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A scaled quantum computer with donor spins in silicon would benefit from a viable semiconductor framework
and a strong inherent decoupling of the qubits from the noisy environment. Coupling neighboring spins via the
natural exchange interaction according to current designs requires gate control structures with extremely small
length scales. We present a silicon architecture where bismuth donors with long coherence times are coupled
to electrons that can shuttle between adjacent quantum dots, thus relaxing the pitch requirements and allowing
space between donors for classical control devices. An adiabatic SWAP operation within each donor/dot pair
solves the scalability issues intrinsic to exchange-based two-qubit gates, as it does not rely on subnanometer
precision in donor placement and is robust against noise in the control fields. We use this SWAP together with
well established global microwave Rabi pulses and parallel electron shuttling to construct a surface code that
needs minimal, feasible local control.
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I. INTRODUCTION

In 1998, Loss and DiVincenzo [1] proposed a scheme
for universal quantum computing with electron spins in
semiconductor quantum dots, and Kane [2] presented an
alternative scheme with donor spin qubits. These blueprints
have inspired a great deal of progress in controlling bulk
donor spins [3,4] and single- or few-spin donor devices [5–8],
as well as dot-based quantum devices [9–12], but their full
implementation still faces significant fundamental hurdles.
In a large quantum register, the delicate conditional-phase
gate built between two neighboring spins by their natural
exchange interaction requires tight interqubit distances [2],
high-precision local tuning of each coupling, and extreme
robustness to noise [13].

Here, we show in detail how bismuth donors in silicon
can be combined with quantum dots to implement a scaled
surface code processor architecture that implements effective
error correction [14] and can tolerate inaccuracy in local spin
placement and tuning. The more relaxed length scales typical
of quantum dots and the possibility of moving electrons short
distances between them [9,10,12,15,16] allow neighboring
donor spins to be implanted at least ∼1 μm apart while
retaining all their specific advantages [17–19]: the pitch
requirements are thus much more attainable than the ∼20 nm
donor distance required by Kane’s scheme, and allow space for
enough gates to adequately control wave functions in quantum
dots. Scalability is further improved by using the exchange
interaction between the electron spins of a donor/dot pair only
to swap quantum states through adiabatic transfer, with no need
to build the fragile two-qubit dynamical phases common to
both of the previous proposals. This adiabatic SWAP is shown
to be insensitive to large variations in donor to dot coupling,
and provides the building block for the surface code CNOT
that is used for error diagnosis: by construction, this pivotal
operation does not need individual voltage tuning or precise
timing, and is very robust against electric and magnetic noise.
Our proposal is completed by microwave-driven spin rotations

of the Bi donors, whose fidelities have recently surpassed
the fault-tolerance threshold [20]. These fields are applied
globally, while the only site-selectivity required is provided
by feasible local electric control: thus parallel processing of
a large number of two-qubit gates in silicon becomes more
viable.

We improve donor-only architectures with respect to (i)
the enlarged distance between donors, which could even be
increased to several micrometers if more area is required for
readout and classical control circuitry with little increase in
decoherence, and (ii) the robustness of the CNOT gate to the
strong variations in the magnitude of the exchange coupling as
the donor separation changes [21]. At the same time, a dot-only
architecture would miss the crucial benefits inherent to the
nuclear spin, which we show allows for selective donor/dot
entanglement within the SWAP that we envision, thanks to the
electron-nuclear spin hybridization achieved by the natural
hyperfine interaction at the donor. The possibility of coupling
Zeeman-split dot and coherent donor states is exclusively
provided by bismuth atoms that have a large enough nuclear
spin space (nuclear spin I = 9/2).

II. THE ARCHITECTURE AND THE PROTOCOL

In Fig. 1, we show an idealized diagram of a por-
tion of the structure we are suggesting. Here we assume
that the donors are incorporated below the quantum dots,
and the donor/dot interaction is controlled by a back gate,
as in the devices suggested by Schenkel et al. [22]. This
vertical donor-dot configuration allows the dots to have quite
simple gate structures and easily modeled electrostatic fields.
All electrodes in the upper layer of Fig. 1 act as three-phase
charge-coupled device (CCD) gates [23], moving all dot
electrons in unison—this requires only five independent gate
signals: two for horizontal shuttling, two for vertical coupling,
and one for dot confinement. The underlying back gates are
individually addressable to determine which qubits are in-
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FIG. 1. Schematic diagram of the donor-dot array structure. The
combination of top gates and holes in the depletion gate form the
quantum dots, half of which are occupied with data qubit electrons.
These electrons can be moved to dots positioned above the donor
measurement qubits, each with a back gate to control the exchange
coupling between the donor electron and the electron in the quantum
dot.

volved in each surface code cycle. Crucially, the robustness of
the adiabatic SWAP to donor-dot coupling strength variations
implies that the back gates can all be switched between two
standard voltages, rather than requiring individual tuning at
every site. Other layouts have technological advantages and
disadvantages which are discussed in Appendix D.

The surface code architecture we will consider consists of
a square planar array of qubits as described in detail by Fowler
et al. [14]. We consider the data qubits (DQ) to be the spin of
the electrons in the quantum dots, and the measurement qubits
(MQ) to be states of the donor electron and nuclear spins
(coupled through the hyperfine interaction). There are four
basic operations, which the qubit array must perform for error
correction: (1) movement of the entire array of DQ to each of
the four adjacent MQ in turn, (2) addressable CNOT operations
with the DQ as control and the MQ as targets, (3) measuring
the MQ, and (4) applying global Hadamard gates to the DQ.
This protocol allows the diagnosis of phase-flip and bit-flip
errors accumulating in the DQ array. The movement operation
(1) would utilize the surface gates described above. When
electrons are released from their quantum dots and allowed
to move in a two-dimensional layer, it is known that their
spin coherence is significantly degraded, but still of the order
of microseconds [15]. If the period of the donor-dot array is
of order a micron, and the electrons are moved at 106 cm/s
(about 500 mK electron energy in Si), the time to transport the
electrons is only about 100 ps. The error per qubit accumulated
during the electron motion is <10−4, less than that which can
be expected from gate operations. For operation (3) we assume
the ability to measure the spin state of individual donors.
Accurate measurement of electron and nuclear spins of single
donors in Si has recently been demonstrated [5,24] using spin-
to-charge conversion via electron tunneling, though selective
optical excitation with relaxed donor positioning constraints
may also be possible [25]. The tunneling measurements were
performed by coupling a single-electron-transistor (SET) to
a donor implanted within a 90 × 90 nm2 region [5,24]. For

this style of donor readout the SET would be integrated with
the bottom gate and the size of the readout structures would
be well within the micron pitch of our proposed architecture.
The Hadamard operation (4) will use a global microwave field.
Such operations can be performed with a fidelity better than
99.6% [11].

The main obstacle to the implementation of a surface code
is thus performing the addressable CNOT gate between MQ
and DQ, which we now construct using adiabatic transfer
swaps based on the exchange coupling between the donor
and its paired dot electron (see Fig. 1). We start with a detailed
description of the Hamiltonian of the pair and focus on the
selection rules induced by the hyperfine-coupled nuclear spin
on the exchange-coupled electron states of the donor and the
dot.

III. THE LOGICAL HILBERT SPACE

The Hilbert space spanned by the tensor combinations of
the states of the donor nuclear spin I = 9/2, the donor electron
spin Sdonor = 1/2 and the dot electron spin Sdot = 1/2 is 40-
dimensional, and is governed by the Hamiltonian

H = γeB0 · Sdonor − γnB0 · I + AS · I

+ γeB0 · Sdot + JSdonor · Sdot, (1)

where B0 is the applied dc magnetic field, A is the hyperfine
interaction between the nuclear spin I and the electron spin
S, γe = geμB

�
= 27.997 GHz/T is the magnetic moment of the

electron, γn = 0.007 GHz/T is the nuclear magnetic moment,
and J is the exchange coupling between the two electron spins.
This can be increased from zero—when the electron wave
functions do not overlap much—by locally tuning the back gate
voltage as described above, causing the dot electron density to
be pulled towards the implanted impurity.

With J = 0, the transition energies of the uncoupled donor
and dot spin states as a function of applied magnetic field are
shown in Fig. 2(a). We will utilize the donor “clock transitions”
whose frequency is independent of the magnetic field to first
order [4], and thus can cross the Zeeman quantum dot transition
(linear in magnetic field). Figure 2(a) shows that the dot
transition crosses the lowest donor clock transition almost
exactly at its minimum, where the Bi spins have particularly
long coherence. This feature is unique to Bismuth among the
group V donors, since as we show in Appendix A it needs the
nuclear spin to be at least 9/2.

Electron spin resonance (ESR) measurements of the clock
transition near 7 GHz have shown that there are two nearly
degenerate components at every clock transition [4,26]. Since
they involve different initial and final states, these four states
can be used as two independent qubits residing on the
bismuth. It is convenient to label the upper of each pair of
transitions “forbidden” and the lower “allowed,” even though
this terminology is properly descriptive only in the high-field
limit (where the Zeeman splitting is much larger than the
hyperfine energy).

We thus focus in our scheme on a combination of three
qubits, which are shown schematically in Fig. 2(b). The first
(left) is the electron spin in the dot, and given the name “Dot”
qubit. With the magnetic field held near the 5 GHz clock
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FIG. 2. (a) Spin transition energies of neutral Si:Bi donors (color
curves) and an electron in a quantum dot in Si (black straight line)
as a function of magnetic field. Every donor curve represents two
transitions, one allowed and one forbidden in the high-field limit
[26], whose separation is not resolved in the figure. The dot and donor
transition energies cross at the 5 GHz clock transition of the donor.
The inset shows a calculation of the mixing between the allowed
and quantum dot transitions when the donor and dot are exchange
coupled. (b) Diagram of the transition energies of the three qubits
in a donor-dot structure. The dot qubit and the allowed transition of
the ESR qubit (|NMR〉 = |1〉) can be coupled by a gate-controlled
exchange interaction.

transition (B0 ≈ 0.185 T), the dot qubit can be driven by
conventional microwave ESR fields. The second qubit consists
of the donor states at the 5 GHz clock transition. In the
high-field limit, this qubit would be simply an electron spin
on the donor, and thus we call it the “ESR” qubit. The third
qubit is the coupled electron and nuclear states making up the
allowed versus the forbidden transitions. In the high-field limit,
this would just be a nuclear spin, and we call it the “NMR”
qubit. The transition energy of this qubit is about 0.74 GHz.
All three qubits can be driven with microwave fields.

The Hamiltonian in Eq. (1) with J = 0 can be diagonalized
with separable combinations of the following dot and donor
states: {|↓〉 , |↑〉}dot ⊗ | ± ,m〉donor, where the donor eigen-
states are written, using the notation |Sz

donor,I
z〉, as [27] (see

Appendix A for more details)

| ± ,m〉 = a±
m | ± 1/2,m ∓ 1/2〉 + b±

m| ∓ 1/2,m ± 1/2〉, (2)

with m = Sz
donor + I z being the sum of the electron and nuclear

spin projections on the quantization axis,

a±
m =

{cos(θm/2)
− sin(θm/2), b±

m =
{sin(θm/2)

cos(θm/2), (3)

and

θm = arctan

[A

√
I (I + 1) + 1

4 − m2

(Am + B0γe + B0γn)

]
, 0 � θm < π. (4)

The allowed (A) pair and the forbidden (F) pair of donor/dot
states that cross close to the sweet spot considered here can be
written, in the basis defined above, as

|1〉A = |↓〉dot ⊗ |+,−3〉donor ,

|2〉A = |↑〉dot ⊗ |−,−4〉donor ,
(5)

|1〉F = |↑〉dot ⊗ |−,−3〉donor ,

|2〉F = |↓〉dot ⊗ |+,−4〉donor ,

which we enlarge to our computational basis (with subscripts
omitted for simplicity from now on)

|1〉 ≡ |000〉 = |↓〉 |−,−3〉 , |5〉 ≡ |100〉 = |↑〉 |−,−3〉 ,

|2〉 ≡ |001〉 = |↓〉 |−,−4〉 , |6〉 ≡ |101〉 = |↑〉 |−,−4〉 ,
(6)

|3〉 ≡ |010〉 = |↓〉 |+,−4〉 , |7〉 ≡ |110〉 = |↑〉 |+,−4〉 ,

|4〉 ≡ |011〉 = |↓〉 |+,−3〉 , |8〉 ≡ |111〉 = |↑〉 |+,−3〉 .

When a nonzero exchange coupling between the dot
electron and the donor electron is turned on, the cross-
ing between |1〉A and |2〉A is avoided, as shown in the
inset of Fig. 2(a), while there is no avoided crossing be-
tween the |1〉F and |2〉F states. Among all the states in
Eq. (5), the exchange interaction couples electron spin states
with the same Sz

donor + Sz
dot projection, but the nuclear spin

further selects only the states with the same nuclear spin
projection to be coupled. Thus, as it is evident from com-
bining Eqs. (5) and (2), desetAA〈1|JSdonor · Sdot|2〉 �= 0, while
desetF F 〈1|JSdonor · Sdot|2〉 = 0.

As a consequence, if we sweep the magnetic field through
the donor/dot degeneracy point in Fig. 2(a) and at the same
time pulse the donor/dot exchange coupling, the nuclear state
fundamentally determines the occurrence of a population
transfer between {|1〉A , |2〉A} and nothing but phase accumu-
lation between {|1〉F , |2〉F }. Within our computational basis,
this represents a natural three-qubit NMR-controlled SWAP
operation (Fredkin gate [28]), where states |4〉 and |6〉 (where
the NMR qubit is in state 1) are SWAPed but states |3〉 and |5〉
(where the NMR qubit is in state 0) are not. In the next section,
we will describe how this logical gate can be combined with
well established Rabi techniques to realize the surface code
CNOT and describe the detailed operations that complete a
surface code cycle.

IV. SURFACE CODE CYCLE

At the beginning of each cycle, we assume that the dots
contain the DQ and the |ESR〉 qubits have been initialized
in a |0〉 state, as, e.g., described in Ref. [26]. The transfer
gates bring the appropriate data electron to the quantum dot
situated above the donor. The magnetic field will be held below
that corresponding to the degeneracy of the dot and donor
transitions described above [Fig. 2(a)]. Pulsing the back gate
voltage below the donors selected for an operation turns on an
exchange coupling between the donor and the dot. As shown
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FIG. 3. (a) Complete CNOT sequence between the Dot and
the NMR qubit, which includes performing resonant Hadamard
(π/2) and π Rabi pulses on the different qubits, plus adiabatic
Dot/ESR transfer sequences � (light blue boxes) based on linear
dc ramping of the magnetic field B0 and the back-gate voltage, V .
The adiabatic transfers take place thanks to the J coupling turned
on at the crossing points of the Dot/ESR levels (� = 0), while
“phase-erasing” steps allow the final quantum state to be independent
of the evolution induced by each particular J . All operations require
a few microseconds. (b) The red line shows the best fit to a set of
calculations of exchange splittings that the different donor-dot pairs
of electrons would experience within a scaled architecture, due to the
imprecise implantation depth d of the donors (an equivalent applied
electric field F = 4 kV/cm is assumed). The pairs within the green
regions will undergo adiabatic population transfer with fidelity higher
than 99.9%. These regions become thinner to the left edge of the plot,
where the high couplings break the adiabaticity condition, and to the
right edge, where the couplings are too weak to induce an efficient
depopulation at the avoided crossing.

in Fig. 3(a) and anticipated above, the magnetic field is swept
through the resulting avoided crossing to swap the |101〉 and
|011〉 states (linked by an allowed ESR transition), but not the
corresponding states with |NMR〉 = |0〉 (i.e., |100〉 and |010〉,
linked by a forbidden ESR transition).

Crucially, we devise our operation to be adiabatic: in a
more detailed description included in the next section, we

will show that high gate fidelities can be thus achieved across
the wide range of J couplings expected from the nonexact
positioning of the implanted donors [21], the details of the
local electric environment confining the quantum dots, and the
noise intrinsic to the control voltages [13]. The adiabaticity of
this site-selective SWAP, which we will call �, is maintained if
�J̇ � �2

0: here, �0 corresponds to the initial energy difference
between the two states |101〉 and |011〉, which is limited by the
experimental ability to sweep the dc global magnetic field B0.
Larger magnetic field excursions would give slower gates: we
assume that 10 mT sweeps can be realized within 1 μs . It has
been demonstrated that the back gate voltage could be switched
by the required amount within this time window [29], leading
to an effective population transfer within a realistic operational
framework.

With the DQ swapped to the ESR states of the selected
donors by our operation �, microwaves can drive a transition
on the ESR qubits, conditioned on the state of the NMR
qubits. This conditional excitation �ESR is nothing more than
pulsed Electron Nuclear Double Resonance (ENDOR) [30].
These donor CNOT fields can be applied globally, since those
sites where the SWAP was not done will have their ESR
qubit initialized to |0〉, and the CNOT has no effect—our
surface code implementation does not need any local magnetic
field selectivity. The strong hyperfine mixing near the clock
transitions in Si:Bi allows the ENDOR transitions to be driven
through the electronic part of the states, and thus can be as fast
as conventional ESR pulses [26]. Following the donor CNOT
operation, the exchange interaction can be reestablished and
the ESR qubit swapped back to the dot electron: the overall
result is a donor/dot CNOT with the NMR qubit as control
and Dot qubit as target. This gate can be turned into the basic
operation required to maintain the surface code, i.e., a CNOT
with the data qubit as control and the MQ as target, via the
application of four Hadamard gates Hi :

Surface code CNOT = HdotHNMR ��ESR�
−1H−1

dotH−1
NMR.

(7)

After each DQ has been moved to perform a surface code
CNOT with its four neighboring donors, the spin state of
those donors must be measured and reinitialized, and a similar
protocol [without the Hadamard gates in Eq. (7)] performed
for the X stabilizer measurement.

The splitting between the allowed and forbidden transitions
is only about 2 MHz, while selectively exciting one and not
the other is a building block of the CNOT gate. Therefore,
if the difference in transition energy provides the only
selectivity, the pulses can be no shorter than about 250 ns
to avoid exciting the other transition. However, these two
transitions are excited by microwaves of opposite helicity, and
photon polarization can be used to excite them selectively with
short pulses [31,32].

The protected quantum memory designed so far could be
readily endowed with defects and braiding, that allow the
definition of logical qubits within a surface code [33]. To
form a defect at any donor site the stabilizer operations are
blocked by not applying the voltage to that bottom gate: thus
the exchange interaction and SWAP is disabled. The other
quantum gates in Eq. (7) either only affect the donor qubits,
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which are reset anyway by the measurement step, or are pairs
of Hadamard gates, which reduce to the identity.

V. ADDRESSABLE ADIABATIC DONOR/DOT SWAP

We now turn to the full characterization of the dynamics
that can lead to a robust operation � as sketched above: we
restrict ourselves to the basis of the four states |2〉 , |6〉 , |4〉 , |8〉
defined in Eq. (6), which correspond to the configuration
with NMR qubit fixed to “1,” because of the selection rules
explained before.

As shown in Fig. 3(a), we propose initializing the dc
magnetic field at a point away from the anticrossing, where
the states are not mixed. This is a “quiet” phase configuration
at a field of B0(−t0) = B∗

0 − �B0, where B∗
0 marks the

E4 − E6 degeneracy point and �B0 ≈ 5 mT. The field is
then swept through the anti crossing and beyond, up to
B0(+t0) = B∗

0 + �B0. The coil currents that generate the dc
magnetic field could heat the device unacceptably if the sweep
rate were too fast, thus we assume that a sweep of 10 mT
is attainable within a 2t0 ≈ 2μs time interval. This is the
fundamental limitation on the speed of the proposed gate.

In the meantime, the exchange coupling is turned on
adiabatically from its quiet value J (−t0), that is much smaller
than the initial detuning |E4(−t0) − E6(−t0)| ≈ 140 MHz, to
some maximum Jmax, which is maintained at t = 0 when
E4(0) = E6(0), and then back to the quiet stage [see Fig. 3(a)].
In Appendix B, we show that it is sufficient to ramp the voltage
up by about 10 mV to increase the exchange coupling by three
orders of magnitude for typical device parameters. The qubit
states at t = −t0 will adiabatically follow the instantaneous
eigenstates of the time-dependent evolution, hence if the
coupling is strong enough during a sufficient interval of time,
a strong population transfer between the diabatic |4〉 and |6〉
states will take place.

More precisely, the time evolution operator induced by the
dynamics just outlined in the four-state basis above will lead
to the block matrix⎛

⎜⎝e
− i

�

∫ t0
−t0

dtE2 0 0

0 e
− i

2�

∫ t0
−t0

dt(E6+E4)
U

t0−t0
0

0 0 e
− i

�

∫ t0
−t0

dtE8

⎞
⎟⎠, (8)

where the eigenergies of the corresponding eigenstates defined
in Eq. (6),

E2(t) = E2−
−4(t) − B0(t)

γe

2
− J (t)

4
cos θ−4(t),

E8(t) = E2+
−3(t) + B0(t)

γe

2
+ J (t)

4
cos θ−3(t),

(9)

E6(t) = E2−
−4(t) + B0(t)

γe

2
− J (t)

4
cos θ−4(t),

E4(t) = E2−
−3(t) − B0(t)

γe

2
− J (t)

4
cos θ−3(t),

combine the energies E2±
m of the isolated donor states in Eq. (2)

(fully defined in Appendix A), the Zeeman energy of the dot
state and the appropriate exchange coupling. The two-state

transfer matrix U
t0−t0

can be written as(
a(J ; t0) eiψ(J ;t0)

√
1 − a(J ; t0)2 eiφ(J ;t0)

−
√

1 − a(J ; t0)2 e−iφ(J ;t0) a(J ; t0) e−iψ(J ;t0)

)
,

(10)

where a is a real number, and ψ and φ are two real phases: the
functional dependence of the propagator on the time profile of
the exchange coupling and the duration t0 of the pulses has been
made explicit. As we calculate in the next section, and show in
Fig. 3(b), at any instant, J (t) can change by at least two orders
of magnitude across all the parallel donor/dot pairs, though
it always has the same time dependent profile. An adiabatic
evolution where the exchange is pulsed slowly with respect to
the magnitude of the initial detuning, �J̇ (t) � (140 MHz)2,
allows us to achieve high population transfer fidelities, i.e., to
make a small enough, over this large range of J couplings.
This way, U

t0−t0
resembles a SWAP operation over the very

wide range of parameters typical of the orbital electron states
in a scaled architecture.

More quantitavely, we have simulated the exact time
evolution of the system in the adiabatic regime just defined,
with �(t) = −�0( t

t0
), − t0 � t � t0,t0 = 2 μs and J (t) =

J0{1 − exp[(|t | − t0)/gma]}, where gma = 0.9 μs sets a
realistic timescale for tuning the back gate voltage. The
fidelities of population transfer 1 − a2 as a function of different
donor/dot separations are shown in Fig. 3(b): fidelities higher
than 99.9%, thus within the 0.1% error rate per operation
desired for the surface code with a reasonable overhead [14],
correspond to the green region of the plot. Thus almost all of
the donor/dot pairs addressed by a local exchange-tuning can
undergo a fault-tolerant operation within 2 μs . This fidelity
can thus be maintained with two orders of magnitude variation
of the donor-dot exchange coupling. This is a conservative
estimate of the calculated range of interactions that the pairs
could experience across an array like Fig. 1.

However, the realization of a Dot/NMR CNOT gate as
proposed in Eq. (7) would not follow immediately if the
Dot/ESR SWAP � were implemented by the time evolution
defined in Eqs. (8) and (10). The reason for such failure
lies in the presence of the J -dependent phase φ �= 0, which
implies that the operator in Eq. (10) has entangling power: its
action would not be limited to SWAPping the quantum states
involved. This problem is solved by the sequence illustrated in
Fig. 3(a), that combines the time evolution in Eq. (10) with a
“phase-erasing” operation. The only extra ingredients required
by this recipe are selective Rabi resonant pulses that could
be achieved with high fidelity for microsecond gating times,
followed by extra adiabatic tuning sequences of magnetic field
and back gate voltage. The propagator of this updated sequence
is, up to an irrelevant multiplicative phase,

� =

⎛
⎜⎜⎝

e− i
�

ξ 0 0 0
0 a eiθ −√

1 − a2 0
0

√
1 − a2 a e−iθ 0

0 0 0 e− i
�

ξ

⎞
⎟⎟⎠, (11)

where the phase φ has now disappeared, and ξ = ∫ t0
−t0

dt(E2 +
E8 − E6 − E4). Straightforward matrix multiplication shows
that the complete sequence in Eq. (7), assuming for simplicity
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a perfect Dot/ESR transfer (a = 0), leads to the following time
propagator in the complete basis of Eq. (6):

−i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0

0
0 1

1 0
0 0

0 0
0 1

1 0
0

0 0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

This is seen to coincide with the desired surface code CNOT,
when restricted to the degrees of freedom that effectively host
the data and measurement qubits, namely the states with the
ESR qubit being initialized to “0”: |1〉 , |2〉 , |5〉 , |6〉. Crucially,
this form of the time propagator is retained within the surface
code error tolerance across almost all donor/dot pairs in a
realistic scaled donor/dot computer.

VI. STRONG VARIABILITY OF QUBIT COUPLINGS AND
SPLITTINGS WITHIN A SCALED ARCHITECTURE

Order-of-magnitude oscillations in J are expected as the
position of the donor changes with respect to the abrupt
heterointerface where the quantum dot is formed. This feature
is intrinsic to the silicon band structure [21,34,35], and makes
high-fidelity hard to attain with the dynamical phase gates
proposed in donor-based quantum computers proposals [2].
In Fig. 3(b), we show the results of our multivalley effective
mass theory calculation of the exchange energy of a donor and
dot electron as a function of the distance from the surface to
the donor ion, assuming a field of 4 kV/cm is confining the
dot electron. This theoretical approach has been introduced in
Refs. [35,36], and the details of how it has been adapted to the
system considered here are given in Appendix B. It is clear that
moving the donor one lattice constant closer or farther from
the surface can bring the exchange interaction from a peak
to a trough. The placement of phosphorus donors in a single
plane has been demonstrated using hydrogen lithography on
Si [37], but an analogous approach for Bi donors has not
been developed. Placement of Bi donors by ion implantation
is associated with larger alignment uncertainties [22].

Furthermore, the exchange coupling between any two con-
fined electron spins in silicon is known to depend exponentially
on the magnitude of a uniform applied electric field, as we
have confirmed in Appendix B for a donor/dot pair. The
only alternative to high precision, individual tuning of gate
voltages at each qubit site is to develop, as we have proposed,
manipulations that possess an innate insensitivity to these
orbital details.

It is expected that non-Markovian noise on the applied
control voltages, which represents another major hurdle to
Loss-DiVincenzo two-qubit gates [13], will also be effectively
combated by such insensitivity—although a more complete
analysis is a subject for future work. In Appendix C, we show
how our surface code CNOT is also extremely robust against
local magnetic noise that affects both the donor and the dot
spins.

VII. CONCLUSIONS

In summary, we have shown how bismuth donors and
quantum dots in a silicon host can be combined into a
surface code quantum computer architecture. The first in-
sight of this scheme is that coherent donor spins can be
positioned micrometers apart, which is compatible with the
current state of the art in silicon fabrication, as connections
between neighboring donors are mediated by the quantum dot
electrons. This requires a robust, addressable way of SWAPing
information from a donor to a dot and vice versa, which
we construct from a NMR-controlled Fredkin gate between
the donor and the dot electrons coupled by the exchange
interaction. In contrast to previous proposals of two-qubit
gates built on dynamical exchange phases, we devise adiabatic
manipulations that are insensitive to a two order-of-magnitude
variation in the interaction strength. Combining this with
high-fidelity microwave driven ENDOR transitions on the
highly coherent bismuth donors, we construct CNOT gates
for surface code error correction that retain high fidelity
without the need for individual tuning of the orbital electron
states. Moreover, all microwave fields are applied globally,
and qubits are locally selected for an operation by switching
the back-gate voltage to control the donor/dot SWAP. As the
nearest-neighbor coupling required to implement the surface
code could be achieved by shuttling the array of electrons in
unison with CCD-like gates, the feasibility of the local control
needed is greatly improved as compared to previous blueprints.
With micrometer pitch structures, the surface code would have
108 physical qubits per square centimeter, allowing for many
error-corrected logical qubits. The insensitivity to donor-dot
alignment variations (see Appendix B) may enable fabrication
of large donor-dot arrays by ion implantation [22].
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APPENDIX A: CHOICE OF DONOR

Si:Bi systems have now been experimentally established as
excellent candidate qubits [31]. Bi 9/2 nuclear spins combined
with the 1/2 donor electron spins provide a rich Hilbert space
of states from which to choose the qubit logical |0〉 and |1〉.
Their hyperfine interaction is the strongest available among the
group V substitutional donors in Si, which makes it easier to
transfer the information from the electron to the nuclear spin;
moreover, it allows the existence of so-called clock transitions
[4], i.e., transitions between hyperfine mixed nuclear-electron
spin states that are very insensitive to the actual magnetic field
of the environment. We will now identify the specific donor
states that host the measurement qubits that we propose to
couple to the dot data qubits within the surface code.
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The mixed Hilbert space set up by the electron and nuclear
spin levels of a group V donor is governed, in the presence of
a fixed magnetic field B0, by the Hamiltonian

H = γeB0 · S − γnB0 · I + AS · I, (A1)

where A is the hyperfine interaction between the nuclear spin
I and the electron spin S,γe = geμB

�
= 27.997 GHz/T is the

magnetic moment of the electron, and γn = 0.007 GHz/T is
the nuclear magnetic moment.

The behavior of the corresponding spectrum in the region
of intermediate B0 (roughly speaking, when A ≈ γeB0) can
get very interesting, if I is large enough. In fact, apart from
Si:P, the manifold of the mixed levels for all group V donors
(As, deset111Sb,deset113Sb, and Bi with respective I = 3/2,
5/2, 7/2, 9/2) allows for specific values of B0, where the
energy difference f between selected mixed eigenstates has
a minimum, i.e., ∂f

∂B0
= 0 [32]. The immediate and useful

consequence of such rich behavior, conceptually due to the
large number of mixed levels available, is that the T2 of a qubit
stored in the two donor levels separated by a “clock transition”
will not suffer from local fluctuations in the magnetic field,
which include hyperfine and dipolar interaction with the
deset29Si nuclei and paramagnetic coupling to other electrons
and impurities.

The eigenenergies corresponding to the states of the isolated
donor in Eq. (A1) are

E2±
m = −A

4
− B0γnm

±
√

A2[I (I + 1) + 1

4
− m2] + (Am + B0γe + B0γn)2,

(A2)

for −I − 1/2 < m < I + 1/2, and

E1±
m = ±1

2
(Am + B0γe + B0γn) − 1

4
(A + 4B0γnm), (A3)

for m = ±(I + 1/2).
In a regime of intermediate B0 values, large mixing between

|mS〉 and |mI 〉 states ensues that allowed gigahertz transitions
occur between states of the form | ± ,m〉 ↔ | ± ,m − 1〉 and
| ± ,m〉 ↔ | ∓ ,m − 1〉. It has been observed experimentally
[27] and then clarified theoretically [32] that the sweet spots
aforementioned occur for the second kind of transitions,
namely, when

B0 = B∗
0 ≈ − A

γe

(m − 1)g(m) + mg(m − 1)

g(m) + g(m − 1)
, (A4)

with the restriction −I + 3/2 � m � 0, where g(m) ≡√
I (I + 1) + 1

4 − m2. The nature of the expression (A4)
should clarify why Si:P does not show any clock transition,
while their number increases for larger I , as there will be more
integers m � 0 able to satisfy such condition.

Since we suggest the “hybridization” of a highly coherent
donor system with the two Zeeman split states of a quantum
dot electron spin, we would like the Zeeman dot frequency
fdot ≈ B0γe (the dot electron g factor is 1.997) to cross some
donor clock transition fdonor at the sweet spot where ∂fdonor

∂B0
= 0,

as shown in Fig. 2. Let us show that meeting those requirements

automatically selects Si:Bi as the only option among group V
donors in silicon: after rearranging Eq. (A4), we get

fdot = γeB
∗
0 ≈ −A

[
m −

(
1 + 2m − 1

g(m)2

)−1/2
]

< −A(m − 1).

(A5)

On the other hand, close to a clock transition, the eigenenergies
of the hybrid states involved can be approximated as

E2±
m ≈ −A

4
± A

2

√
I (I + 1) + 1

4
− m2. (A6)

Hence requiring that a | ± ,m〉 ↔ | ∓ ,m − 1〉 transition is
degenerate with fdot implies

fdonor − fdot = A

2
[g(m) + g(m − 1)] − γeB

∗
0 = 0. (A7)

By virtue of (A5),

fdonor − fdot >
A

2
[g(m) + g(m − 1) + 2(m − 1)], (A8)

and this latter expression is seen to be always positive unless
m � −3. Thus the required degeneracy can be achieved only
within Si:Bi, specifically addressing the | + ,m = −3〉 →
| − ,m = −4〉 transition, which we call allowed transition, and
the | + ,m = −4〉 → | − ,m = −3〉 transition, the forbidden
one. The following hybrid electron-nuclear spin states are
respectively involved (the colored arrows label the qubit
transitions as indicated in Fig. 3):

cos
θ−3

2
|1/2,−7/2〉 + sin

θ−3

2
|−1/2,−5/2〉

fdonor = 5.2142 GHz ↓ B∗
0 = 0.188179 T

− sin
θ−4

2
|1/2,−9/2〉 + cos

θ−4

2
| − 1/2,−7/2〉,

− sin
θ−3

2
|1/2,−7/2〉 + cos

θ−3

2
|−1/2,−5/2〉

fdonor = 5.21683 GHz ↑ B∗
0 = 0.188086 T

cos
θ−4

2
|1/2,−9/2〉 + sin

θ−4

2
| − 1/2,−7/2〉.

(A9)

The occurrence of an energy crossing between the Zeeman
transition linking the two dot electron spin states and the
allowed donor clock transition is displayed in Fig. 2(a). In
the high-field limit (Zeeman much larger than hyperfine), the
right transition in Eq. (A9) is forbidden, since it involves a
nuclear spin flip: this is the motivation for labeling the left
transitions as “allowed” and the right as “forbidden,” even
though both are actually enabled in the intermediate B0 regime
investigated here. Each of these two transitions couples to
opposite helicity microwave photons, as noted by Ref. [26],
thus the selective excitation of a single transition in the pair
does not pose fundamental physical limitations, even though
the energy difference between the two, about 2 MHz, would
hardly be distinguished with fast microwave pulses.
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APPENDIX B: EXCHANGE COUPLING BETWEEN A MOS
QUANTUM DOT AND A SI:BI DONOR

The aim of this section is to evaluate the exchange coupling
that would arise between an electron spin which is confined
in a quantum dot close to a Si/SiO2 interface and the excess
electron spin provided by a donor Bi atom implanted deep
in the bulk of a Si layer, at a distance d from the interface.
This interaction paves the way for the fundamental data-
measurement qubit coupling that is needed for the surface
code proposed in the Results.

The confinement for the interface electron is provided by an
external electric field F (in the ẑ direction, which we assume
to be perpendicular to the plane which contains the interface)
and by a quantum dot potential (approximately parabolic)
in the transverse x-y plane. This simple modeling accounts
for the voltage landscape that the confining interface gates
would be able to produce. The impurity potential due to the
substitutional implanted Bi atom completes the description of
this two-electron problem: the potential energy of an electron
in this system, as shown in Fig. 4, is described as

V (r) = +eFz + Udot(r) + Udonor(r) + Uimage(r), (B1)

where ρ is the radial coordinate in the plane of
the interface, Udot(r) = ω0

2 ρ2 is the confining potential

of the dot gates, Udonor(r) = − e2

εSi

√
ρ2+z2

(1 − e−b
√

ρ2+z2 +
B

√
ρ2 + z2e−b

√
ρ2+z2

) represents the Si:Bi impurity potential
outside the donor central cell [36] (with εSi = 11.4 is the
dielectric constant of Silicon, b and B two pseudopotential pa-
rameters), Uimage(r) = e2Q

εSi

√
ρ2+(z+2d)2

− e2Q

4εSi(z+d) parametrizes

the electrostatic image effects due to the dielectric barrier, with

Q = εSiO2 − εSi

εSiO2 + εSi
and d the distance of the nucleus from the

interface. The infinite wall at the interface models the ≈3 eV
step between the energies of the conduction band edges of the

FIG. 4. A three-dimensional plot of the two-well potential in
Eq. (B1), that binds the quantum dot electron at the interface with
the oxide and the donor electron in the region close to the implanted
dopant Bi atom, in the x-z (y = 0) plane. The origin of our coordinate
system resides at the position of the Bi nucleus, while z = −d

corresponds to the interface plane. An electric field F = 20 kV/cm
and a donor depth d = 38 nm are assumed.

silicon and the oxide layer, and implements our assumption
that the dot electron state does not penetrate significantly into
the oxide. The electric field is assumed to be uniform and
unidirectional throughout the system, which is a reasonable
approximation for realistic devices of this kind, as is the
parabolic transverse confinement that binds the quantum dot.
We take into account the effect of the accumulation of charges
on the dielectric SiO2 boundary, induced by the electrostatic
configuration in the Si layer, via the image-charge method [38].

Effective mass theory is used in our evaluations of exchange
splittings, since the latter will gain the most relevant contribu-
tions from the electronic densities in the intermediate spatial
region between the two wells, i.e., far from the Bi nuclear cell
where EMT fails. Our theory for the donor state has been tested
in Ref. [36] to yield good agreement with experimental Stark
shifts of the spin Si:Bi spectrum. The donor wave function is
there given by

ψD =
√

2

3

∑
i=x,y,z

FD
i (r) cos(k0i · r)ui(r), (B2)

where the functions ui(r) are the lattice periodic parts of the
Bloch eigenstates of the undoped silicon layer relative to each
conduction band minimum k0i , and the anisotropic envelopes
FD are defined, e.g., as

FD
z = ND(e

−
√

x2+y2

a2
s

+ z2

b2
s + β e

−
√

x2+y2

a2
l

+ z2

b2
l ), (B3)

with different pairs of Bohr radii distinguishing the short
(as,bs) from the long (al,bl) range hydrogenlike decay, with
a relative weight β (ND is a normalization factor). In the
regime of donor depths and electric fields of interest here,
the donor state can be assumed, to very high precision, to
coincide completely with the bulk ground eigenstate, which is
constructed from an equal superposition of the Bloch functions
of all the six degenerate valleys.

The issues due to the valley degeneracy of the silicon
conduction band are completely taken into account for the
donor state, while we assume that the interface state resides
in only one of the two ẑ-valleys combinations (namely,
the symmetric one) that are almost degenerate close to the
interface. Such degeneracy is known to be removed by the z

confinement provided by the Si/SiO2 boundary and the electric
field [39], with splittings as large as ≈1 meV that increase
linearly with the applied field F [40], but a complete theory
of the interplay of those effects will depend crucially on the
details of the device. However, since the intervalley coupling at
the interface is not as strong as for a bulk donor, a more refined
description would only provide the correct superposition of
the two valleys that constitutes the orbital interface ground
state, something that will not change qualitatively the analysis
below. In fact, our calculations provide a worst case scenario,
that is well suited to the feasibility study we are aiming at:
the oscillations in J (d) are maximal if the orbital state is an
equal weight superposition of z valleys, so that the spatial
dependence of the dot wave function is exactly in (anti-)phase
with the donor one. Due to the roughness of the interface,
for example, it is likely that other combinations of the two
valleys, with different weights, correspond to the actual dot
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ground state: out-of-phase valley interference would then be
able to reduce the large oscillations calculated here.

The envelope of the dot electron wave function is calculated
via a variational optimization of its on-site ground binding
energy, as determined by the potential in Eq. (B1). Based on the
strong similarity of the interface well with the exact solvable
problem of an infinite triangular well, it has been proposed
that a good ansatz for the interface envelope should resemble
an Airy function [38] along the z axis, while a Gaussian
confinement is well suited to the x-y confinement:

ψI =
√

2 cos[k0(z + d)] uk0z
(r)F I

z (r),
(B4)

F I
z (r) = NI (z + d)2e−α(z+d)/2e−β2ρ2/2,

where 5/α gives the typical spread of the wave function in
the ẑ direction, while 2/β represents its extent in x-y plane
(NI is a normalization factor). We solve variationally for the
ground eigenstate and eigenvalue by optimizing α and β as a
function of F and the donor depth d. In fact, even if the donor is
implanted as deep as ∼40 nm from the interface, the screened
Coulomb attraction from the Bi nucleus affects the dot state
in a non-negligible way. It provides a strong enough binding
in the (001) plane that the transverse extent of the dot electron
amounts to a radius of ≈25 nm, which already matches the
length scales of experimental quantum dot engineering. As a
consequence, ω0 is neglected in our calculations.

The range of magnitudes of the exchange splittings that
we need sets rather stringent requirements: if the dot is not
tightly confined (EI ≈ −12 meV, F ≈ 4 kV/cm), then the
donor should be as deep as ∼40 nm. If larger voltage gates
are established, then the donors should be positioned closer to
the interface, which is harder to realize, and the more efficient
hybridization between donor and dot states combined with
higher fields will make donor ionization more likely. We use
the Heitler-London method [35] to calculate the difference
between the two lowest eigenvalues of the double electron
problem. Within this scheme, the states are the orthonormal-
ized symmetric and antisymmetric orbital superpositions of
the product of two single electron functions ψI and ψD:

�(r1,r2)± = 1√
2(1 ± S2)

(ψD(r1)ψI (r2) ± ψD(r2)ψI (r1)).

(B5)
Here, r1,r2 are the spatial coordinates of electron 1 and
2, respectively, and S = 〈ψD|ψI 〉 is the overlap of the
single-electron ground states. Exchange splittings are plotted
in Fig. 4 in the main text as a function of the donor depth, and
in Fig. 5 as a function of the applied field F .

We use high precision numerical calculations to estimate
the highly oscillatory integrals involved in the calculation of
the exchange coupling. The largest ratio between each J (d)
maximum and the next closest minimum is ≈0.01 for all
the implantation depths considered here. The state-of-the-art
implantation processes for donors in silicon allow a precision
of ≈1 nm in the depth of the impurities (for example, a
very shallow implant followed by low-temperature overgrowth
[41]), which would correspond to several oscillations, and an
estimated relative spread of maximum to minimum J values
of 1:200. We remark that a different crystallographic direction
could be chosen for engineering the quantum dots, which could

d 37.97 nm

4.0 4.5 5.0 5.5 6.0 6.5
F kV cm

1 10 4

2 10 4

5 10 4

0.001

0.002

0.005

J meV

FIG. 5. Donor/dot exchange splittings as a function of the applied
field: as F increases the dot is more localized at the interface, thus the
interaction decreases. The control is very efficient: tuning the field
by less than 3 kV/cm allows one to switch J “off” by two orders
of magnitude. A donor depth of d = 37.97 nm is assumed, but the
same trend would be followed for any position of the Bi nucleus.
At smaller fields, the influence from the Coulomb attraction from
the Bi impurity is still significant, and it affects the confinement of
the dot state; then, from F � 4.5 kV/cm, J becomes relatively less
sensitive to the applied field, as the interface well is now more strongly
established.

reduce the strength of the oscillations in J (d), for example, if
the donor and the dot were separated along one [011] axis, then
the interface ground state would be a combination of y and z

valleys, but only the Fz components of the exchange would
oscillate with d. However, the twofold valley degeneracy
discussed before would then include more states. While the
degeneracies would be very likely broken by the confinement
and the interface roughness, the dot state would nonetheless
be more liable to couple to excited orbital states, which would
cause information leakage.

Let us highlight that the J values presented here would
be completely robust against small displacements of the
nominal donor position in the plane transverse to the donor/dot
separation: no extra oscillation would take place if the donor
and the dot are not completely aligned vertically, since the
interface state is only made up of z valleys. This feature
contrasts the behavior of the exchange coupling between
two neighboring donors examined in Ref. [35], where all the
valleys contribute to the interference, and thus J is sensitive
to displacements along any spatial direction.

APPENDIX C: ROBUSTNESS OF THE CNOT TO LOCAL
SHIFTS OF THE QUBIT FREQUENCIES

So far, we have assumed that all the physical qubits
experience the same local magnetic field. However, in a
realistic device, the resonant frequencies of donor spins
will be modified by local shifts of their hyperfine coupling,
due to uncontrolled local strain and inhomogeneities of the
electrostatic environment [36], while the resonant frequencies
of electron spins in quantum dots will be affected by the local
spin-orbit interaction.

Typical linewidths of Sb donor spins implanted near a
surface are less than 600 kHz [42]. The absolute shifts in the
hyperfine coupling of bulk Si:Bi spins due to inhomogeneous
electrostatic environments are comparable to those of Si:Sb
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donors: while the relative sensitivity of the hyperfine coupling
for Si:Bi donors is one order of magnitude smaller than for
Si:Sb, the unshifted Si:Bi hyperfine coupling A0 itself is one
order of magnitude larger than Si:Sb [36]. Thus 600 kHz is a
good measure of the typical local frequency shift that the Si:Bi
donors could experience in the scaled architecture proposed
here. When the static magnetic field B0 is perpendicular to
the surface, as described here, natural quantum dots close to a
MOS interface also have a linewidth of less than 600 kHz [43].
The swap gate described here will not be impeded significantly
by such differences across a scaled device. In the first part
of the adiabatic time evolution the detuning � is of the
order of 100 mHz for all the donor/dot pairs, thus local
differences of the order of 600 kHz would only produce an
overall relative shift of the corresponding detuning that is no
larger than 1%. When, closer to the degeneracy point, the
exchange coupling J becomes the relevant energy scale, for
the pairs that yield >99.9% transfer fidelity [as described
in Fig. 3(a)] J lies in the 30-MHz–3-GHz range, which is
again at least 50 times larger than the frequency shift. The
Landau-Zener physics that governs the time evolution leading
to the swap operations described above is affected only slightly
by such local distortions. More quantitavely, we have verified
that simulated transfer fidelities higher than 99.9% are still ex-
pected within the same range of donor/dot distances considered
in Fig. 3(a), if the local detuning pertaining to each donor depth
is shifted by as much as 10 MHz from the reference detuning.
Only a negligible fraction of the fault-tolerant donor/dot
pairs within the nonshifted array discussed before undergoes
adiabatic transfers with fidelities below the 99.9% threshold.

APPENDIX D: LAYOUT AND OPERATIONAL
CONSIDERATIONS

For clarity, in the main text we have considered one
particular mode of operation and arrangement of donors and
dots, but there are a number of other similar architectures,
which have advantages and disadvantages. Here, we discuss
some of these other possibilities, as well as our current
understanding of their strengths and weaknesses.

One possibility would be to avoid the exchange interaction
entirely. Ionizing the donors and moving their electrons to
neighboring donors has been suggested as an alternative to
exchange-based entanglement of nuclear spins [41,44]. How-
ever, with hyperfine interaction frequencies of order 100 MHz
or higher, controlling the timing of the electron removal and
reintroduction to the donors becomes problematic.

In Fig. 1 of the main text, we have shown a diagram
of a donor/dot array in which the exchange interaction is
controlled by a back gate below the donors. However, a
fully planar arrangement in which the donors are closer to
the Si/SiO2 interface and couple laterally to the dots, as
suggested by Carroll and coworkers [45] may be preferable

from a fabrication viewpoint. This approach would be closest
to current practice for classical silicon circuits, and it would
eliminate the need for complex device layers contacted
from both sides. However, for operations such as a logical
Hadamard, it would be advantageous for the donor electrons
to be able to be moved across more than one site. Measuring
the donors if they are in the same layer as the dots could
also lead to a complex routing arrangement for moving
electrons to the neighboring donors. It should be noted that
multilayer heterogeneous integration with micrometer-scale
device registration, as would be necessary for the backgate
approach, has been demonstrated [46]. Details of layout and
fabrication complexity will determine this choice, and are
beyond the scope of the present discussion.

Single-qubit operations on the surface code involve apply-
ing gates to subsets of the data qubits. In this architecture, the
appropriate subset is chosen by selectively swapping to the
donors and performing the qubit rotations on them. It would
be possible for the measurement donors to do double-duty
for the single spin gates, but it may be advantageous to
associate a donor with every quantum dot, rather than just the
measurement sites, to aid in these operations. Also, we have
discussed measuring and reinitializing a subset of the donors
at each step, though measuring all of the donors each time
and simply ignoring the unnecessary results would probably
be preferable to minimize decoherence.

A further consideration is whether to use the dot electrons
as data qubits and the donors for measurement, or the other
way around. There is no particular advantage in terms of
the quantum gates, since global single qubit operations can
transform the operations appropriately. The major distinction
is whether the spin of an electron in a dot or bound to a donor
is measured.

Fast accurate single spin measurement and initialization are
required for surface codes, as for other methods of quantum er-
ror correction. Spin to charge conversion for spin measurement
has been ubiquitous in quantum dot qubit experiments for over
a decade [47], while direct spin-dependent tunneling for single
donor spin readout is a more recent development [5]. Spin-
selective optical excitation of donors may relax requirements
on electron temperature [25] and placement precision, and
optical readout of single donors has been shown [48]. However,
the spin readout method is also connected to the arrangement of
the donor/dot array. If the donors are the measurement qubits,
all of the donor gates and readout devices (single-electron
transistors, SETs [49] or quantum point contacts [50] to sense
single charges) can be integrated onto the back side of the array.
The transfer gates on the top of the array have a simple structure
with this approach. However, if spin readout is through the
dots, then the quantum point contacts (or SETs) for sensing the
charge would typically be placed on the surface next to the dots,
and the transport of the dot electrons to the nearest-neighbor
donors becomes more difficult.
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