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Exciton-polariton quantum gates based on continuous variables
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We propose a continuous-variable analog of quantum controlled-NOT gates based on a system of exciton
polaritons in semiconductor microcavities. This can be realized by engineering a parametric interaction between
control and target polariton modes, which can be varied in time. As an explicit setup we use a system of
dipolaritons, which allows for enhancement of parametric interaction by auxiliary classical fields and scalable
multigate system realization. We find that high operational fidelity for the proposed gate is achievable for realistic
system parameters.
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I. INTRODUCTION

Quantum controlled-NOT (CNOT) logic gates are universal
elements in quantum computation, in principle allowing the
implementation of any quantum algorithm (when supple-
mented with single-qubit rotations). Their construction in
physical systems is challenging since one requires a system
with both limited dephasing and strong nonlinearity. Early
realizations of CNOT gates made use of nuclear magnetic
resonance in molecules [1] or postselection in linear optical
systems [2], which were later reduced in size on photonic
chips [3]. More recently, demonstrations of quantum gates
and small quantum circuits were achieved using a variety of
systems, including ion traps [4–7], nitrogen vacancy centers
[8], and superconducting qubits [9–12].

Semiconductor systems have long been valued in informa-
tion processing for their compact sizes, which are particularly
important when one aims to build circuits with large numbers
of gates. In particular, semiconductor microcavities containing
quantum wells are quasi-two-dimensional structures with
micron thicknesses. These structures also offer the oppor-
tunity to hybridize the properties of photons and excitons,
generating new exciton-polariton quasiparticles with decay
time exceeding tens of picoseconds. The presence of an
excitonic component facilitates nonlinear interaction between
polaritons, which has led to the experimental observation of
quantum squeezing [13] as well as the theoretical [14–16]
and experimental study of nonclassical correlations [17].
Additionally, macroscopically populated polaritonic modes
were suggested to mimic the two-level qubit system [18]
and analog CNOT gate [19]. At the same time, currently
existing polaritonic samples do not possess the strong single
polariton nonlinearity required for the conventional blockade
mechanism [20], and most quantum effects at the weak single
polariton nonlinearity level need to exploit interference effects
for the realization of an unconventional polariton blockade
[21–24] or generation of entangled states [25].

The aim of this paper is to introduce an alternative route
toward construction of polariton quantum CNOT gates. To
avoid the need for single-particle control and detection, we
choose to encode information in the continuous amplitude and
phase variables of polariton fields. First, a continuous-variable
quantum CNOT gate operator is realized by engineering a
two-mode parametric interaction Hamiltonian, which can be
controlled in time. Second, it is well known that it is difficult

to observe nonlinear effects when small numbers of polaritons
are involved. For this reason, we exploit a mechanism of
nonlinear enhancement that uses a macroscopic density to
amplify scattering processes, while quantum information is
maintained in separated low-density quantum modes. The
proposal allows us to achieve CNOT operation fidelity as high
as 99% for realistic system parameters.

Finally, we consider the scalability of our scheme, where
multiple quantum gates can be cascaded one after another,
in principle allowing the construction of arbitrary algorithms.
Typically one imagines a quantum circuit as a network of
quantum logic gates separated in space [26]. This requires that
signals travel spatially between distant nodes of the network.
However, spatially propagating polaritons would experience
losses as they scatter with disorder and experience dispersion.
While superfluidity [27–29] and bright soliton wave packets
[30,31] have been shown to overcome these effects in
microcavities, they imply a macroscopic classical polariton
state, which cannot itself encode quantum information. In the
present proposal, we use a reciprocal space encoding [32] of
quantum nodes, negating the need for any spatial propagation.
Polariton modes are distinguished by different momenta, and
logic gates exploit momentum conservation rules to connect
particular modes. Rather than being physically fixed, the gates
are enacted by the application of a known pulse sequence,
which could be controlled by a spatial light modulator. This
brings the additional feature of being able to reconfigure the
quantum circuit.

II. DEFINITIONS

The theory of quantum information with continuous vari-
ables [33] is well developed and uses the same fundamental
features of quantum computation, namely superposition and
entanglement, to achieve aims similar to those of qubit-based
methods. Working with continuous variables, the analogous
definition of the quantum CNOT gate is given by the operator
ĈN = e−iq̂1p̂2 [34], which acts simultaneously on two quantum
fields, â1 and â2, where the amplitude and phase operators
are defined by q̂n = (ân + â

†
n)/

√
2 and p̂n = −i(ân − â

†
n)/

√
2.

The CNOT gate can also be defined by its action on amplitude
eigenstates ĈN|q1,q2〉 = |q1,q2 + q1〉, demonstrating analogy
with CNOT gates: the first quantum field â1 acts as a control
field, which adds to the amplitude of the target field â2.
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III. SINGLE-GATE SCHEME

To realize a single CNOT gate, let us consider the Hamilto-
nian

Ĥ = α(ψ∗2â1â2 + ψ2â
†
1â

†
2) − J (â†

1â2 + â
†
2â1). (1)

It represents a parametric scattering from a macroscopically
occupied mode ψ into two quantum modes â1 and â2,
which have an additional linear coupling between them. If
we imagine that â1 and â2 represent polariton modes with
equal and opposite wave vectors, then the first term in the
above Hamiltonian can be arranged making use of interbranch
scattering schemes such as those studied theoretically in
standard planar microcavities [35] and parametrically driven
cavities [36], or experimentally in triple microcavities [37]. In
such cases, the field ψ would be a polariton field with a zero
in-plane wave vector, and α is a constant parametrizing the
strength of polariton-polariton interactions. We will assume
that ψ can be controlled optically, and ideally the linear
coupling term J could also be controlled. Both resonant [38]
and nonresonant [39] excitation have been used to optically
generate polariton potentials, leading to the optical control of
polaritons in real space [40–42], and creating the desired linear
coupling J between the modes â1 and â2.

Since the amplitude and phase of ψ can be tuned, let us
consider the case αψ2 = −J . The phase reference of the
second mode can be changed, â2 �→ iâ2, following the phase
of an input. Then, the Hamiltonian becomes

Ĥ = J (−iâ1â2 + iâ
†
1â

†
2 − iâ

†
1â2 + iâ

†
2â1) = 2J q̂1p̂2, (2)

and the corresponding evolution operator reads Û = e−iĤt/� =
e−i2J q̂1p̂2t/�. By switching the couplings on and off, the
evolution time could be set to t → τ0 = �/2J , in which case
the unitary evolution operator corresponds to the quantum
CNOT gate. The result of CNOT gate operation can then be
monitored by measuring the amplitude of a target field (see
Appendix A for details of the possible detection scheme).
We note that while the interaction energy between a pair
of polaritons 2α may be limited, it is the quantity αψ2

that determines the relevant coupling strength [43], where
weak interaction is effectively amplified by the macroscopic
field ψ .

IV. GATE FIDELITY

In the ideal case of unitary evolution with precisely
timed parametric interaction, which we described before, the
polaritonic system can work as a perfect continuous-variable
CNOT gate. However, in real systems we identify the main
mechanisms responsible for imperfect gate operation to be
the decay of polaritons and the imprecision of the interaction
constant control.

In the presence of decoherence, the evolution of any
expectation value is given by

i�
d〈Â〉
dt

=
〈

[Â,Ĥ] + i�

2

∑
n

Lân
[Â] + iP

2

∑
n

L
â
†
n
[Â]

+ i�P

2

∑
n

L
â
†
nân

[Â]

〉
, (3)

where � denotes a dissipation rate of polaritonic modes, and
the Lindblad superoperator is defined as Lâ[Â] = 2â†Ââ −
â†âÂ − Ââ†â, and Lindbladian Lâ†â[Â] = 2â†âÂâ†â −
â†ââ†âÂ − Ââ†ââ†â corresponds to a pure dephasing with
rate �P . For the sake of generality, we also introduced
an additional incoherent pumping at rate P with conjugate
Lindbladian Lâ† [Â], which is responsible for an incoherent
replenishing of polaritonic states, and it may arise from the
presence of a thermal reservoir.

Using Eq. (3), we derive a closed set of evolution equations
for the amplitude and phase expectation values:

i�
d〈q̂1〉
dt

= i(P − � − �P )

2
〈q̂1〉, (4)

i�
d〈q̂2〉
dt

= 2iJ 〈q̂1〉 + i(P − � − �P )

2
〈q̂2〉, (5)

i�
d〈p̂1〉

dt
= −2iJ 〈p̂2〉 + i(P − � − �P )

2
〈p̂1〉, (6)

i�
d〈p̂2〉

dt
= i(P − � − �P )

2
〈p̂2〉, (7)

which are readily solved analytically. One sees that for P = �

the mean-field amplitudes of the polaritons no longer decay,
while in the regime P > � one should account also for nonlin-
ear losses [44] to prevent the amplitudes growing indefinitely.
Furthermore, one can write a closed set of evolution equations
for the second-order correlators (〈q̂2

1 〉, 〈q̂1q̂2〉, 〈q̂2
2 〉, 〈p̂2

1〉, etc.).
These equations are given in Appendix B together with their
analytical solution.

To assess the performance of the quantum gate, we consider
a set of displaced squeezed vacuum states as inputs, ρ in =
|ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|, with |ψn〉 = D̂(q in

n ,pin
n )Ŝ(r)|0〉, where

D̂(q in
n ,pin

n ) = exp(〈ain
n 〉â†

n − 〈ain
n 〉∗ân) is the displacement op-

erator providing the amplitude q in
n and phase pin

n of the input
mean fields 〈ain

n 〉. Ŝ(r) = exp( r
2 â†2 − r

2 â2) is the squeezing op-
erator with squeezing parameter r , and |0〉 is the vacuum state.
The ideal output state is ρ ideal = |q in

1 ,q in
1 + q in

2 〉〈q in
1 ,q in

1 + q in
2 |.

The actual state ρ(t) obtained in the presence of dissipation
and incoherent pumping is characterized by its fidelity with
ρ ideal:

F (ρ ideal,ρ(t)) = Tr[
√√

ρ idealρ(t)
√

ρ ideal]. (8)

The fidelity can be calculated from the covariance matrix
[45,46], which is directly obtained by knowing all the second-
order correlators. The fidelity of the polaritonic CNOT gate as a
function of decay rate is shown in Fig. 1(a) for different values
of the squeezing parameter r . For each value of r , we minimize
the fidelity over input states with a fixed maximum total
intensity 〈x〉2 = 〈q1〉2 + 〈p1〉2 + 〈q2〉2 + 〈p2〉2. We assume
the optimum operation time τ0 = �/2J . The fidelity is seen
to drop from unity (corresponding to a perfect CNOT gate)
monotonically as the ratio of the decay rate to the coupling
strength �/J is increased, or when input states with a higher
squeezing or total intensity are considered, as illustrated in
Fig. 1(b).

The decrease of the fidelity when operating with more
highly squeezed states is very natural. In phase space, the
Wigner function of the unsqueezed state is a circular Gaussian,
while the infinitely squeezed state is a thin line. The decay has
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FIG. 1. (a) Fidelity of a quantum CNOT gate for increasing
dissipation rate. The different colors correspond to different amounts
of input squeezing (magenta: r = 0, green: r = 0.5, and blue: r = 1).
The solid curves show the range of fidelities for total intensity
increasing from 〈x〉2 = 0 to 10, where the highest fidelity is obtained
for the squeezed vacuum input. Dashed curves show the same result
in the presence of an additional incoherent pumping, chosen with
rate P = �. (b) Dependence of the minimum fidelity of the input
squeezing r and total intensity 〈x〉2. The different surfaces correspond
to different values of �/J = (0.01,0.02,0.05). Smaller values of �/J

leading to very high fidelities are expected in samples with a high
quality factor.

the effect of smearing any squeezed state into the unsqueezed
state with 〈q2

n〉 = 〈p2
n〉 = 1/2. In fact, the state is driven toward

the unsqueezed state at a rate proportional to 1/2 − 〈q2〉 (as
can be seen from writing the correlator evolution explicitly),
that is, highly squeezed states are most quickly deformed in
phase space.

The dashed curves show the fidelities calculated with a
nonzero incoherent pump, which attempts to compensate the
losses in the system (P = �). Interestingly, in this case the
fidelity no longer depends on the intensity of the initial state,
however it becomes worse due to the incoherent pump. While
the incoherent pump can compensate fully for the loss of
mean-field amplitudes, it cannot compensate for the loss of
quantum correlations caused by dissipation. Allowing for
different values of P , one finds that the optimum fidelity
appears for P = 0.

Next, we plot the dependence of gate fidelity on the pure
dephasing rate. The results are shown in Fig. 2(a) assuming
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FIG. 2. Range of CNOT fidelities calculated for input states of
total intensity increasing from 〈x〉2 = 1 to 10, accounting for a pure
dephasing and nonideal gate pulse. (a) Fidelity as a function of pure
dephasing rate for input states with squeezing parameter r = 0,0.5,1.
(b) Gate fidelity in square J (t) pulse operation mode plotted as a
function of signal edge time to optimal operation time ratio, τf /t0.

the decay rate �/J = 0.02, input states with r = 0,0.5,1, and
varying total intensity ranging from 〈x〉2 = 1 to 10. These
suggest that a low level of pure dephasing �P /J < 0.05 is
required for high-quality CNOT operation.

Additionally, we study the influence of imperfect timing
of the gate pulse on the fidelity of the continuous vari-
able CNOT gate. We start by considering a square pulse
with finite pulse edges described by J (t) = J0f (t)[1 − f (t −
τ0)], where f (t) = [exp(−t/τf ) + 1]−1, with τf being the
pulse edge time, and J0 denotes a time-independent interaction
constant. The fidelity as a function of pulse edge time is
shown in Fig. 2(b) for an ideal case of negligible losses. The
results suggest that an accurate control of the gate pulse is
required at a time scale below �/J0, where pulses with sharp
edges, τf /τ0 < 0.3, do not contribute to degradation of the
gate fidelity.

Finally, we discuss the experimental feasibility of the
proposed scheme, with the main parameters being the polariton
lifetime, the nonlinear coupling constant, pure dephasing, and
the characteristic switching time. Polariton lifetimes τdec in the
range of hundreds of picoseconds have been reported recently
[47,48], with the corresponding decay rate being in the μeV
range. When controlled with a classical field, nonlinearities
can be tuned to be in the sub-meV range. Taking J = 0.2 meV
and τdec = 65 ps gives the ratio of �/J ≈ 0.02, and it sets the
characteristic switching time to a picosecond range, which will
be achievable with an optical control of the coupling constant.
The pure dephasing in the polaritonic system was estimated
to be at the �P = 0.2 μeV level [49], yielding �P /J = 10−3.
This makes high fidelities of 99% feasible for input states of
〈x2〉 < 10 and r ≈ 0.5.

V. MULTIGATE SYSTEM: DIPOLARITON SETUP

We now discuss a scalable scheme of CNOT gates, which
requires a set of multiple quantum modes and the ability
to apply successive gates between chosen pairs of modes.
Toward that end, let us consider a dipolariton system [50],
in which two types of exciton modes (direct and indirect) are
coupled to a cavity mode in a microcavity, resulting in three
dispersion branches as illustrated in Fig. 3. The advantage of
the dipolariton system is the freedom in varying the mode
energies via an applied electric field, although similar setups
could be imagined in triple microcavities [37].

Each dispersion mode exhibits a linear polarization splitting
between the transverse-electric (TE) and transverse-magnetic
(TM) polarizations [51]. Let us take the TM-polarized modes
of the middle branch as the relevant quantum modes of our
system. A degenerate set of these modes can be distinguished
by different orientations of in-plane wave vector, and they are
illustrated in green in Fig. 3. In the following, we will choose
to work in the frame rotating at the energy of this set of modes.

The Hamiltonian of the multimode system up to an energy
shift reads (see details in Appendix C)

Ĥ =AψUP,+ψLP,+â
†
2,+â

†
1,+ + Bψ ′∗

LP,−ψLP,−â
†
2,−â1,−

+ CψUP,+ψLP,−â
†
2,+â

†
1,−

+ Dψ ′∗
LP,−ψLP,−â

†
2,+â1,+ + H.c., (9)
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FIG. 3. Scheme for a CNOT gate implemented between a selected
pair of modes. The plot shows 2D dispersion of three polari-
tonic modes, each split in two branches for different polarization
components.

where A, B, C, and D are effective interaction constants that
depend on Hopfield coefficients and bare interactions. Here
ψα,j denote the relevant classical modes.

The quantum modes can be rewritten in terms of their TE-
and TM-polarized components using the transformation

(ân,+ân,−) = 1√
2

(
e2iφn ie2iφn

e−2iφn −ie−2iφn

)
(ân,TMân,TE), (10)

where φn denotes the angle of the mode n in reciprocal space.
To arrange for a CNOT gate between an arbitrary pair of

modes, â1,TM and â2,TM, we consider a quite specific but
fully feasible macroscopic excitation of classical fields in the
lower and upper polariton branches, as illustrated in red in
Fig. 3. In the upper branch, we choose a circularly polarized
field ψUP,+ at the same wave vector as â1,TM. In the lower
branch, we choose a cross-circularly-polarized field ψ ′

LP,−
for instance to have the same wave vector as â1,TM, together
with a linear polarization (characterized by a superposition
of both circular components ψLP,+ and ψLP,−) at the same
wave vector as â2,TM. Since we have chosen classical fields
with the same in-plane wave vectors as â1,TM or â2,TM,
momentum conservation rules allow only a coupling of the
chosen quantum modes by the classical fields. In particular,
two types of scattering processes appear, where interactions
between parallel spins are considered. First, the σ+-polarized
component of the pumping provides an effective two-mode
squeezing interaction, allowing for the scattering processes
indicated by the solid arrows in Fig. 3 (the reverse scattering
process also occurs). Second, the σ−-polarized component
of the pumping results in a process in which the quantum
modes are exchanged by transferring their momentum to the

classical field. This process is indicated by the dashed arrows
in Fig. 3 (and again the reverse process also occurs). Finally,
the classical field energies can be chosen such that the relevant
scattering processes are resonant only with the TM-polarized
states. Neglecting off-resonant interactions with TE states (see
the discussion in Appendix D) gives the Hamiltonian

Ĥ = iJ â
†
1,TMâ

†
2,TM + iJ â

†
2,TMâ1,TM + H.c., (11)

where J can be made real by correct choice of the amplitudes
and phases of the classical fields (Appendix C), allowing for
CNOT operations acting on eight different continuous variable
modes.

VI. CONCLUSION

We presented a scheme for quantum logic gates based
on exciton polaritons in semiconductor microcavities. Unlike
previous schemes, we operate with continuous variables that
avoid the necessity of operating with a definite number of
polaritons, and we make use of an effective amplification of
nonlinearity in the system based on the coupling of quantum
modes with macroscopically occupied classical states. Using
these ingredients, a quantum optical treatment of decay
processes predicts fidelities in excess of 99% for existing
microcavities. Additionally, we proposed a way to construct
scalable networks of polaritonic gates. The experimental
demonstration of our proposal would not be reliant on
single-photon detection and would require standard homodyne
detection measurements (this would depend also on the
implementation of future error-correction protocols).

APPENDIX A: POSSIBLE IMPLEMENTATION OF AN
EXPERIMENTAL DETECTION SCHEME

The characterization of a quantum optical process can be
achieved by measuring its effect on input coherent states
[52]. Gaussian coherent states are fully characterized by their
covariance matrix, which can be experimentally accessed
using homodyne detection [53]. An important ingredient
of such a technique is the availability of a classical local
oscillator, with frequency identical to that of the measured
modes. While this is not immediately available in our system,
a modified detection scheme can be implemented using an
additional interference between the lasers driving upper- and
lower-branch polaritons.

For the described system, the relevant two-mode covariance
matrix is given by

Vij = 1
2 〈x̂i x̂j + x̂j x̂i〉 − 〈x̂i〉〈x̂j 〉, (A1)

where x̂T = (q̂1,p̂1,q̂2,p̂2).
From the interference of the modes â1 and â2 on a

beamsplitter and the application of phase delays, one has
access to the fields â3 = (â1 + â2)/

√
2, â4 = (â1 − â2)/

√
2,

â5 = (iâ1 + â2)/
√

2, and â6 = (iâ1 − â2)/
√

2 [see Fig. 4(a)].
The fields âi all oscillate at the same frequency, which is

midway between the frequency of the laser driving the upper
polariton branch and the frequency of the laser driving the
lower polariton branch. Let us consider interfering any of
the fields âi on a beamsplitter with a local oscillator field
of the form αLO(ei�t + e−i�t ). This form of local oscillator
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(a) (b)

FIG. 4. Experimental scheme for measurement of a covariance
matrix. (a) Using phase delays (φ1, φ2) and interfering on a beam-
splitter generates the fields â± = (â1e

iφ1 ± â2e
iφ2 )/

√
2. Different

combinations of phases then allow access to the fields âi as defined
in the text. (b) Interfering âi with a local oscillator of the form
αLO(ei�t + e−i�t ) allows for the generation of the fields â±i =
[âi ± αLO(ei�t + e−i�t )]/

√
2. The differences of the corresponding

photocurrents give access to the quadratures of âi .

can be attained from the superposition of the lasers driving the
lower and upper branches, where αLO is the (complex) field
amplitude and � is the frequency difference with the middle
polariton modes. The photocurrents obtained at each of the
output ports are [see Fig. 4(b)]

n̂+i = 1
2 (â†

i + α∗
LO(ei�t + e−i�t ))[âi + αLO(ei�t + e−i�t )],

(A2)

n̂−i = 1
2 (â†

i − α∗
LO(ei�t + e−i�t ))[âi − αLO(ei�t + e−i�t )].

(A3)

The difference photocurrent is then

n̂+i − n̂−i = 2(â†
i αLO + âiα

∗
LO) cos(�t). (A4)

The cos (�t) modulation can be identified and demodu-
lated. By varying the phase of αLO, one can access 〈â†

i ± âi〉
from the average values and 〈(â†

i ± âi)2〉 from the observed
variation. From these quantities, the covariance matrix can be
reconstructed as in Ref. [53].

APPENDIX B: ANALYTIC SOLUTION OF THE FIRST-
AND SECOND-ORDER CORRELATOR EVOLUTION

To calculate the fidelity of the polaritonic CNOT gate as a
function of decay rate � and pure dephasing rate �P , we derive
the analytic solutions for amplitude and phase expectation
values, as wells as higher-order correlators. The solution of
Eqs. (4)–(7) in the main text reads

〈q̂1(t)〉 = 〈q̂1(0)〉e(P−�−�P )t/(2�), (B1)

〈q̂2(t)〉 = e(P−�−�P )t/(2�)

(
〈q̂2(0)〉 + 2J

�
〈q̂1(0)〉t

)
, (B2)

〈p̂1(t)〉 = e(P−�−�P )t/(2�)

(
〈p̂1(0)〉 − 2J

�
〈p̂2(0)〉t

)
, (B3)

〈p̂2(t)〉 = 〈p̂2(0)〉e(P−�−�P )t/(2�), (B4)

where 〈q̂n(0)〉 and 〈p̂n(0)〉 represent the initial amplitude and
phase mean-field values.

The evolution of second-order correlators can be derived
from Eq. (3) as

i�
d
〈
q̂2

1

〉
dt

= i�

2

(
1 − 2

〈
q̂2

1

〉) + iP

2

(
1 + 2

〈
q̂2

1

〉)
− i�P

(〈
q̂2

1

〉 − 〈
p̂2

1

〉)
, (B5)

i�
d〈q̂1q̂2〉

dt
= 2iJ

〈
q̂2

1

〉 + i(P − � − 2�P )〈q̂1q̂2〉, (B6)

i�
d
〈
q̂2

2

〉
dt

= 4iJ 〈q̂1q̂2〉 + i�

2

(
1 − 2

〈
q̂2

2

〉)

+ iP

2

(
1 + 2

〈
q̂2

2

〉) − i�P

(〈
q̂2

2

〉 − 〈
p̂2

2

〉)
, (B7)

i�
d
〈
p̂2

1

〉
dt

= −4iJ 〈p̂1p̂2〉 + i�

2

(
1 − 2

〈
p̂2

1

〉)

+ iP

2

(
1 + 2

〈
p̂2

1

〉) − i�P

(〈
p̂2

1

〉 − 〈
q̂2

1

〉)
, (B8)

i�
d〈p̂1p̂2〉

dt
= −2iJ

〈
p̂2

2

〉 + i(P − � − 2�P )〈p̂1p̂2〉, (B9)

i�
d
〈
p̂2

2

〉
dt

= i�

2

(
1 − 2

〈
p̂2

2

〉) + iP

2

(
1 + 2

〈
p̂2

2

〉)
− i�P

(〈
p̂2

2

〉 − 〈
q̂2

2

〉)
, (B10)

i�
〈q̂1p̂2〉

dt
= i(P − � − 2�P

)〈q̂1p̂2〉, (B11)

i�
〈q̂1p̂1〉

dt
= −2iJ 〈q̂1p̂2〉 + i(P−�−2�P )

2 (2〈q̂1p̂1〉 − i),

(B12)

i�
〈q̂2p̂1〉

dt
= 2iJ (〈q̂1p̂1〉 − 〈q̂2p̂2〉)+i(P − � − 2�P )〈q̂2p̂1〉,

(B13)

i�
〈q̂2p̂2〉

dt
= 2iJ 〈q̂1p̂2〉 + i(P−�−2�P )

2 (2〈q̂2p̂2〉 − i).

(B14)

Equations (B5)–(B14) can be solved analytically for �P =
0 and � �= P , giving〈

q̂2
1 (t)

〉 = c1 + [〈
q̂2

1 (0)
〉 − c1

]
e(P−�)t/�, (B15)

〈q̂1(t)q̂2(t)〉 = c2 + [〈q̂1(0)q̂2(0)〉 − c2]e(P−�)t/�

+
(

c3 + 2J

�

〈
q̂2

1 (0)
〉)

te(P−�)t/�, (B16)

〈
q̂2

2 (t)
〉 = c4 +

(〈
q̂2

2 (0)
〉 − c4 + 4J [〈q̂1q̂2(0)〉 − c2]

�
t

+ 2J
[
c3� + 2J

〈
q̂2

1 (0)
〉]

�2
t2

)
e(P−�)t/�, (B17)〈

p̂2
2(t)

〉 = c1 + [〈
p̂2

2(0)
〉 − c1

]
e(P−�)t/�, (B18)

〈p̂1(t)p̂2(t)〉 = −c2 + [〈p̂1(0)p̂2(0)〉 + c2]e(P−�)t/�

−
(

c3 + 2J

�

〈
p̂2

2(0)
〉)

te(P−�)t/�, (B19)
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〈
p̂2

1(t)
〉 = c4 +

(〈
p̂2

1(0)
〉 − c4 − 4J [〈p̂1p̂2(0)〉 + c2]

�
t

+ 2J
[
c3� + 2J

〈
p̂2

2(0)
〉]

�2
t2

)
e(P−�)t/�, (B20)

〈q̂1p̂2(t)〉 = 〈q̂1p̂2(0)〉e(P−�)t/�, (B21)

〈q̂1p̂1(t)〉 = i

2
+

(
〈q̂1p̂1(0)〉− i

2
− 2J 〈q̂1p̂2(0)〉t

�

)
e(P−�)t/�,

(B22)

〈q̂2p̂2(t)〉 = i

2
+

(
〈q̂2p̂2(0)〉− i

2
+2J 〈q̂1p̂2(0)〉t

�

)
e(P−�)t/�,

(B23)

〈q̂2p̂1(t)〉 =
(

〈q̂2p̂1(0)〉 + 2J

�
[〈q̂1p̂1(0)〉 − 〈q̂2p̂2(0)〉]t

− 4J 2〈q̂1p̂2(0)〉t2

�2

)
e(P−�)t/�, (B24)

where the coefficients are

c1 = P + �

2(� − P )
, (B25)

c2 = 2c1J

� − P
, (B26)

c3 = −2c1
J

�
, (B27)

c4 = c1 + 4c2J

� − P
. (B28)

Separate equations hold for the special case � = P .

APPENDIX C: MULTIGATE REALIZATION:
DETAILED DESCRIPTION

In the main text of the paper, we described the scheme
for a multi-CNOT gate, which can operate on different pairs
of continuous-variable modes, encoded by the planar wave
vector. The following can be done, for instance, in the spinor
dipolaritonic system, where direct exciton (DX), indirect
exciton (IX), and cavity photon (C) form three distinct dipo-
laritonic modes UP, MP, and LP, with associated parametric
scattering between them. Alternatively, one can envisage a
similar system, where two different direct exciton modes DX1

and DX2 are coupled to the same cavity mode C.
We start the description from a generic dipolaritonic

Hamiltonian [43,54]

Ĥdip = Ĥ0 + Ĥint, (C1)

where we separated the linear Hamiltonian of bare modes and
associated couplings, Ĥ0, and the interaction Hamiltonian Ĥint

coming from exciton-exciton interactions.
The linear part reads

Ĥ0 =
∑

k,j=±
EC,k,j â

†
k,j âk,j +

∑
k,j=±

EDX,k,j b̂
†
k,j b̂k,j

+
∑

k,j=±
EIX,k,j ĉ

†
k,j ĉk,j

+
∑

k,j=±
�C-DX(â†

k,j b̂k,j + b̂
†
k,j âk,j )

−
∑

k,j=±
JDX-IX(â†

k,j b̂k,j + b̂
†
k,j âk,j ), (C2)

where âk,j (â†
k,j ), b̂k,j (b̂†k,j ), and ĉk,j (ĉ†k,j ) correspond to

annihilation (creation) operators of the cavity photon, direct
exciton, and indirect exciton modes with k planar wave
vector and j = ± circular polarization, respectively. The
dispersions of the C, DX, and IX modes are EC,k,j , EDX,k,j ,
and EIX,k,j , respectively, and we consider circular modes to
be degenerate in energy, E·,k,+ = E·,k,−. �C-DX corresponds
to the exciton-photon coupling constant, and JDX-IX denotes
tunneling coupling between adjacent quantum wells.

The interaction Hamiltonian can be written as

Ĥint = ĤDX-DX + ĤIX-IX + ĤDX-IX, (C3)

where we separate contributions emerging from direct exciton
interaction, indirect exciton interaction, and direct-indirect
cross-Kerr interaction. Starting from conventional DX-DX
interaction, the Hamiltonian reads

ĤDX-DX =
∑

k,k′,q

αDD
1 (k,k′,q)b̂†k−q,+b̂

†
k′+q,+b̂k,+b̂k′,+

+
∑

k,k′,q

αDD
1 (k,k′,q)b̂†k−q,−b̂

†
k′+q,−b̂k,−b̂k′,−

+
∑

k,k′,q

αDD
2 (k,k′,q)b̂†k−q,+b̂k,+b̂

†
k′+q,−b̂k′,−

+
∑

k,k′,q

αDD
2 (k,k′,q)b̂†k−q,−b̂k,−b̂

†
k′+q,+b̂k′,+,

(C4)

where αDD
1 corresponds to the triplet or cocircular Coulomb

interaction between direct excitons of the same spin, and αDD
2 is

the singlet or cross-circular interaction between direct excitons
of opposite polarization. We note that for relevant momenta of
the polaritonic system, the exciton-exciton interaction constant
is momentum-independent and can be typically treated as a
constant.

In the following, we are interested in particular wave vectors
of the particles, namely the one where scattering happens
between initial states of k2 and k1 and final states k′

1 and
k′

2 chosen according to momentum conservation. Using this
labeling, Eq. (C4) yields

ĤDX-DX = αDD
1 b̂

†
k′

2,+b̂
†
k′

1,+b̂k2,+b̂k1,++αDD
1 b̂

†
k′

2,−b̂
†
k′

1,−b̂k2,−b̂k1,−

+αDD
2 b̂

†
k′

2,+b̂k2,+b̂
†
k′

1,−b̂k1,−

+αDD
2 b̂

†
k′

2,−b̂k2,−b̂
†
k′

1,+b̂k1,+. (C5)

The interaction terms for indirect excitons can be written in a
similar fashion, giving

ĤIX-IX = αII
1 ĉ

†
k′

2,+ĉ
†
k′

1,+ĉk2,+ĉk1,+ + αII
1 ĉ

†
k′

2,−ĉ
†
k′

1,−ĉk2,−ĉk1,−

+αII
2 ĉ

†
k′

2,+ĉk2,+ĉ
†
k′

1,−ĉk1,−

+αII
2 ĉ

†
k′

2,−ĉk2,−ĉ
†
k′

1,+ĉk1,+, (C6)
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with αII
1,2 triplet/singlet interaction between spinor indirect excitons. The cross-interaction between direct and indirect excitons

reads

ĤDX-IX = αDI
1 b̂

†
k′

2,+ĉ
†
k′

1,+b̂k2,+ĉk1,+ + αDI
1 b̂

†
k′

2,−ĉ
†
k′

1,−b̂k2,−ĉk1,− + αDI
2 b̂

†
k′

2,+b̂k2,+ĉ
†
k′

1,−ĉk1,− + αDI
2 b̂

†
k′

2,−b̂k2,−ĉ
†
k′

1,+ĉk1,+, (C7)

where αDI
1,2 corresponds to direct-indirect exciton Coulomb interaction for the same and opposite spin projections ±1.

Next, we perform the transformation of the linear Hamiltonian (C2) to the diagonal basis of dipolariton operators Âj

(j = 1,2,3):

âk,± = V11,k,±Â1,k,± + V21,k,±Â2,k,± + V31,k,±Â3,k,±, (C8)

b̂k,± = V12,k,±Â1,k,± + V22,k,±Â2,k,± + V32,k,±Â3,k,±, (C9)

ĉk,± = V13,k,±Â1,k,± + V23,k,±Â2,k,± + V33,k,±Â3,k,±, (C10)

where Vij are the matrix elements of eigenvectors, corresponding to dipolariton Hopfield coefficients. Without limiting the
generality, we consider Vij to be real for any i and j .

The transformed linear part reads

Ĥ′
0 =

∑
j,k,±

Ej,k,±Â
†
j,k,±Âj,k,±. (C11)

The eigenenergies possess rotation symmetry, Ej (k) = Ej (k), and thus the Hopfield coefficients are spin-independent, Vij,k,± ≡
Vij , where we omit the momentum index for brevity.

We proceed with the transformation of the interaction Hamiltonian by successive transformation of its parts. For instance, the
direct exciton interaction part can be rewritten as

Ĥ′
DX-DX = αDD

1

(
V12Â

†
1,k′

2,+ + V22Â
†
2,k′

2,+ + V32Â
†
3,k′

2,+
)
(V12Â

†
1,k′

1,+ + V22Â
†
2,k′

1,+ + V32Â
†
3,k′

1,+)

× (
V12Â1,k2,+ + V22Â2,k2,+ + V32Â3,k2,+

)(
V12Â1,k1,+ + V22Â2,k1,+ + V32Â3,k1,+

) + αDD
1

(
V12Â

†
1,k′

2,−

+V22Â
†
2,k′

2,− + V32Â
†
3,k′

2,−
)(

V12Â
†
1,k′

1,− + V22Â
†
2,k′

1,− + V32Â
†
3,k′

1,−
)(

V12Â1,k2,− + V22Â2,k2,− + V32Â3,k2,−
)

× (
V12Â1,k1,− + V22Â2,k1,− + V32Â3,k1,−

) + αDD
2

(
V12Â

†
1,k′

2,+ + V22Â
†
2,k′

2,+ + V32Â
†
3,k′

2,+
)

× (
V12Â1,k2,++V22Â2,k2,++V32Â3,k2,+

)(
V12Â

†
1,k′

1,−+V22Â
†
2,k′

1,−+V32Â
†
3,k′

1,−
)(

V12Â1,k1,−+V22Â2,k1,−+V32Â3,k1,−
)

+αDD
2

(
V12Â

†
1,k′

2,− + V22Â
†
2,k′

2,− + V32Â
†
3,k′

2,−
)(

V12Â1,k2,− + V22Â2,k2,− + V32Â3,k2,−
)

× (
V12Â

†
1,k′

1,+ + V22Â
†
2,k′

1,+ + V32Â
†
3,k′

1,+
)(

V12Â1,k1,+ + V22Â2,k1,+ + V32Â3,k1,+
)
. (C12)

To proceed, we recall the relevant quantum and classical modes required for the operation of a serial multimode CNOT gate shown
for example in Fig. 3. Associating the UP, MP, and LP modes with Â1, Â2, and Â3 modes, the generic interaction Hamiltonian
(C12) can be accommodated to our needs using the set of relabelings:

Â1,k1,+ �→ ψUP,+, Â1,k1,− �→ 0, Â1,k2,+ �→ 0, Â1,k2,− �→ 0, Â2,k1,+ �→ â1,+, Â2,k1,− �→ â1,−,
(C13)

Â2,k2,+ �→ â2,+, Â2,k2,− �→ â2,−, Â3,k1,+ �→ 0, Â3,k1,− �→ ψ ′
LP,−, Â3,k2,+ �→ ψLP,+, Â3,k2,− �→ ψLP,−,

and again the final-state (primed) wave vectors are chosen according to momentum-conservation rules. These imply that
k1 + k2 = k′

2 + k′
1 for parametric coupling processes and k2 − k1 = k′

2 − k′
1 for linear coupling processes, which can always

be satisfied by choosing wave vectors for the classical modes appropriately.
Using Eq. (C13), we can rewrite Eq. (C12) as

Ĥ′
DX-DX = αDD

1 (V22â
†
2,+ + V32ψ

∗
LP,+)(V12ψ

∗
UP,+ + V22â

†
1,+)(V12ψUP,+ + V22â1,+)(V22â2,+ + V32ψLP,+)

+αDD
1 (V22â

†
2,− + V32ψ

∗
LP,−)(V22â

†
1,− + V32ψ

′∗
LP,−)(V22â1,− + V32ψ

′
LP,−)(V22â2,− + V32ψLP,−)

+αDD
2 (V22â

†
2,+ + V32ψ

∗
LP,+)(V12ψUP,+ + V22â1,+)(V22Â

†
1,− + V32ψ

′∗
LP,−)(V22Â2,− + V32ψLP,−)

+αDD
2 (V22â

†
2,− + V32ψ

∗
LP,−)(V22â1,− + V32ψ

′
LP,−)(V12ψ

∗
UP,+ + V22â

†
1,+)(V22â2,+ + V32ψLP,+). (C14)
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Taking only energy-conserving terms, we arrive at the Hamiltonian derived from the DX-DX interaction:

Ĥ′
DX-DX = αDD

1

(
V 2

22V12V32ψUP,+ψLP,+â
†
2,+â

†
1,+ + H.c.

) + αDD
1

(
V 2

22V
2

32ψ
′∗
LP,−ψLP,−â

†
2,−â1,− + H.c.

)
+αDD

2

(
V 2

22V12V32ψUP,+ψLP,−â
†
2,+â

†
1,− + H.c.

) + αDD
2

(
V 2

22V
2

32ψ
∗
LP,−ψ ′

LP,−â
†
1,+â2,+ + H.c.

)
+αDD

2

(
V 2

22V
2

32ψ
∗
LP,+ψLP,−â

†
1,−â1,+ + H.c.

)
. (C15)

A similar procedure can be applied to IX-IX and DX-IX interactions, leading to the transformed interaction Hamiltonian of
the form

Ĥ′
int = (AψUP,+ψLP,+â

†
2,+â

†
1,+ + H.c.) + (Bψ ′∗

LP,−ψLP,−â
†
2,−â1,− + H.c.) + (CψUP,+ψLP,−â

†
2,+â

†
1,− + H.c.)

+ (Dψ ′∗
LP,−ψLP,−â

†
2,+â1,+ + H.c.) + (Eψ∗

LP,+ψLP,−â
†
1,−â1,+ + H.c.), (C16)

where we defined the constants

A = αDD
1 V 2

22V12V32 + αII
1 V 2

23V13V33 + αDI
1 V22V23V12V33,

B = αDD
1 V 2

22V
2

32 + αII
1 V 2

23V
2

33 + αDI
1 V 2

22V
2

33,

C = αDD
2 V 2

22V12V32 + αII
2 V 2

23V13V33 + αDI
2 V22V23V12V32, (C17)

D = αDD
2 V 2

22V
2

32 + αII
2 V 2

23V
2

33 + αDI
2 V 2

23V
2

32,

E = αDD
2 V 2

22V
2

32 + αII
2 V 2

23V
2

33 + αDI
2 V22V23V

2
33.

To achieve the desired interaction between quantum modes, we perform a polarization transformation from the circular to
linear basis, accounting for the TE-TM splitting, which is present in exciton-polaritonic systems. The transformation reads

ân,+ = 1√
2

(ân,TMe2iφn + iân,TEe2iφj ), ân,− = 1√
2

(ân,TMe−2iφn − iân,TEe−2iφn ), (C18)

where φn (n = 1,2) represent angles encoding momentum states. We are mainly interested in the TM interaction terms (target
quantum modes â1,TM and â2,TM), while TE modes as well as cross-terms can be disregarded in the case of large TE-TM splitting
(see the discussion in the next section). Also, we write the classically driven modes ψj explicitly as complex numbers with the
absolute value of 	j and phase φj , namely

ψUP,+ = 	UP,+eiφUP,+ , ψLP,+ = 	LP,+eiφLP,+ , ψLP,− = 	LP,−eiφLP,− , ψ ′
LP,− = 	 ′

LP,−eiφ′
LP,− . (C19)

Performing the transformation of Hamiltonian (C16), we obtain

Ĥ′′
int =

[
A

2
	UP,+	LP,+ei(φUP,++φLP,+−2φ2−2φ1) + C

2
	UP,+	LP,−ei(φUP,++φLP,−−2φ2+2φ1)

]
â
†
2,TMâ

†
1,TM

+
[
B

2
	 ′

LP,−	LP,−ei(φLP,−−φ′
LP,−+2φ2−2φ1) + D

2
	 ′

LP,−	LP,−ei(φLP,−−φ′
LP,−−2φ2+2φ1)

]
â
†
2,TMâ1,TM

+ E

2
	LP,+	LP,−ei(φLP,−−φLP,++4φ1)â

†
1,TMâ1,TM + H.c., (C20)

where the first two terms correspond to useful parametric and linear coupling terms, and the third term represents an additional
energy shift of one of the modes. Finally, to reduce the system to the required q̂1p̂2 type of interaction, the phases of the classical
drives can be adjusted to make each term in Eq. (C20) purely imaginary. This can be satisfied with two sets of conditions defined
by the right-hand side of Eq. (C24):

ei(φUP,++φLP,+−2φ2−2φ1) = i, (C21)

ei(φUP,++φLP,−−2φ2+2φ1) = i, (C22)

ei(φLP,−−φ′
LP,−+2φ2−2φ1) = i, (C23)

ei(φLP,−−φ′
LP,−−2φ2+2φ1) = ±i. (C24)
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The first system of equations (with plus sign) can be satisfied for

φ2 = φ1 + nπ/2, φUP,+ = −φLP,− + (2n + 1)π/2, φLP,+ = φLP,− + 4φ1, φ′
LP,− = φLP,− − (2n + 1)π/2, (C25)

and we have the freedom in choosing the φLP,− phase. For this choice of phases, the interaction constant shall be tuned to
(A	UP,+	LP,+ + C	UP,+	LP,−)/2 = (B + D)	 ′

LP,−	LP,−/2 ≡ J .
The second system of equations (with a minus sign) can be satisfied for

φ2 =φ1 + nπ/2 + π/4, φUP,+ = −φLP,− + (n + 1)π, φLP,+ = φLP,− + 4φ1, φ′
LP,− = φLP,− − nπ/2, (C26)

with the interaction constant tuned to (A	UP,+	LP,+ +
C	UP,+	LP,−)/2 = (B − D)	 ′

LP,−	LP,−/2 ≡ J . Account-
ing for the possibility to modify the system on the fly with
adjustable pumps, we can in principle organize a sequence
of gates between eight different momentum modes �1 =
{φ1,φ1 + π/4, . . . ,φ1 + 7π/4} characterized by wave vectors
k1. Finally, coupling to another subspace of continuous-wave
modes �′

1 defined by φ′
1 can be done with lower fidelity and

exploiting error correction afterwards.
Given the versatility of the system, we can efficiently

control the couplings by classical drive amplitudes, and thus
arrange the Ĥ = 2J q̂1,TMp̂2,TM Hamiltonian for original inter-
action constants αnm

1,2 (nm = DD,II,DI), including both triplet
and singlet interactions. Additionally, the phase conditions set
the â

†
1,TMâ1,TM energy shift to E	LP,+	LP,−, implying that it

will be minimized by weak drive conditions for ψLP,+ and
ψLP,− classical modes and stronger pumping of ψUP,+ and
ψ ′

LP,− modes.

APPENDIX D: MULTIGATE REALIZATION:
TE-MODE INFLUENCE

Now, let us return to the question of the validity of
the rotating-wave approximation (RWA) for the TE-TM
cross-interaction terms. So far we kept only TM modes,
assuming that the TE-TM interaction is strongly suppressed
due to the energy shift of TE modes, i.e., TE-TM splitting.
However, if the splitting �TE-TM is small compared to
other relevant energy scales (interaction constants and decay
rate), this assumption becomes invalid. To test the limits
in which auxiliary TE modes can be neglected, we recall
that together with useful terms appearing in Eq. (C20),
various spurious terms appear, namely ε11â

†
1,TEâ1,TE,

ε22â
†
2,TEâ2,TE, (ε12â

†
1,TEâ2,TE+H.c.), (η21â

†
1,TMâ

†
2,TE+H.c),

(η12â
†
1,TMâ

†
1,TE+H.c), (ζ21â

†
2,TMâ1,TE+H.c), etc. Here con-

stants εij , ηij , and ζij denote generic coupling represented
by functions of bare interactions, Hopfield coefficients, and
classical drive amplitudes. The first three terms act fully in the
extra subspace of TE modes and are irrelevant for our consider-
ations. However, the terms of fourth type, fifth type, and so on
produce the parasitic rotation for the system modes â1/2,TM, or
alternatively effective leakage to the TE mode subspace. The
related fidelity degradation of the gate then depends on the
values of couplings, mode detuning �TE-TM, and decay of the
mode.

To quantify the fidelity change due to additional couplings,
we refrain from considering a particular system with defined
coupling, but we characterize the generic influence of, e.g.,

η-type coupling. For this, we consider the Hamiltonian

Ĥ = J (−iâ1,TMâ2,TM + iâ
†
1,TMâ

†
2,TM − iâ

†
1,TMâ2,TM

+ iâ
†
2,TMâ1,TM) + η(â†

2,TMâ
†
1,TE + H.c.)

+�â
†
1,TEâ1,TE, (D1)

where � is a generic TE mode shift defined by TE-TM splitting
and nonlinear contribution. Here, for the sake of simplicity, let
us rename modes as â1,TM ≡ â1, â2,TM ≡ â2, and â1,TE ≡ â3.
Next, Eq. (D1) can be rewritten using position and momentum
operators q̂j and p̂j associated with each mode, which gives

Ĥ = 2J q̂1p̂2 − η(q̂2p̂3 + p̂2q̂3) + �

2

(
q̂2

3 + p̂2
3

)
. (D2)

Deriving the equations of motion for average amplitudes
〈q̂j 〉,〈p̂j 〉 (j = 1,2,3) and associated correlators, we can
calculate the fidelity for the CNOT gate acting in the {â1,â2}
mode subspace as a function of dimensionless parameters η/J

and �/J .
The results are shown in Fig. 5, where we considered the

cavity decay rate to be small, �/J 
 1. We see that even for
spurious interaction constants η being comparable to coupling
J , the degradation of fidelity can be suppressed by the shift
of the TE mode. In particular, taking J = 0.1 meV for a
dipolaritonic system, and assuming realistic 0.5 meV TE-TM
splitting, one can achieve the 0.99 fidelity commensurable with
previously anticipated degradation due to decay of the cavity
mode.
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FIG. 5. Influence of a spurious TE-TM coupling on the fidelity of
a multimode CNOT gate. The minimal fidelity is shown as a function
of additional coupling η for various mode occupations (〈x〉2 = 1 to
10), and three values of dimensionless TE-TM splitting.
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