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Signature of a topological phase transition in the Josephson supercurrent
through a topological insulator
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Topological insulators (TIs) hold great promise for topological quantum computation in solid-state systems.
Recently, several groups reported experimental data suggesting that signatures of Majorana modes have been
observed in topological insulator Josephson junctions (TIJJs). A prerequisite for the exploration of Majorana
physics is to obtain a good understanding of the properties of low-energy Andreev bound states (ABSs) in a
material with a topologically nontrivial band structure. Here, we present experimental data and a theoretical
analysis demonstrating that the band-structure inversion close to the surface of a TI has observable consequences
for supercurrent transport in TIJJs prepared on surface-doped Bi2Se3 thin films. Electrostatic carrier depletion of
the film surface leads to an abrupt drop in the critical current of such devices. The effect can be understood as a
relocation of low-energy ABSs from a region deeper in the bulk of the material to the more strongly disordered
surface, which is driven by the topology of the effective band structure in the presence of surface dopants.
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I. INTRODUCTION

In small-gap semiconductors, strong spin-orbit interactions
may cause an inversion between valence and conduction
bands. This generates a new class of insulators, which are
called topological insulators (TIs) due to their nontrivial
band topology [1–3]. One intriguing feature of these systems
is the emergence of gapless, spin-momentum-locked states
(a helical metal) on the interface with ordinary insulators,
i.e., regions with topologically trivial band structure, or the
surfaces of the material. There has been growing interest
in the properties of ordered phases of these helical states.
Although, in two spatial dimensions, fluctuations prohibit
spontaneous symmetry breaking [4], new phases are induced
by the proximity effect when magnetic or superconducting
materials are brought into contact with TIs. By coupling
TIs and conventional superconductors (SCs), helical surface
states with superconducting pair correlations emerge, which
is of particular interest in the present context. It was argued
that in-gap vortex states [5] and Andreev bound states in
π -Josephson junctions between conventional superconductors
that are coupled by TI surface states may be realizations of
zero-energy Majorana modes [6], a fermionic mode that is its
own antiparticle [7]. Early models considered an idealized
scenario in which helical states existed only on a single,
isolated surface of the TI, decoupled from the perfectly
insulating bulk. As most of the discovered TI materials were
not true insulators in the bulk, it seemed difficult to implement
the concept in experiments. Later it was shown theoretically
that topologically protected zero-energy modes exist also on
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the surface of doped, superconducting TIs up to a critical
level of doping. At this doping level, a topological phase
transition occurs in the superconducting TI [8–11]. Several
groups demonstrated supercurrent transport in SC-TI-SC
hybrid structures [12–17] as well as the ability to control the
chemical potential and the magnitude of supercurrent in a TI by
electrostatic gating [14,18]. Furthermore, it was argued [12,18]
that the majority of the supercurrent is carried by a set of
low-energy Andreev bound states located on the surface of the
TI. While implicitly assumed, the role of Andreev bound states
(ABSs) as boundary modes has not been studied in detail. In
the following, we present critical current measurements on top-
gated TIJJs for which a striking, nonmonotonous dependence
on gate voltage is revealed. At the same time, the increase in
normal-state resistance is gradual and featureless as carriers
are depleted from the surface region of the material. Below,
we will argue that this unusual behavior can be understood by
recognizing that in high-quality Bi2Se3 thin films, the majority
of doped carriers come from Se vacancies and adsorbates on
the exposed surfaces. This leads to strong band-bending, and
it populates, locally, states above the band inversion point. The
band crossing happens deeper in the bulk. As we will show
later, the effective band mass enters the dispersion relation of
low-energy ABSs in TIJJs directly, thus supercurrent transport
becomes a sensitive probe of band topology in the presence
of an inhomogeneous dopant distribution (disorder). We may
therefore associate the observed abrupt drop in supercurrent
with a topological transition in the band structure of the surface
region.

II. EXPERIMENT

Recently, a new generation of high-quality bismuth-
selenide TI materials became available [19]. These epitaxially
grown thin films feature low levels of intrinsic doping in
the bulk. The Fermi level is close to the bottom of the
conduction band. Regions with higher levels of extrinsic
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n-type doping form close to the top surface where the
material becomes selenium-deficient and adsorbs impurities
[20,21], and at the bottom interface due to substrate effects,
as becomes apparent when the film is transferred between
different types of substrates [22]. The accumulated charge
leads to band-bending, which can be large enough to create a
quantum-confined two-dimensional electron gas (2DEG) layer
extending a few quintuple layers (QL) into the TI. In transport
measurements on the as-grown films, it was found that the bulk
contribution to the electrical current is negligible compared to
that of the charge accumulation regions over a wide range
of sample thicknesses [19]. We incorporated this material
in our top-gated Josephson devices and found that we were
able to deplete the charge carriers in the accumulation region
significantly, thereby removing the band-bending and shifting
the top-surface Dirac point up to the bulk Fermi level and
beyond. This opens up an opportunity to study the interplay of
band-structure effects and Andreev bound states that form in
doped topological insulators.

Josephson junctions and Hall bar devices for magne-
totransport measurements were fabricated side-by-side on
high-quality Bi2Se3 thin films grown by molecular-beam
epitaxy on sapphire (Al2O3) (0001) substrates [19,23]. The
thickness of the films varied between 6 and 60 QL. To pattern
the structures, we used standard electron-beam lithography
techniques. The lengths of our planar Josephson junctions were
set by the separation between two sputtered Nb electrodes and
varied between 90 and 120 nm. The junction widths were
defined by dry-etching and ranged between 0.1 and 1 μm.
Top-gate electrodes were added by evaporating 70 nm of Au
on top of the 40-nm-thick dielectric layer of ALD-grown
alumina (Al2O3) or hafnia (HfO2). After structuring, the
transport properties of our Bi2Se3 material were characterized
in magnetotransport measurements at 1.7 K and milli-Kelvin
temperatures, respectively. Using the two-carrier transport
model, we find excellent quantitative agreement with the
results by Bansal et al. [19], e.g., the extracted carrier
density and mobility values from a fit to the data of our 15
QL sample are n1 = 4 × 1013 cm−2, μ1 = 700 cm2 V−1 s−1

and n2 = 4 × 1012 cm−2, μ2 = 1700 cm2 V−1 s−1. Similar
values were obtained for all Bi2Se3 film thicknesses. Weak
antilocalization was observed with an amplitude factor of
α � − 1

2 , indicating weak antilocalization on a single surface
or strong intersurface scattering [24]. The main focus of our
study is the dc Josephson effect in electrostatically gated
SC-TI-SC devices. The experiments were carried out in a
dilution refrigerator that was placed in a shielded room. All
electrical connections to the sample were heavily filtered.
In the following, we present data of a junction of 0.1 μm
length, 0.4 μm width, and a thickness of 15 QL, which are
representative for all 15 measured samples.

III. RESULTS

The current-voltage (I -V ) characteristics of a Nb-Bi2Se3-
Nb junction are shown in Fig. 1(a) for different sample
temperatures. Here, we define the critical current (IC) of the
device as the current at which a finite voltage drop develops
between the two superconducting electrodes. A maximum
Josephson supercurrent of Imax

C = 190 nA was measured at

FIG. 1. Josephson junction characteristics. (a) The current-
voltage characteristics of the Josephson junction at different temper-
atures. Inset: a schematic representation of the junction cross section.
(b) The dependence of the critical current on the perpendicular
magnetic field exhibits a Fraunhofer-like pattern.

temperature T = 45 mK. Other devices showed values of Imax
C

between 10 and 300 nA, scaling with the width of the junction.
The critical current density, Jc ∼ 3 × 103 A/cm2, is similar
to Bi2Se3 and Bi2Te3 Josephson junctions of comparable
dimensions found in the literature; cf. Table I in Ref. [17]. At
the lowest temperatures, the critical current becomes hysteretic
[i.e., in Fig. 1(a) the retrapping current, IR ≈ 80 nA, is smaller
than IC for the black, red, and blue datasets]. The hysteresis
characteristics are consistent with electron heating, which
develops after switching the junction into the resistive state
[25]. Recently, I -V hysteresis in SNS contacts under general
nonequilibrium conditions was described theoretically [26].
However, the estimated intrinsic capacitance of our devices as
defined in Ref. [26], C� ≈ 10−13 F, and the ordinary junction
capacitance, C � C�, are too small for the effect to contribute
significantly. In Fig. 1(b), a Fraunhofer-like diffraction pattern
is generated by applying a small magnetic field perpendicular
to the junction plane. Unusual features in the diffraction
patterns of SC-TI-SC were reported in Refs. [15,27,28].
Although we observed similar characteristics in some of our
devices, we did not carry out a detailed study.

Due to the formation of selenium vacancies and the accu-
mulation of adsorbates on the exposed surfaces of the Bi2Se3

thin-film samples immediately after growth and during the
fabrication process [20,21], our samples are electron-doped.
The excess n-carriers cause downward band-bending in the
charge accumulation region close to the top interface, placing
the surface chemical potential firmly in the (surface-projected)
bulk conduction band. By applying a negative voltage (VG)
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FIG. 2. Gate dependence of the Josephson critical current. (a) The
critical current as a function of the gate voltage measured at T = 50
mK. Inset: Dependence of the normal state resistance of the junction
on the gate voltage. (b) The variation of the product of the critical
current and normal state resistance (ICRN ) measured as a function of
gate voltage. The dashed lines emphasize two values of ICRN above
and below the transition region.

to the top-gate electrode [cf. the device schematics in the
inset of Fig. 1(a)], we depleted carriers from the TI surface
electrostatically. In Fig. 2, we plot the critical current and the
normal-state resistance of the device (inset) as a function of
gate voltage. Whereas the resistance increases slowly without
any prominent features down to VG ∼ −33 V, the critical cur-
rent initially stays constant and then drops abruptly. This rapid
change in IC takes place in a narrow region of gate voltages,
�VG < 1 V, which we call a transition region and mark it
by its center value, the critical gate voltage VC ≈ −12 V.
The transition region is trailed by a gradual and featureless
decrease of IC . This highly nonmonotonic behavior of IC(VG)
is reproducible. It was observed in multiple, consecutive gate
voltage scans for each individual Josephson junction, and it
was present in all measured devices (15 Josephson junctions).
The value of VC varied, accordingly, with the thickness and
dielectric constant of the gate dielectric (Al2O3 or HfO2). By
contrast, the abrupt changes in IC were never accompanied by
fast variations in the normal-state resistance in any of the tested
junctions. The normal state resistance of the devices, estimated
by a linear fit to the I -V characteristic in a 50 μV range above
the critical current, remained a smooth function of VG and
scaled with the sheet resistance of the material, which was
measured in the Hall bar devices. Thus, in Fig. 2(b), the product
of critical current and normal-state resistance, ICRN , which
reflects the characteristic energy of the Josephson coupling,
shows a distinct step at VG = VC .

IV. DISCUSSION

The prominent drop in the critical current is an usual
and compelling feature. In gate-controlled 2DEG Josephson
devices based on semiconductor heterostructures (Josephson
field-effect transistors or JoFETs), the critical current is a
function of carrier density, which decreases monotonously

with the depletion of carriers [29]. Additional structure in the
IC(VG) appears in regimes in which the device transmission
is modulated strongly, e.g., for mesoscopic conductance
fluctuations in the device [30], transmission resonances [31],
and conductance quantization effects [32,33]. The latter two
are particularly prominent in semiconductor wire devices
[34–36]. In all of the aforementioned cases, variations in
the critical current concur with modulations in the device
conductance, which are absent in our devices. Indeed, the
relation between device conductance and applied gate field
is more complicated in the case at hand. Several transport
channels may coexist within a distance of the charge screening
length, λS ∼ 10 nm, from the top interface of the TI.
This length scale depends on the intrinsic bulk doping of
the MBE-grown Bi2Se3 material, which was estimated to
be n3D � 5 × 1017 cm−3 for the as-grown films [19]. The
pristine films exhibit the same transport characteristics as
our patterned devices, i.e., the two-dimensional charge-carrier
density appears to be independent of the sample thickness.
Thus, we conclude that the overwhelming majority of charge
carriers originates from extrinsic dopants on the top and bottom
interfaces while the bulk carrier density remains low. For small
values of intrinsic doping and moderate surface doping, it
was shown that (several) quantum-confined 2DEG bands form
due to strong band-bending in the region where the surface
charge is screened [19,37–39]. However, it is unlikely that the
depopulation of a single 2DEG band causes a steep drop in
the critical current as the number of involved Andreev bound
states (ABSs) decreases ∼k2 with the magnitude of the wave
vector k toward the bottom of the band. Instead, we propose
that the abrupt change is driven by the topology of the band
itself. Below, we argue that a fraction of the supercurrent is
carried by ABSs that are located on the interface between the
topologically trivial region and the band-inverted section of
the TI (boundary ABSs). The vanishing of the effective band
mass at the interface allows such Andreev bands to have lower
energy than in the surrounding material. As we deplete the
surface charge carriers with the top-gate, we change the depth
of the surface potential well and move the position where the
chemical potential intersects with respect to the bottom of the
band. In real space, this pushes the topological boundary from
a location within the 2DEG region toward the more heavily
disordered surface of the TI. As a result, the magnitude of the
supercurrent drops sharply.

A. Andreev bound states on the topological boundary

To demonstrate the mechanism behind the topological
transition, we present a simplified model for Andreev bound
states in TIJJs based on the concepts laid out in Refs. [8–10].
Here, we assume that the majority of carriers are confined
within a thin layer close to the top interface of the sample.
Although the bulk and the bottom surface likely contribute
to conduction, the intrinsic bulk doping is low and the
electrochemical potential is close to the bottom of the bulk
conduction band, where the band structure is always inverted
[40]. Disregarding the exact shape of the dopant distribution
for the moment, let us assume a step-function-like potential
well extending a few nm—a distance comparable to the charge
screening length λS [19,41]—into the TI material. (The case
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FIG. 3. Schematic of the location of low-energy Andreev bound
states in a topological insulator Josephson junction. Panels (a) and
(b) show the location of topological Andreev bound states for the
surface chemical potentials indicated in panels (c) and (d). (The gate
insulator and electrodes are omitted for clarity.) The lower part of the
figure corresponds to the as-grown sample. The upper part shows the
band alignment below the critical surface chemical potential. Surface
and bulk chemical potentials are indicated in the left- and right-hand
band diagrams, respectively. The center panels are sketches of the
band-bending close to the TI surface. The shifts of the Dirac points
and bulk conduction-band minima are indicated.

of band-bending and the resulting triangular potential well is
discussed below.) We may then define two boundaries: L1 is
the physical interface between TI and the gate dielectric [or
vacuum, see Fig. 3(a)], and L2 is the boundary between the
bulk of the TI and the surface region [see Fig. 3(b)].

Starting from the low-energy effective Hamiltonian of
a doped TI with s-wave superconducting pair correlations,
we model the evolution of low-energy ABSs in the surface
region as carriers are added. The additional carriers lower the
electrostatic potential and raise the internal chemical potential
in this region. Unless stated otherwise, the term “chemical
potential” will refer to the internal chemical potential, and
the external chemical potential is given by the electrostatic
potential. The total chemical (or electrochemical) potential
is assumed to be constant in the ẑ direction throughout the
material. The model Hamiltonian for a doped TI reads

Heff = [vF (kxσx + kyσy + kzσz)τx + m(|k|)τz − μ]ηz

+�[cos(x)ηx + sin(x)ηy]. (1)

Here, ηi are Pauli matrices that act on superconducting
particle and hole states, and the representations τi and σi

are chosen for orbital and (physical) spin degrees of freedom
[8]. The Hamiltonian is translationally invariant along the ŷ

direction, which is in-plane and perpendicular to the current
flow in the junction [see Fig. 3(a)], and ky denotes the
wave vector along ŷ. The charge-carrier concentration is
determined by the chemical potential, μ, in the 2DEG region,
which controls the accessible Fermi momenta, kF , in the
band structure. These enter the equations in the form of the
momentum-dependent effective-mass term for the conduction
band, m(|k|). A simplified form of the effective-mass term,
which captures the essential features of the bulk band structure
of TIs, is m(|k|) = M − ε|k|2 with Mε > 0.

At lower doping levels (i.e., closer to the Dirac point where
k = |k| < M/ε), the effective mass in the surface region has
the same sign as in the bulk of the TI, which is given by
m(0) = M . The low-energy ABSs are localized at L1, the
physical surface of the TI. Further increasing the chemical
potential decreases the magnitude of the effective mass |m(k)|,
which vanishes when k = √

M/ε. Beyond this point, the
mass term reverses its sign with respect to the bulk mass M .
As derived in Appendix A, the energy difference between
2DEG ABSs and boundary ABSs at L1 is given approxi-
mately by

|�E| ∝ α
m(|kF |)2

m(|kF |)2 + v2
F |kF |2 , (2)

where α > 0 is of order of |�|2/μ, and vF denotes the Fermi
velocity. Hence, for m(|kf |) = 0, the energy of 2DEG ABSs
is equal to the surface bound-state energy. At this moment,
the band structure in the surface region becomes topologically
trivial, similar to that of an ordinary superconducting metal.
In our toy model, this opens a decay channel for the boundary
ABSs at L1, and their wave function delocalizes in the
entire surface region. The effect is driven purely by the
band topology. As we increase the chemical potential further,
we move the topological boundary to L2, i.e., the interface
between the bulk TI and the 2DEG region [see Fig. 3(b)]. Here,
a different set of boundary ABSs with low energy appears after
the topological transition.

B. Numerical calculations of ABSs and band-bending

The preceding analysis shows that the location of low-
energy ABSs moves with the topological phase boundary.
This is indeed a general feature of ABSs in doped topological
superconductors, and it does not depend on a particular shape
of the background potential. To illustrate the topological
aspect of low-energy ABSs, and to extend our discussion to
more realistic potential landscapes, we performed a series of
numerical calculations that map out the shape of the ABS
wave functions as we vary the background potential in the
computation cell. We used a simple four-band description
for strong topological insulators [8,10], and we considered
s-wave superconducting pairing at the mean-field level. The
band structure for our model is shown in Fig. 4(b) . For better
visibility, we chose a large value for the effective pairing
potential, � = 0.2. The energies of ABSs were obtained by
exact diagonalization on a lattice with 25 × 81 sites. We refer
the reader to Appendix B for further details.

In Fig. 4, we plot the modulus of the wave-function
amplitude close to the TI top surface against the chemical
potential on the surface as the number of carriers is increased.
For Fig. 4(a), we distributed the additional charges over the
whole 2DEG region with thickness δ to create a step in
the chemical potential (similar to the model in the previous
section). In the “bulk” part of the lattice, z > δ, the chemical
potential is kept close to the bottom of the conduction band,
μ = μB = 1.7, and in the surface region z < δ, μ = μS is
swept through the critical value, μC ≈ 1.9. For μS < μC ,
the ABS wave function is localized on the surface. When
the chemical potential reaches a value close to critical, the
wave function abruptly delocalizes and spreads out over the
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FIG. 4. Numerical calculations of the Andreev bound-state wave function (ABS WF): The in-plane averaged modulus |�av|2 of the
lowest-energy ABS WF is plotted against the surface chemical potential for a step-function potential well (a). The WF delocalizes in the
entire region with critical chemical potential μ = 1.9 as the surface region undergoes the topological transition (c). The band structure
used in the numerical calculations is depicted in panel (b). The same calculations were carried out for a triangular potential well (d).
In both calculations, the crests of the ABS WF moduli follow closely the white, dash-dotted lines, which mark the boundaries between
regions of trivial (left-hand side) and inverted band structure (right-hand side) for a step-function-like (c) and a triangular potential
well (d).

whole 2DEG region. Further increasing the chemical potential,
μS > μC , pins the wave function to the boundary between the
2DEG region and the bulk part of the lattice [marked by a
white, dash-dotted line in Fig. 4(c)].

The effect is not limited to step-function-like potential
wells. For Fig. 4(d), we assumed a triangular potential well
and scaled well width and depth to resemble the band-bending
in our samples (δ ∼ λS). Again, we fixed the chemical potential
in the lower part of the lattice below μC and varied the
surface chemical potential μS between 1.5 and 3.5 (for
detailed estimates of band-bending in our samples, see the next
paragraph). Again, we observe that the ABS wave function,
which attaches to the surface for smaller values of μS , shifts
away from it when μS surpasses μC . The width of the transition
region is comparable to the pairing potential, |μ − μC | � �.
Past the critical point, the crest of the wave function moves with
the topological boundary, visualized by the white, dash-dotted
line in Fig. 4(d) .

A central supposition in our discussion is that surface
band-bending is strong enough to populate states with large k

vectors. Using the parameters of Ref. [40], we estimate that the
band-structure topology changes ∼233 meV above the bottom
of the conduction band. To estimate the band-bending for the
sample presented here, we solved the Poisson equation for a
15 QL film of Bi2Se3 with moderate bulk doping numerically.
We chose to use material parameters obtained by Jenkins et al.
[42,43], who studied films grown by the Rutgers group under
identical conditions to those of our films. Here, the bulk carriers
are assumed to be n-type with a density nb = 4.3 × 1017/cm−3

and an effective mass m = 0.19me [43]. Similar values have
been reported in Refs. [20,21]. The majority of carriers are
doped on the surface or confined within a few quintuple layers
of it, which is approximated by a surface sheet carrier density
equal to the carrier density of the majority band in our two-
band model fit, nS = n1 = 4 × 1013 cm−2. Using electrostatic
boundary conditions with dielectric constants εG

r = 10 and
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εTI
r = 100 for gate dielectric (Al2O3) and Bi2Se3, respectively,

we obtained the carrier distribution and the downward shift of
the bands close to the surface as a function of the applied gate
voltage, VG. We found that band-bending (of the conduction
band) exceeds 350 meV at VG = 0 V, which validates the
assumptions we made earlier. On the film surface, the Fermi
level crosses the band inversion point at VG = −11.85 V,
which is in good agreement with the measured critical gate
voltage value, VC ∼ −12 V, despite the coarse approximations
in our modeling. Here, we would like to point out that all TIJJs
prepared on the same TI film have similar critical voltage
values, whereas a larger variation is observed between devices
of different films. Further, the critical voltage scales with
thickness and the dielectric constant of the gate dielectric,
as expected.

C. Supercurrent suppression and normal-state resistance

The total supercurrent for a given phase difference φ across
the junction is obtained by summing the phase gradient of the
ABS energy with a thermal weighting factor over all Andreev
bound states,

IC ∝ −
∑
En�0

∂En

∂φ
tanh

(
En

2kBT

)
, (3)

where En is the energy of the nth ABS, kB is the Boltzmann
constant, and T is the temperature. For fully transparent SC-TI
interfaces, the energies of the ABS modulate strongly with
φ, and the lowest Andreev bands cross at zero energy for
φ = π , i.e., a Majorana zero-mode forms; cf. the explicit
calculations of En(φ) in Refs. [44,45]. The amplitude of the
ABS wave function decreases with increasing wave-vector
mismatch between SC and TI [45]. The degeneracy at zero
energy is lifted when (tunnel) barriers are introduced at the
SC-TI interfaces [46]. Both effects diminish the supercurrent
that is carried by individual ABSs. In the case of strong
band-bending, however, we have many ABSs in the TIJJ. We
access a region of k space where wave-vector mismatch and
barrier strength evolve monotonically as we deplete the 2DEG
region. Consequently, it is unlikely that a small variation in gate
voltage would cause a dramatic change in barrier transmission
that could explain the observed abrupt drop in critical current.

In a topological insulator, the effective mass gaps the ABS
spectrum. This leads to unusual behavior in the presence of
band-bending on the surface of our TIJJs. Unlike the bound-
state wave functions in a triangular potential well, the Andreev
bound states of the lowest-energy band are strongly localized
on the boundary between regions with different band topology
where the effective mass vanishes. These modes carry the most
supercurrent per mode [cf. Eq. (3)]. The topological boundary
moves toward the surface of the TI as we deplete carriers in
the device. An overlap with the highly disordered TI surface
develops only when the surface chemical potential reaches
the critical value μC , and the wave function is pinned on the
surface below μC . Therefore, the pronounced drop in critical
current reflects a difference in transmission probability for
phase-coherent transport between the disordered surface and
the region with lower defect density below. The observed step
in the ICRN product [see Fig. 2(b)] indicates a qualitative
change in the proximity coupling.

Unlike other scenarios, the topological transition model
allows us to understand why the normal resistance remains
a smooth function of the applied gate voltage in our TIJJ
devices. Whereas a sudden change in the tunneling probability
at the interface barriers, or e.g., the pinching-off of several
conduction channels, would affect normal-state resistance
and supercurrent equally, the unusual effect arises when
superconducting pairing is introduced in the presence of band
inversion. It is intimately connected with the notion of low-
energy ABSs as boundary modes of a superconducting TI, and
it can only be detected when the dispersion relation of Andreev
bound states E(φ) is nonsinusoidal and has a low-energy band.
Here, we would like to point to recently published work that
indicates the presence of low-energy ABSs in TIJJs. In that
work Kurter et al. [27,28] reported anomalies in the diffraction
patterns of Josephson junctions and superconducting quantum-
interference devices (SQUIDs) made from exfoliated Bi2Se3

and they explained these by a nonsinusoidal contribution to the
current-phase relationship (CPR) of TIJJs. The nonsinusoidal
component is attributed to the presence of low-energy ABSs
in the junctions. The authors also observed a step in the critical
current versus gate voltage dependence, which shows that the
effect is not related to a specific TI material or fabrication
method.

V. CONCLUSION

In conclusion, we presented experimental evidence for a
topological phase transition in the bulk band of a doped,
proximity-coupled three-dimensional topological insulator.
The hallmark of the transition is a shift in the spatial location
of low-energy Andreev bound states that follow the position
of the topological boundary. In particular, we demonstrated
that the charge-accumulation zone (2DEG channel) close to
the surface of a doped 3D TI can be driven through the
transition by electrostatically depleting surface carriers with
a top-gate. This is registered as a jump in the magnitude of
the critical current of the Josephson junctions. The abrupt
change occurs when the chemical potential of the surface
2DEG region lies within the (surface-projected) bulk band
and correlates with a sign change of the effective mass in the
TI band-structure model. The transition in the band structure
topology of the gapped, 2DEG proximity region results in
an altered supercurrent flow pattern due to a displacement
of low-energy ABSs toward the disordered device surface.
Consequently, the change in the effective Josephson coupling
leads to a sudden and unusual drop in the ICRN product.
Importantly, we do not make the assumption that the bulk
of the topological insulator is insulating. The mechanism
also works when the bulk is conducting, but the bulk Fermi
level must be below the critical chemical potential for which
the topological phase transition occurs. Our results also
indicate that a sizable fraction of supercurrent is carried by
low-energy Andreev bound states located on the boundary
between topologically trivial and band-inverted regions of the
topological insulator (boundary ABSs), but not necessarily on
the surface of the topological insulator, as is frequently implied
(e.g., see Refs. [12,18]). Exploration of Majorana physics in
three-dimensional topological insulators requires control over
the spatial location of zero-energy Andreev states. Our study
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is directed toward discovering an effective way of manipu-
lating low-energy Andreev bound states in 3D TI Josephson
devices.
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APPENDIX A: LOW-ENERGY ANDREEV STATES
IN THE BULK AND ON THE SURFACE OF DOPED

TOPOLOGICAL INSULATORS

Gapless helical surface states are considered to be the
characteristic feature of topological insulators. Topological
properties of bulk bands are difficult to observe. However,
close to a transition, the Andreev-bound-state spectrum in
Josephson junctions depends sensitively on the bulk-band
topology, which allows us to detect a clear signature of a
topological transition in the band.

At wave vectors close to different time-reversal symmetric
points (TRs), the Hamiltonian of bulk TI bands resembles the
three-dimensional massive Dirac Hamiltonian. At the TRs,
a relative change in the sign of the mass term in the Dirac
Hamiltonian occurs [47]. As a result, the minimal effective
Hamiltonian for the wave vectors near the bottom of the
conduction band of 3D TIs is given by

H = vF τx σ · k + τz m(k), (A1)

where σ = (σx,σy,σz) are the Pauli matrices acting on spin
space; τx,τy are the Pauli matrices acting on orbital space;
and k is the wave vector relative to the TR at the bottom
of the conduction band. The momentum-dependent mass
term m(k) = M − ε|k|2, with Mε > 0, changes sign at |k| =√

M/ε. It was shown before that the topological properties
of the superconducting phase of a doped topological insulator
change when the chemical potential corresponds to the wave
vectors at which the effective mass m(k) vanishes [8–10]. One
manifestation of this topological transition is the appearance
of edge modes, e.g., the zero-energy Majorana states at the
ends of a vortex passing through a doped topological insulator
[6,8–10]. In this case, the bound states that extend along the
vortex [5,8–10] become gapless at the transition and provide
a channel for coupling Majorana modes at both ends of the
vortex, thus allowing them to annihilate. Indeed, zero modes
in the energy spectrum of the superconducting bulk were the
first theoretical evidence for a topological phase transition as
a function of the doping level in doped TIs [8]. Later the result
was confirmed by looking directly at the evolution of Majorana
states at the end of the vortex as a function of the chemical
potential [10,48].

An analogous scenario is realized in a topological insulator
Josephson junction (TIJJ). When the chemical potential is in
the bulk gap of the TI, ABSs are found only on the TI surface.
At a phase difference of π , two of the localized Andreev
states in a TIJJ are zero-energy Majorana modes [6]. On the
other hand, when the TI is doped and the chemical potential
enters the conduction band, superconductivity is induced in
the bulk, and additional ABSs are formed throughout the TIJJ.
Similar to the topological transition in the vortex, the energy
of ABSs evolves with the chemical potential in the TI. As
we move it through the bulk band of the TI, the shape of the
Fermi surface changes, i.e., the Fermi surface is composed
of different sets of k states. For particular k vectors, the
mass term m(k) vanishes, and the band structure undergoes
a topological phase transition. An important signature is that
the ABS spectrum becomes gapless, thus decay channels for
Majorana modes open, which—at this point—can no longer
exist on the surface.

The presence of Majorana modes on the surface and of
gapless modes in the bulk of TIJJs corresponds precisely to a
phase difference of π . Under simplifying assumptions, it can
be shown that this condition is fulfilled in TIJJs at maximum
critical current [44]. We are interested, however, in the full
evolution of low-energy Andreev states. Thus, we study the
general case of TIJJs with an arbitrary phase difference. In
what follows, we first derive the energy of ABSs on the
surface of a narrow junction. Next, we find the energy of
bulk ABSs and show that it decreases as the magnitude of
the effective mass, |m(k)|, decreases. In particular, we see
that—for vanishing effective mass m(k)—the (finite) energy
of the lowest-lying ABS on the surface will become equal to
the energy of the bulk Andreev states even if the phase of the
junction is not π .

When the chemical potential is in the bulk band gap of
the TI, the only gapless states are helical states localized on
the boundary of the TI sample. They realize the gapless, two-
dimensional Dirac Hamiltonian:

Hs = ivF σ · k, (A2)

where σ = (σx,σy) are the Pauli matrices in the bases (ψ↑,ψ↓),
and ψσ is the electronic state with spin σ localized on the
surface of the TI.

The low-energy effective Hamiltonian describing a Joseph-
son junction on the surface of the TI with supercurrent along
x̂ (such that the superconducting φ varies in the x̂ direction) is
given by [8]

H = (−ivF ∇ · σ − μ)ηz + �{cos[φ(x)]ηx + sin[φ(x)]ηy},
(A3)

with a convenient choice of bases (ψ↑,ψ↓,ψ
†
↓,−ψ

†
↑)

T
. In

this Hamiltonian, the Fermi velocity at chemical potential μ

is denoted by vF , and � is the superconducting gap. The
matrices σ act on physical spin space (which is locked with
the momentum), whereas the ηi act on the superconducting
particle-hole space.

As the Hamiltonian, Eq. (A3), is invariant under translation
along ŷ, the momentum ky in this direction is conserved. The
lowest-energy Andreev states in the junction correspond to
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ky = 0, for which Eq. (A3) reduces to

[(−ivF ∂xσx − μ)ηz + �{cos[φ(x)]ηx + sin[φ(x)]ηy}]|v〉
= E|v〉. (A4)

As an operator, σx commutes with the above Hamiltonian.
Therefore, it is possible to divide the eigenstates into two
separate sets with eigenvalue 〈σx〉 = 1 or −1:

[(∓ivF ∂x − μ)ηz + �{cos[φ(x)]ηx + sin[φ(x)]ηy}]|v〉
= E|v〉, (A5)

where the negative (positive) sign of the first term corresponds
to 〈σx〉 = 1 (or −1), respectively. Similarly, at finite positive
chemical potential (μ > 0), the right and left Fermi points
correspond to states with opposite σx eigenvalues—〈σx〉 > 0
for the right and 〈σx〉 < 0 for the left Fermi point, respectively.

The eigenvectors |v〉 have the form |v〉 = eik±x |u〉, where
k± = ±kF = ± μ

vF
are the Fermi momenta at the two Fermi

points, and the eigenvectors |u〉 satisfy

[(∓ivF ∂x)ηz + �{cos[φ(x)]ηx + sin[φ(x)]ηy}]|u〉 = E|u〉.
(A6)

A short Josephson junction is modeled by the following
phase distribution:

φ(x) = 0 for x < 0,

φ(x) = φ0 for x � 0.
(A7)

Since we are interested in in-gap Andreev states, we define
E = � cos(β) with 0 � β � π . The eigenvector |u〉 has the
form

|u〉 = e
κ�
vF

x
(
a

b

)
, (A8)

where the vectors (a,b)T satisfy the following equation:

�

(∓iκ − cos(β) eiφ(x)

e−iφ(x) ±iκ − cos(β)

)(
a

b

)
= 0, (A9)

which leads to κ = sin(β) for x < 0 and κ = − sin(β) for x >

0. Notice, since we have 0 � β � π , it follows that sin(β) � 0.
The wave functions are

x < 0 :
(
a

b

)
= 1√

2

(
1

e±iβ

)
, (A10)

x � 0 :
(
a

b

)
= 1√

2

(
1

ei(φ∓β)

)
. (A11)

From the continuity condition at x = 0, we obtain β = φ

2

for the right Fermi point and β = π − φ

2 for the left Fermi
point such that 0 � φ, β � π . Close to the right and left
Fermi points, the energies of the ABSs are found to be
E = � cos(φ/2) and E = � cos(π − φ/2) = −� cos(φ/2),
respectively. The two modes correspond to eigenvalues of σx

with opposite sign, thus there is no mixing between them.
Importantly, their wave functions stay localized on the surface
of the TI because bulk ABSs have larger energy. In what
follows, we show that the energy of Andreev states in the
bulk of a TIJJ is always larger than the energy of low-energy
Andreev states on the surface, unless the chemical potential

corresponds to the Fermi wave vectors kF where the effective
mass |m(kF )| vanishes.

The low-energy Hamiltonian in the bulk of a topological
insulator is the massive Dirac Hamiltonian, Eq. (A1). Adding
terms for superconducting pairing and the finite chemical
potential, the Hamiltonian reads

Hb = [vF (∇ · σ )τx + m(|k|)τz − μ]ηz

+�{cos[φ(x)]ηx + sin[φ(x)]ηy}. (A12)

Here, we would like to point out that the minimal model
for TI bulk states has two orbitals, and another set of Pauli
matrices, τi , for orbital space had to be introduced in the
Hamiltonian. Therefore, the algebraic structure of the wave
function is different for bulk and surface states.

Similar to surface states, low-energy bulk ABSs have
momenta parallel to the x̂ direction (i.e., ky = kz = 0), and
the effective Hamiltonian is

Hb = [vF kxσxτx + m(|k|)τz − μ]ηz

+�{cos [φ(x)]ηx + sin [φ(x)]ηy}. (A13)

Again, the operator σx commutes with the effective Hamilto-
nian, thus we can divide the eigenstates into two separate sets
with eigenvalue 〈σx〉 = 1 or −1:

Hb = [±vF kxτx + m(|k|)τz − μ]ηz

+�{cos [φ(x)]ηx + sin [φ(x)]ηy}. (A14)

In the following, we only present the solution for 〈σx〉 = 1,
which corresponds to the + sign for the first term of Hb.
The case of 〈σx〉 = −1 can be treated identically. When the
chemical potential is in the conduction band, the spectrum and
orbital wave function are solutions of the kinetic Hamiltonian,
H = vF τxkx + τzm(k). Its eigenvalues and eigenfunctions are
given by

E(kx) =
√

v2
F k2

x + m(|kx |)2,

|�τ (kx)〉 = 1

N
(
m(|kx |),

√
m(|kx |)2 + v2

F k2
x − vF kx

)T
,

(A15)

with the normalization factor N 2 = 2m(|kx |)2 + 2v2
F k2

x −
2vF kx

√
m(|kx |)2 + v2

F k2
x . The low-energy ABSs close to the

Fermi points, k±
F = ±

√
μ2−m(|kF |)2

vF
, are derived by setting

kx = k±
F ∓ i∂x in Eq. (A14) and by projecting onto the

corresponding orbital wave functions |�τ (k±
F )〉. We obtain the

equations

[(∓ivF ∂x)ηz + �{cos[φ(x)]ηx + sin[φ(x)]ηy}]|w〉 = E|w〉.
(A16)

The Hamiltonian in Eq. (A16) is formally identical to the
previously discussed Hamiltonian, Eq. (A6). For the energies
at the right and left Fermi points, we have E = � cos(φ/2)
and E = � cos(π − φ/2) = −� cos(φ/2). Unlike before, the
wave functions at the two Fermi points correspond to the same
eigenvector of σx , and the orbital parts of the wave functions,
Eq. (A15), are—in general—not orthogonal. Since the phase
φ varies along the x̂ direction, states at the two Fermi points
are scattered into each other and repel.
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The energy shift due to scattering is calculated using
second-order perturbation theory. It is proportional to the
orbital overlap of the wave functions at the two Fermi points,
i.e., 〈�τ (k−

f )|�τ (k+
f )〉 = |m(|kF |)|√

m(|kF |)2+v2
F k2

F

, and it takes the form

E = ±
(

�| cos(φ/2)| + α
m(|kF |)2

m(|kF |)2 + v2
F k2

F

)
, (A17)

where α > 0. Assuming the magnitude of the superconducting
gap is equal on the surface and in the bulk, it follows that the
energies of bulk Andreev states are larger than those of surface
Andreev states unless m(kF ) = 0.

APPENDIX B: FURTHER DETAILS ABOUT THE
NUMERICAL CALCULATIONS

We studied the structure of low-energy Andreev states
in TIJJs for different background potentials numerically. A
simple discrete model for TIs includes four orbitals on a
cubic lattice with orbital-dependent nearest-neighbor hopping
[8,49]. We implement superconductivity at the mean-field
level, i.e., we double the number of orbitals at each lattice
site to represent superconducting particle and hole states, and
we add a coupling term between the two sectors. Allowing the
phase of this coupling to vary along the x̂ direction, we can
model a TIJJ.

As we set the momentum along the ŷ direction (i.e.,
“parallel” to the junction) equal to zero, it is sufficient to
discretize the Hamiltonian on a square, real-space lattice
with dimensions Lx × Lz, for which the two site labels
(x,z) are chosen along the directions of the superconducting
phase variation, x̂, and the chemical potential shift, ẑ. In
the simplest case, band-bending on the surface of the TI is
modeled by varying the chemical potential for sites with index
0 < z < δ = Lz/2 while keeping it fixed close to the bottom
of the conduction band for sites with z > δ. We then solve the
discrete Hamiltonian exactly and plot the (in-plane averaged)
wave-function amplitudes associated with the lowest-energy
ABSs against the chemical potential in the surface layer; see
Fig. 4(a) . We observe that, as the chemical potential enters the
conduction band in our model, μ ∼ 1.7, most of the weight of

the ABS wave functions remains close to the boundary of the
model (i.e., at Lz = 0). When we further increase the chemical
potential, the wave function spreads gradually across the
surface region. As the critical chemical potential (μC ≈ 1.9)
is reached and the effective mass vanishes [m(kF ) = 0], the
wave function is fully delocalized and extends throughout the
region (i.e., all sites where 0 < z < δ). Past the critical value
μC , the ABSs are strongly localized at z = Lz/2, which is
the interface between the—now—topologically trivial surface
and the band-inverted bulk. We would like to point out that the
wave function has another maximum on the bottom surface
(z = Lz), which we cut off in Figs. 4(a) and 4(c) for clarity.

In Fig. 4(d), we show the ABS wave function for a
triangular potential, parametrized by the chemical potential
on the surface of the TI, μS . Again, we fixed the chemical
potential in the bottom part of the lattice, z > δ = 0.75Lz,
below μC and varied the chemical potential across the upper
part linearly. Only the wave function in the upper part of the
lattice is shown. For surface potentials below μC , the wave
function is pinned on the surface of the TI. Above the critical
potential, the ABSs of the lowest energy band are strongly
localized on the topological phase boundary, which is indicated
by the white, dash-dotted line in Fig. 4(d) . The ABS wave
function spreads over a region with chemical potential close
to critical, |μ − μC | ∼ �, but it has no overlap with the TI
surface. Only when the surface chemical potential reaches the
critical value do low-energy ABSs merge with the surface, and
they become fully localized there when μS < μC .

This clearly demonstrates that in a doped topological
insulator, where superconductivity is induced in the bulk (in
addition to the surface states), the energies of low-energy
bulk Andreev bound states are related to the magnitude of
the effective mass of the bulk band and have a minimum
when the effective mass vanishes. At this point, the energies
of boundary and bulk ABSs are equal, which couples them
and annihilates the boundary modes. Most prominently, this
mechanism destroys surface Majorana modes when the bulk
substrate undergoes a topological transition, which makes it
relevant in a wider context. Experimental signatures of the
spatial displacement of boundary ABSs due to a topological
transition in the bulk band are discussed in the main
text.
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