of charge carriers
[1,2] or the formation of collective states like excitons and
biexcitons [3,4]. Therefore, the Coulomb coupling is an
important many particle interaction in a variety of systems
such as nanostructures like quantum dots (QDs) or wells
[1], coupled nanotubes [5,6], bulk semiconductors [2,7], and
graphene [8,9], as well as atomic structures and molecular
systems [10,11].

Typically, for the calculation of the Coulomb coupling in
a spatially homogeneous system, the free space Coulomb
potential G(r,r ′)free = 1/(4πε0εr |r − r ′|) is used [12,13].
Therefore, a six dimensional spatial integral is evaluated for
the matrix elements of the two-particle interaction [14,15]
including electron wave functions. The fast computation of
Coulomb coupling elements is an important factor in electronic
structure calculations [11,16] as well as for quantum dynamics
[17,18] and efficient density matrix calculations using many-
body correlation expansions [19,20].

Systems involving only a few electronic levels have been
investigated in detail in quantum dynamical calculations,
this includes, e.g., QD interband transitions [5] and their
modifications due to a dielectric medium [21]. For larger
or asymmetric complex systems, the numerical computation
of the Coulomb coupling constitutes a significant limiting
factor and, therefore, approaches to efficiently calculate the
Coulomb interaction are needed. Often, a radial symmetry
is exploited and spherical coordinates are used to simplify
the spatial integrals. Thus the Coulomb potential can be
expressed by Legendre polynomials [13,22]. In Ref. [23],
spherical coordinates were used to calculate the Coulomb

interaction of a molecular complex, which is influenced by
the presence of an adjunct metal nanoparticle. Typically,
in quantum dynamical calculations of QD systems, several
analytic approaches for evaluating the Coulomb interaction
are based on the symmetries of the QD confinement [4,5,24]
and the shape of the electron wave functions [2].

If the system includes the calculation of a high number
of coupling elements, the resulting computational constraints
[11,13] require an efficient model to calculate the Coulomb
coupling elements numerically. In Ref. [11], a generalization
of a multipole expansion [25] was presented for electronic
structure calculations (e.g., for large molecules) to reduce
the numerical effort for an increasing system size. For
the Coulomb coupling involving continuum states, which
influence dephasing [26] and scattering processes [27,28] as
well as the formation of excitons between carriers of the QD
and the continuum [29], a high number of coupling elements
occurs. In addition, many Coulomb elements need to be
calculated for varying distances between the nanostructures,
since the Coulomb coupling between carriers of spatially
separated systems (e.g., coupled QDs [30]) depends on the
distance.

A method for an efficient numerical calculation of Coulomb
coupling elements is given by a transformation of the
electron wave functions into the Fourier space. The Fourier
transformation can be used to separate the integrals of the
two-particle Coulomb interaction, if the Coulomb potential for
a homogenous medium in free space is considered [6,13,31].
In real space, the connection of the electron wave functions
with the Coulomb potential results in a six dimensional
integral. In contrast, in Fourier domain, the Coulomb coupling
for a spatially homogenous medium is simply given as
product of the electron wave functions and the Coulomb
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potential. That requires the calculation of a threefold integral
and additionally, three dimensional Fourier transformations,
respectively. Compared to a six dimensional integral in real
space, the numerical complexity is reduced in the Fourier
domain. However, a singularity of the Coulomb potential is
also present in Fourier space and the Fourier transformation
cannot be applied with the same numerical reduction for
spatially inhomogeneous dielectrics.

For nanostructures such as QDs, a calculation of the
Coulomb coupling in Fourier domain often includes form
factors, which are defined by a Fourier transformation of
the product of two electron wave functions. For example,
in Ref. [13], form factors were introduced to calculate the
Coulomb matrix elements between exciton and biexciton states
for the impact ionization in semiconductor nanocrystals with
surface polarization. In Ref. [2], form factors of an in-plane
Fourier transformation and the construction of orthogonal
plane waves [14] were used to simplify the calculation of the
Coulomb coupling between a QD and a wetting layer. In the
spherical symmetric case, the form factors can be formulated
using spherical coordinates in the Fourier domain [5] to further
reduce the computational costs.

In contrast, this paper presents a numerical method for an
efficient calculation of Coulomb coupling elements in real
space, which is not restricted to specific symmetry properties
of the permittivity or the whole system. The method naturally
includes the screening introduced through a spatially depen-
dent permittivity. We reduce the computational complexity
by decreasing the dimension of the spatial integrals, required
for the calculation of Coulomb coupling elements. This is
achieved by using a Green’s function formulation of the
Coulomb potential [32,33]. We identify a generalized scalar
potential as a solution of the generalized Poisson equation with
a generalized charge density as the inhomogeneity, determined
by the complex electron wave functions.

Since solvers and libraries such as PETSc [34] for an
efficient numerical computation of partial differential equa-
tions [35,36] are available, a calculation of the Coulomb
potential based on the solution of a differential equation is
feasible with a straightforward implementation. Furthermore,
solving a modified Poisson equation offers the possibility
of including screening effects as well as the influence of a
spatially dependent dielectric function ε(r) [15]. In this way,
induced surface charge effects, which can result in energetic
shifts [32] (e.g., for the band gap and exciton resonances), can
be included by solving the Poisson differential equation with
appropriate boundary conditions [15].

The Poisson Green’s function (PGF) method, presented in
this paper, is very general and allows an efficient calculation
of Coulomb coupling elements without being restricted to
a specific analytic expression of the Green’s function or to
particular system symmetries. We achieve a similar reduction
in the numerical complexity as in a calculation of the Coulomb
potential in Fourier domain using form factors, but without
the restriction to the Coulomb potential in free space with a
spatially homogenous dielectric constant εr .

Similar methods are already known and used by differ-
ent authors in other contexts such as ab initio treatments
and electronic structure calculations. In Ref. [33], a Green’s

function representation of the solution of a Poisson equation
was introduced to calculate the screening of the classical
interaction of electrons of a quantum dot with gate electrodes.
Therefore, the Green’s function is explicitly determined and
the screened electrostatic energy in a dielectric material is
calculated. In Refs. [12,37,38], the Coulomb potential is
obtained from solving a Poisson equation to calculate the
Coulomb energy in the context of electronic structure cal-
culations. Especially for including the influence of a spatially
inhomogeneous medium, a generalized Poisson equation can
be introduced, as is done in Refs. [32,39]. Additionally, a
Poisson equation can be used to reach a linear scaling of the
Coulomb problem with the system size [40]. Furthermore,
other methods exist, which include a Poisson equation to
calculate many Coulomb coupling elements. For example, in
Ref. [41], a method was introduced, based on the expansion of
the charge density in a specific set of functions, to reduce the
number of integrals required for the calculation of Coulomb
interactions in the context of a density functional theory.
Nevertheless, as far as we are aware, the method based on
the Green’s function formulation of a solution of a Poisson
equation without the restriction to certain symmetries or an
explicit Green’s function and the wide range of applications
is not yet discussed in the literature devoted to the quantum
dot community. Therefore, in this paper, we present the
PGF method for increasing the numerical efficiency in real
space without being restricted to specific symmetries, e.g.,
of the quantum dot confinement potential or the electron wave
functions, and without determining an explicit analytic Green’s
function.

To demonstrate the wide range of applications of the
Poisson Green’s function method, we present results of the
Coulomb coupling for two QD systems (cf. Fig. 1), including
the formation of excitonic states [22,42,43]. The first example
model consists of two Coulomb coupled colloidal QDs and
includes the monopole-monopole interaction as well as the
Förster induced dipole-dipole coupling [22] [cf. Fig. 1(i)]. For
demonstrating the feasibility of the approach, we calculate the
Coulomb contributions connected to the monopole-monopole
and dipole-dipole coupling without explicitly specifying the
Green’s function of the problem. Additionally, for self-
organized QDs embedded in a host material, we calculate
the Coulomb coupling for bound electron and hole QD states

FIG. 1. Model schemes: (i) the Förster induced dipole-dipole
Coulomb coupling between two QDs and (ii) the monopolelike
coupling between a QD and many continuum states of the surrounding
material.
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coupled to many continuum states [29] [cf. Fig. 1(ii)]. Here
we show that a drastic reduction of computational costs is also
possible with the presented method, if typical symmetries,
such as radial symmetry of the QD confinement potential, are
included.

The paper is organized as follows. First, in Sec. II, the
Coulomb Hamiltonian is derived using the Coulomb gauge
representation of the scalar potential to understand the origin
of Coulomb coupling. In Sec. III, the PGF method based on
the solution of a generalized Poisson equation is presented
for fast numerical calculations of the Coulomb coupling. To
demonstrate the strength of the formalism for calculating many
coupling elements, we present as example two applications of
the method in real space: the position dependent inter-QD
coupling between two QDs in Sec. IV and the coupling of a
bound QD state to many continuum states in Sec. V.

II. COULOMB HAMILTONIAN

In this section, the Hamiltonian of the Coulomb interaction
is derived for a spatially inhomogeneous medium [44].
Therefore, the Coulomb coupling elements are formulated
using a Green’s function representation of a Poisson equation
as usual. The PGF method, presented in Sec. III, will include
a Green’s function formulation in an analogous way.

The inhomogeneous Maxwell equations describe electro-
magnetic fields, including free charges ρ and currents j as
source terms [45]. To solve the Maxwell equations in material,
we use the vector potential A in a generalized Coulomb gauge
[45,46]: ∇r · (ε(r)A(r)) = 0.

Following the approach of Ref. [32], in semiclassical de-
scription, the longitudinal part of the dielectric displacement is
defined as DL(r) = −ε0ε(r)∇r�(r) with the scalar potential
�. Therefore, the Coulomb field energy is given by

HC = 1

2

∫
d3r

DL(r) · DL(r)

ε0ε(r)
. (1)

Inserting the definition of the longitudinal dielectric displace-
ment DL in Eq. (1), the scalar potential � appears:

HC = −1

2

∫
d3r ∇r�(r) · DL(r). (2)

After an integration by parts, the Maxwell equation ∇r ·
DL(r) = ρ(r) is used to include the free charge density ρ:

HC = 1

2

∫
d3r �(r)ρ(r). (3)

In the Coulomb gauge, the scalar potential � satisfies the Pois-
son equation and the influence of a spatially inhomogeneous
medium is represented by a dielectric function ε(r) [32,47]:

∇r · (ε(r)∇r�(r)) = −ρ(r)

ε0
. (4)

To express the solution of Eq. (4) for a spatially inhomoge-
neous medium, as is done in Ref. [32], a generalized Coulomb
Green’s function G(r,r ′) is defined through

∇r · (ε(r)∇rG(r,r ′)) = − 1

ε0
δ(r − r ′). (5)

Using the definition of the Green’s function in Eq. (5), the
scalar potential � as solution of the Poisson Eq. (4) is

�(r) =
∫

d3r ′G(r,r ′)ρ(r ′). (6)

The scalar potential in the Hamiltonian in Eq. (3) is replaced
using Eq. (6) and the two-particle Coulomb Hamiltonian is
obtained:

HC = 1

2

∫
d3r

∫
d3r ′ρ(r)G(r,r ′)ρ(r ′). (7)

In second quantization, the charge density is given by the
electron field operators expanded into electronic eigenstates.
Thus the Coulomb Hamiltonian is

HC = 1

2

∑
1234

V1234a
†
1a

†
2a3a4, (8)

with 1, 2, 3, and 4 as multi-indices representing all quantum
numbers states (e.g., band index, QD number, spin configura-
tion) and a

†
i (ai ) denoting the creation (annihilation) operators

for electrons of the state i. The Coulomb coupling elements
V1234 of a generalized Coulomb interaction potential G(r,r ′)
read [16,48]

V1234 = e2
∫

d3r

∫
d3r ′φ∗

1 (r)φ∗
2 (r ′)G(r,r ′)φ3 (r ′)φ4 (r), (9)

where φi(r) is the electron wave function of the state i.
In general, Eq. (9) requires a numerical solution. The six
dimensional space integral needs to be evaluated for calcu-
lating the two-particle Coulomb interaction. Accordingly, the
calculation of the Coulomb coupling elements is numerically
demanding, compared to three dimensional integrals, and
constitutes a significant limitation factor in the solution of
complex problems.

Particularly, with regard to the computation of many
Coulomb coupling elements, a method for fast numerical
calculations is necessary. This paper gives a general numerical
procedure to reduce the computational cost of the calculation
of the related coupling elements in Eq. (9).

III. METHOD

Similar to the derivation of the Hamiltonian in Sec. II,
the numerical efficient PGF method for a fast calculation
of Coulomb coupling elements, presented in this section, is
based on a Green’s function representation of the solution of
a generalized Poisson equation [33] [analogous to Eq. (4)].
The method, schematically illustrated in Fig. 2, reduces the
high computational complexity of Eq. (9) by introducing a
generalized scalar potential �23(r), which includes the Green’s
function. This approach separates the number of integrals from
a six dimensional integral in Eq. (9) to two separate three
dimensional integrals:

V1234 = e

∫
d3r φ∗

1 (r)�23(r)φ4 (r). (10)

Thus, to reproduce the Coulomb coupling element formula of
Eq. (9), the scalar potential �23(r) is given by

�23(r) = e

∫
d3r ′φ∗

2 (r ′)G(r,r ′)φ3 (r ′). (11)
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FIG. 2. PGF method for increasing the efficiency in numerical
calculations of Coulomb coupling elements. (i) Typically, the cal-
culation of (a) the Coulomb interaction includes a six dimensional
integral. Using (b) the Green’s function formalism, (c) a generalized
Poisson equation is formulated to calculate (d) the scalar potential.
Therefore, (e) the number of integrals is reduced. (ii) In the case of
radial symmetry, (c) the radial part of the Laplace operator in spherical
coordinates is used to calculate (d) the radial scalar potential and
(e) a one dimensional integral is evaluated for calculating Coulomb
elements.

The Green’s function in Eq. (11) [Fig. 2(b)], which includes
properties of the geometry [33], is determined by Eq. (5)
in a dielectric medium with a spatially dependent dielectric
function ε(r) [15]. Following the derivation of the Hamiltonian
in Sec. II, the generalized scalar potential, given by Eq. (11),
can be identified as a Green’s function representation of the
solution of a generalized Poisson equation [33], analogous to
Eq. (6):

�23(r) =
∫

d3r ′G(r,r ′)�23(r ′). (12)

Therefore, the generalized charge density �23(r), described by
the corresponding electron wave functions [12], is introduced
as �23(r) = eφ∗

2 (r)φ3(r). Note that the electron wave functions
may be complex. Thus the charge density �23(r) and the scalar
potential �23(r) may be complex as well and, therefore, they
are not directly measurable but mathematical quantities, solely
intended for the calculation of Coulomb coupling elements.

Accordingly, for applications in materials with spatially
varying permittivities, a generalized Poisson equation deter-
mines the generalized scalar potential �23(r) of the Coulomb
interaction [4,39], analogous to Eq. (4), with a potentially
complex charge density as the inhomogeneity; cf. Fig. 2(c)(i):

∇r · (ε(r)∇r�23(r)) = −�23(r)

ε0
. (13)

For example, if the dielectric constant of the system differs
from that of the surrounding medium (e.g., a QD in a solvent),
surface charge effects may be considered [21,43]. The PGF
method offers the possibility of including such effects as
appropriate geometries in ε(r) or as boundary conditions for
�23(r) [49] by solving the generalized Poisson Eq. (13).

To solve such a differential equation, e.g., finite-difference
methods [39] or finite elements methods [50,51] can be used.
Nowadays, solvers are very fast and highly optimized [35,36],
so that together with an integration of Eq. (10) a fast calculation
and implementation of the Coulomb coupling is accomplished.

In Refs. [32,33], the Green’s function representation of a
generalized Poisson equation is used to calculate the Coulomb
interaction for applications in material by determining the
Green’s function explicitly. The numerical calculation of
�23(r) is applicable to a larger variety of systems than the
derivation of a specialized analytic expressions. Therefore,
we propose to solve the Poisson equation directly, without
specifying the Green’s function explicitly. Nevertheless, this
reduces the numerical complexity of the six dimensional
integral in Eq. (9) [cf. Fig. 2(i)].

The numerical effort for evaluating the integrals of the two-
particle Coulomb interaction in Eq. (9) scales asO(N6), where
N is the number of grid points in one dimension assuming a
cubic grid used to discretize the problem. In the PGF method,
the three dimensional integral in Eq. (10), which scales
with the system size O(N3), needs to be evaluated during
the calculation of Coulomb coupling elements. Additionally,
the generalized scalar potential �23(r), used to separate the
integral expression in Eq. (9), is determined by the numerical
solution of the Poisson Eq. (13). Due to the development of
efficient solvers for differential equations, a linear scaling with
the system size in three dimensions O(N3) can be obtained
[36,40,52], e.g., by using multigrid methods [53], which are
also included in libraries such as PETSc [34].

A transformation into the Fourier space can be used to
efficiently calculate the Coulomb coupling by separating the
integrals of the two-particle Coulomb interaction in Fourier
domain. For a spatially homogenous medium, the Coulomb
coupling elements in Fourier domain are given as product of
electron wave functions and the Coulomb potential. Therefore,
the formalism of the Fourier transformation includes the evalu-
ation of a three dimensional integral in Fourier space scaling as
O(N3) for the reciprocal grid. In addition, three dimensional
Fourier transformations of the electron wave functions are
needed to determine form factors [5,6]. Therefore, a fast
Fourier transform [54] is used, which scales as O(N3 log N )
[36,53,55]. In contrast to the transformation into the Fourier
space, the presented PGF method is not restricted to the case
of a homogeneous dielectric medium εr in free space [44] and,
therefore, effects caused by a spatially dependent dielectric
medium can be included. Furthermore, using the PGF method,
singularities in the Green’s function are avoided, which often
increase the numerical costs.

If certain symmetries are available, e.g., for spherical sym-
metric systems [12,13], the scalar potential �23(r) is calculated
using Eq. (13) adapted to the symmetry, as illustrated in
Fig. 2(ii) for the application of radial symmetry. This allows
the symmetries, for example of radially symmetric systems, to
be exploited with the presented PGF method.

Often, modifications of the Coulomb potential due to
screening are necessary [31,56,57]. In the case of a homo-
geneous medium, the dielectric function εr is constant and,
therefore, the left hand side of the Poisson Eq. (13) is given
by the Laplace operator 	r operating on the scalar potential
�23(r). Screening in the Yukawa form for homogeneous
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media may be included into the formula of the PGF method
by introducing a constant screening factor α in the Poisson
Eq. (13) with a constant dielectric function εr :

(	r − α2)�23(r) = −�23(r)

εrε0
. (14)

Therefore, the definition of the Green’s function in Eq. (5) for
an isotropic medium is adapted for screening by including the
screening constant α:

(	r − α2)Gα(r,r ′) = − 1

εrε0
δ(r − r ′). (15)

Then, the PGF method can be applied straightforwardly using
Eq. (10) and Eq. (12) to calculate screened Coulomb coupling
elements in real space. The Yukawa potential Gα(r,r ′) =
e−α|r−r ′|/(4πε0εr |r − r ′|) with its Fourier transform Gα(q) =
1/(ε0εr (q2 + α2)), which is typically used to account for
screening in semiconductors with a homogeneous medium
[58] [cf. Eq. (15)], represents the Green’s function.

In the following, we present a general approach for
intersystem couplings in Sec. IV and an application for the
radially symmetric case in Sec. V to demonstrate different
applications of the presented PGF method in real space.

IV. INTER-QD COULOMB COUPLING

The PGF method for an efficient numerical calculation of
Coulomb coupling elements [cf. Fig. 2(i)] does not rely on
specific symmetries of the system. To demonstrate the wide
range of applications for the PGF method, we calculate the
Coulomb coupling between two colloidal QDs [Fig. 1(i)] and
identify terms describing the monopole-monopole interaction
as well as the dipole-dipole coupling between the two QDs, a
very common approach [5,59], but without using an explicit
analytic form of the Green’s function.

Carriers in semiconductor QDs are confined in all spatial
dimensions and show discrete energy states [59,60]. The
electronic properties as well as the optical spectra of Coulomb
coupled QDs are influenced by the Coulomb interaction
[17,30]. Even if the wave functions of the QDs do not overlap,
the Coulomb coupling between the QDs may have a significant
impact. The Coulomb interaction between two QDs with
nonoverlapping wave functions contains direct electrostatic
monopole coupling between the electrons and the holes of
the two QDs [29], as well as dipole-dipole coupling like the
nonradiative Förster energy transfer [22,61] [cf. Fig. 1(i)],
which induces exciton energy shifts [23,62] and excitation
transfer between the QDs [63,64].

The Coulomb coupling of the QDs depends on the distance
between the QDs and, in the case of Förster coupling, on the
relative orientation of the interband transition dipole moments
(cf. Fig. 3), which has a specific impact, e.g., on colloidal QDs
in a solvent. The standard simplified form of the dipole-dipole
coupling between two pointlike emitters in a homogenous
medium reads [63,65]

V F
s = 1

4πε0εr

(
d1 · d2

|R|3 − 3
(d1 · R)(d2 · R)

|R|5
)

, (16)

with R = r1 − r2 denoting the emitter’s distance and di

the dipole moment of the emitter i. Therefore, if different

FIG. 3. Förster dipole-dipole coupling between two QDs as
function of (i) the distance between the QDs and (ii) their orientation
to each other. The interdot Coulomb coupling elements decay with
increasing distance. The spin selective Förster coupling elements
depend on the relative orientation of the QDs to each other. Therefore,
many Coulomb coupling elements need to be calculated, if the spatial
arrangement of the QDs is varying.

arrangements of the QDs are included, various coupling ele-
ments need to be calculated for all contributing configurations.
However, since the distance between the QDs can be very
small, we have to go beyond the point-dipole form of Eq. (16),
as is done in Refs. [6,30,59].

If a spatially dependent dielectric function ε(r) is included,
e.g., for colloidal quantum dots in a solvent, a separation of the
integrals in the Fourier domain cannot be applied straightfor-
wardly. Therefore, the calculation of the two-particle Coulomb
interaction, without assuming a specific symmetry, requires
the evaluation of a six dimensional integral scaling as O(N6).
For reducing the numerical effort to O(N3), the PGF method
(Sec. III) can be used. While typically other approaches rely on
specific properties of the system, such as a piecewise constant
dielectric function [32], the PGF method can be used for an
arbitrary Green’s function.

To retrieve the monopole-monopole, monopole-dipole, and
dipole-dipole contributions for couplings between separated
nanostructures such as QDs, a Taylor series of the Coulomb
interaction is carried out, with respect to the unit cells using the
usual scale separation [63]. For our example, the electron wave
functions are given in the envelope approximation as product
of an envelope function ξ (r) and a lattice periodic Bloch part
u(r) [6,13]: φi(r) = ξi(r)ui(r). After a scale separation of the
spatial operators [6] into the position of the nth unit cell Rn

and the variation inside the cell sn, the Green’s function is
expanded in both spatial arguments in a Taylor series:

G(Rn + sn,Rn′ + sn′ )
∣∣∣

s̃n=0
s̃
n′ =0

= G(Rn,Rn′) + · · ·

+ [sn · ∇s̃n
G(Rn + s̃n,Rn′ + s̃n′

�

) ∇s̃n′ · sn′] s̃n=0
s̃
n′ =0

+ · · · . (17)

While the zeroth order of the Taylor expanded Green’s function
[first term in Eq. (17)] represents the monopole-monopole
interaction, the term of first order in both arguments, sn

and sn′ , constitutes the dipole-dipole coupling [second term
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in Eq. (17)] such as the dipole induced Förster coupling
transfer. For the example, mixed terms of the monopole-dipole
interaction are not included in Eq. (17), since for quantum
dynamical calculations the terms will often be neglected in
a rotating wave approximation [30], but can be included if
necessary (e.g., for carrier multiplication). Terms of higher
order in the Taylor expansion [63] are discarded here, but they
can be included in principle in a similar way. We see, using
the Green’s function formalism, the monopole-monopole as
well as the dipole-dipole contributions can be identified
without specifying a closed analytic expression for the Green’s
function [cf. Fig. 2(b)].

We start our analysis with the monopole-monopole
Coulomb interaction between the two QDs, represented by
the first term of Eq. (17). We assume, that the Green’s function
G(r,r ′) does not change significantly on the scale of the
unit cell. Therefore, by using the normalization condition
of the Bloch wave functions over a unit cell volume [30],

1
VUC

∫
UC d3snu

∗
i (sn)uj (sn) = δλ

ij δ
σ
ij , the Coulomb elements of

the monopole-monopole interaction V m
1234 read

V m
1234 = e2

∫
d3r

∫
d3r ′ξ ∗

1 (r)ξ ∗
2 (r ′)G(r,r ′)

×ξ3 (r ′)ξ4 (r)δλ
14δ

σ
14δ

λ
23δ

σ
23. (18)

The Kronecker δ’s ensure the selection rules of band index λ

and spin σ with respect to the QD indices.
For applications of the PGF method presented in Sec. III,

Poisson equations for the different orders in the Taylor
expansion Eq. (17) need to be formulated; cf. Fig. 2(c)(i).
The Poisson equation for the scalar potential of the monopole-
monopole coupling �m

23(r) is

∇r · (
ε(r)∇r�

m
23(r)

) = − e
ξ ∗

2 (r)ξ3 (r)

ε0
. (19)

Note that �m
23(r) depends on the multi-indices 2 and 3 of the

QD states and Eq. (19) is solved by the same Green’s function
G(r,r ′) as Eq. (13). In the case of monopole-monopole
Coulomb coupling, the scalar potential �m

23 is determined
by a product of the QD’s envelope functions ξ2 and ξ3.
Following the approach of the PGF method (Sec. III), the
numerical solution of the Poisson Eq. (19) [cf. Fig. 2(d)(i)] is
used to calculate the monopole-monopole Coulomb coupling
elements:

V m
1234 =e

∫
d3r ξ ∗

1 (r)�m
23(r)ξ4 (r)δλ

14δ
σ
14δ

λ
23δ

σ
23. (20)

Note that singularities of the Green’s function are avoided,
which are often difficult to treat numerically.

The dipole-dipole Coulomb coupling between two QDs
(in principle the Förster induced excitation energy transfer) is
described by the second term of the Taylor expanded Green’s
function in Eq. (17). To follow the PGF method, depicted
in Fig. 2(i), a Poisson equation for the scalar potential of
the dipole interaction �d

23 has to be identified, which is not
as simple as in the monopole-monopole case. Therefore,
an integration by parts is used, under the assumption of a
vanishing boundary integral. The resulting Coulomb elements

of the dipole-dipole interaction are

V d
1234 =

∫
d3r

∫
d3r ′∇r · (

ξ ∗
1 (r)d14ξ4 (r)

)

×G(r,r ′)∇r ′ · (
ξ ∗

2 (r ′)d23ξ3 (r ′)
)
δσ

14δ
σ
23, (21)

including the microscopic interband transition dipole moments
dij given by the Bloch functions of the unit cells as [56,63]

dij = 1

VUC

∫
UC

d3snu
∗
i (sn)snuj (sn). (22)

Note that the interband transition elements dij , which appear
during the usual scale separation, depend on the spin con-
figurations [66] of the QD states i and j . The generalized
scalar potential �d

23(r) of the Coulomb dipole interaction of
a QD is determined by the generalized Poisson equation [cf.
Fig. 2(c)(i)]:

∇r · (
ε(r)∇r�

d
23(r)

) =∇r · (ξ ∗
2 (r)d23ξ3 (r))

ε0
, (23)

induced by the dipole distribution, which includes the QD’s
envelope functions ξ2 and ξ3 and the microscopic interband
transition dipole moment d23. Therefore, the scalar potential
�d

23(r) has a different unit than the scalar potential of the
monopole-monopole coupling �m

23(r) in Eq. (19). Using the
PGF method, the generalized scalar potential �d

23 is obtained
numerically from the Poisson Eq. (23) [cf. Fig. 2(d)(i)] and,
therefore, the Coulomb coupling elements of the dipole-dipole
interaction V d

1234 can be written as

V d
1234 =

∫
d3r

(∇r · (ξ ∗
1 (r)d14ξ4 (r))�d

23(r)δσ
14δ

σ
23

)
. (24)

Equation (23) and Eq. (24) together describe the influence
of the dipole distribution on Coulomb coupled QDs in a
specific spatial arrangement. Hence, as Fig. 3 illustrates, the
Coulomb coupling elements of the dipole-dipole interaction
are not only a function of the distance between the QDs [63]
but also on their spatial dipole orientation [30].

The PGF method allowed us to calculate the monopole-
monopole and dipole-dipole parts separately. For both con-
tributions, the generalized scalar potential is calculated for a
specific generalized Poisson equation. We showed that, based
on the Taylor expansion of the Green’s function, the Coulomb
coupling elements of the monopole-monopole as well as the
dipole-dipole contribution of the Coulomb interaction can
be calculated numerically efficiently without being restricted
to specific symmetries or permittivities by using an adapted
Poisson equation.

V. COUPLING TO CONTINUUM STATES

We demonstrate, that the PGF method can also be applied
with great benefit, if specific symmetries are considered, which
simplify the Coulomb coupling elements calculation [depicted
in Fig. 2(ii)]. Therefore, we will present the rotationally
symmetric Coulomb coupling between bound quantum dot
states and many continuum states in a spatially homogenous
medium with a constant dielectric function εr .

In a variety of many-body systems, a finite number of
localized discrete energy states is coupled via Coulomb
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interaction to a continuum of states from an embedding system.
As an important example we investigate the Coulomb coupling
V cvvc

kjj k′ between a hole in a bound QD valence band of state
v,j , which is localized inside the QD, and an electron in
a free continuum state k of the conduction band c (e.g., of
an embedding carrier reservoir) [67]; cf. Fig. 1(ii). Other
examples, which can be calculated in a similar way, are
impurities in a bulk medium or other nanostructures such
as quantum wells [68] and wires [69], as well as molecular
systems [24,70].

The unbound continuum states in a bulk semiconductor
are characterized by a three dimensional wave vector k and
a band index λ. The calculation of the Coulomb interaction
between a bound state in a QD and many continuum states in
the embedding material [29] requires the calculation of a large
number of coupling elements. Typically, in pure bulk materials,
electron wave functions are expanded in plane waves. Since
the presence of the QD confinement potential modifies
the continuum wave functions, a description beyond the plane
wave approximation may be necessary [27,31]. Therefore, the
PGF method, presented in Sec. III, can be used to efficiently
calculate Coulomb coupling elements for modified continuum
wave functions. To get a consistent set of wave functions
(bound QD wave functions as well as unbound continuum
wave functions), the radial Schrödinger differential equation
is solved using a finite element method (FEM) solver [67].
The radially symmetric QD confinement potential is assumed
to be of the form V (r) = V0/(cosh2 ( r

a
)), with height V0

and extension a. Due to the radial symmetry, the unbound
continuum states can be described by a one dimensional wave
vector k.

If the confinement potential is rotationally symmetric,
spherical coordinates can be used to simplify the calculation
of the Coulomb coupling. Therefore, the envelopes of the
electron wave functions are decomposed into a product of
radial parts Rl(r) and a spherical harmonic Y l

m(ϑ,ϕ), with l

denoting the angular momentum number and m the magnetic
quantum number: ξ (r) = Rl(r)Y l

m(ϑ,ϕ).
For a formulation of the PGF method in spherical coor-

dinates, the Green’s function is separated into a radial part
gl(r,r ′) [71] and spherical harmonics [13,22]:

G(r,r ′) =
∑
lm

1

ε0εr

Y l∗
m (ϑ,ϕ)Y l

m(ϑ ′,ϕ′)gl(r,r ′). (25)

To specify the calculation to the Coulomb coupling between
the QD ground state and unbound states of the continuum, the
charge density is determined by the QD ground state wave
function. Since the angular momentum of the bound ground
state in the QD is l = 0, the charge density reads �0

23(r) =
e

4π
R0∗

2 (r)R0
3(r). To follow the approach of the PGF method, in

case of a radially symmetric confinement potential, the Green’s
function, given by Eq. (25), and the charge density are used
to express the scalar potential �23(r) in spherical coordinates
[cf. Eq. (12), Fig. 2(ii)]. Evaluating the spherical contributions
of Eq. (25), the radial scalar potential is formally given by

�0
23(r) = e

4πε0εr

∫
dr ′r ′2R0∗

2 (r ′)g0(r,r ′)R0
3(r ′). (26)

FIG. 4. Bound-to-continuum Coulomb coupling V cvvc
kjjk′ of a hole

in the QD valence band state j and an electron in the continuum
conduction band states k. The Coulomb coupling starts at the
energy of the energetic lowest continuum state. To reach numerical
convergence, a high number of Coulomb coupling elements need to
be calculated, since they couple to many continuum states of the
embedding carrier reservoir.

Note that Eq. (26) represents the equivalent to Eq. (12) for
the radially symmetric case. Thus, analogous to the Poisson
Eq. (13) [cf. Fig. 2(c)] for a spatially homogenous medium
εr , the Laplace operator 	r in spherical coordinates with
momentum l = 0 appears and the Poisson equation for the
radially symmetric problem reads

(
∂2

∂r2
+ 2

r

∂

∂r

)
�0

23(r) = −e
R0∗

2 (r)R0
3(r)

4πε0εr

. (27)

In the approach of the PGF method, the radial part of the
scalar potential �0

23(r), which is obtained by a numerical
solution of Eq. (27) [cf. Fig. 2(d)(ii)], is used to calculate the
Coulomb coupling elements for a radially symmetric problem,
analogous to Eq. (20):

V1234 =e

∫
dr r2Rl∗

1 (r)�0
23(r)Rl

4(r)δλ
14δ

σ
14δ

λ
23δ

σ
23δ

l
14δ

m
14. (28)

Note that the angular part of the electron wave functions for
the Coulomb coupling elements in Eq. (28) is determined
by spherical harmonics [cf. Eq. (25)] and, therefore, it is
calculated analytically.

In the case of a radially symmetric confinement potential,
the computational requirements for calculating Coulomb cou-
pling elements are significantly reduced, since Eq. (28) only
requires the evaluation of a one dimensional spatial integral
[cf. Fig. 2(e)(ii)]. The resulting Coulomb coupling elements
V cvvc

kjjk′ , depicted in Fig. 4, are relevant for the formation of
bound-to-continuum excitons [29].

We show in Fig. 1(ii) the Coulomb coupling between the
QD ground state and the continuum states starting at the energy
of the lowest continuum state. The most relevant contribution is
on the diagonal k = k′; cf. Fig. 4. Since the continuum states
are only occupied near the energy minimum of continuum
levels and the coupling to the QD’s resonances decreases, the
number of continuum states in numerical calculations is finite
[27]. However, to reach numerical convergence, a high number
of coupling elements needs to be calculated [29].
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We used the PGF method for an efficient numerical cal-
culation of bound-to-continuum Coulomb coupling elements.
Moreover, we have shown that the PGF method can also
exploit symmetries to further reduce the computational cost
for calculating Coulomb coupling elements.

VI. CONCLUSION

We presented a numerical method, based on a Green’s
function representation of the solution of a generalized Poisson
equation, to calculate Coulomb coupling elements efficiently
by decreasing the number of integrals in the two-particle
Coulomb interaction. The Poisson Green’s function method
can be applied to a broad range of applications, since the
method is not restricted to specific symmetries of the potential
or the wave functions. Furthermore, a spatially inhomogeneous
dielectric function can be included by using the solution of a
generalized Poisson equation. Thus the influence of a medium
and, e.g., surface charge effects can be included.

We demonstrate the strength of the formalism, particularly
with regard to the calculation of a high number of Coulomb
coupling elements, by presenting two applications of the
method in real space: the spatially dependent interdot coupling

between two QDs and the coupling of a QD to many continuum
states. By expanding the Green’s function of two Coulomb
coupled QDs in a Taylor series, an identification of terms
connected to the monopole-monopole and the dipole-dipole
interaction is possible without using an explicit analytic form
of the Green’s function. Though the presented method does not
prevent the application of commonly used simplifications. In
the case of radial symmetry, the reduction of the computational
time can be huge, since only a one dimensional differential
equation needs to be solved and one spatial integral needs to be
evaluated. Accordingly, the Poisson Green’s function method
presents a general approach to increase the computational
efficiency in numerical calculations of Coulomb coupling
elements.

ACKNOWLEDGMENTS

We thank Andreas Knorr and T. Sverre Theuerholz
for insightful discussions. Financial support by Deutsche
Forschungsgemeinschaft (DFG) through the Research Train-
ing Group GRK 1558 (A.Z.) and through the SFB 787 (S.K.)
is gratefully acknowledged. M.R. also acknowledges support
through the SFB 951.
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Fält, and A. Imamoglu, Science 320, 772 (2008).
[43] V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel,

J. A. McGuire, and A. Piryatinski, Nature (London) 447, 441
(2007).

[44] M. Reichelt, B. Pasenow, T. Meier, T. Stroucken, and S. W.
Koch, Phys. Rev. B 71, 035346 (2005).

[45] W. Vogel, D.-G. Welsch, and S. Wallentowitz, Quantum Optics
An Introduction (WILEY-VCH, New York, 2001).

[46] M. Wubs, L. G. Suttorp, and A. Lagendijk, Phys. Rev. A 68,
013822 (2003).

[47] A. Tip, Phys. Rev. A 56, 5022 (1997).
[48] A. J. Williamson, L. W. Wang, and A. Zunger, Phys. Rev. B 62,

12963 (2000).
[49] M. I. Stockman, D. J. Bergman, and T. Kobayashi, Phys. Rev. B

69, 054202 (2004).
[50] S. R. White, J. W. Wilkins, and M. P. Teter, Phys. Rev. B 39,

5819 (1989).
[51] E. Antillon, B. Wehefritz-Kaufmann, and S. Kais, Phys. Rev. E

85, 036706 (2012).
[52] Y. Nishimura, Z. Lin, J. Lewandowski, and S. Ethier, J. Comput.

Phys. 214, 657 (2006).
[53] E. L. Briggs, D. J. Sullivan, and J. Bernholc, Phys. Rev. B 54,

14362 (1996).
[54] O. Ayala and L.-P. Wang, Parallel Comput. 39, 58 (2012).
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