
PHYSICAL REVIEW B 93, 035206 (2016)
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The effects of carrier-impurity correlations due to a Kondo-like spin-spin interaction in diluted magnetic
semiconductors are investigated. These correlations are not only responsible for a transfer of spins between the
carriers and the impurities, but also produce nonperturbative effects in the spin dynamics such as renormalization
of the precession frequency of the carrier spins, which can reach values of several percent in CdMnTe quantum
wells. In two-dimensional systems, the precession frequency renormalization for a single electron spin with
defined wave vector shows logarithmic divergences similar to those also known from the Kondo problem
in metals. For smooth electron distributions, however, the divergences disappear due to the integrability of
the logarithm. A possible dephasing mechanism caused by the wave-vector dependence of the electron spin
precession frequencies is found to be of minor importance compared to the spin transfer from the carrier to the
impurity system. In the Markov limit of the theory, an expression for the stationary carrier-impurity correlation
energy can be deduced indicating the formation of weakly correlated carrier-impurity states with binding energies
in the μeV range.
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I. INTRODUCTION

A perturbative treatment of the interaction between
quasifree electrons in a metal with localized magnetic im-
purities predicts logarithmic divergences in several quantities
such as resistivity and entropy at zero temperature [1,2]. This
finding, the Kondo effect, is a famous example of a situation
where perturbation theory leads to unphysical conclusions,
whereas the measured values of the resistivity assume finite
values. The Kondo problem, i.e., the question of how to
properly describe the low-temperature limit of a system with
a spin dependent carrier-impurity interaction theoretically,
has opened up a wide field of physics. Although the Kondo
problem, as it was originally formulated, has been solved
[2], the Kondo physics experienced a revival since it has
become possible to study experimentally similar problems in
other systems, e.g., structures where quantum dots play the
role of the magnetic impurities [3–12]. The common feature
in these systems is that a microscopic exchange coupling
gives rise to an effective Kondo Hamiltonian that assumes the
form of a spin-spin contact interaction between the quasifree
carriers and the localized magnetic impurities, or quantum
dots, respectively.

Other systems which are usually modeled by a Kondo-like
Hamiltonian are diluted magnetic semiconductors (DMS)
where typically II-VI or III-V semiconductors are doped with
magnetic impurities, usually Mn which effectively forms a
spin- 5

2 system. These materials have been studied extensively
in the last decades [13–34] due to their optical and magnetic
properties which make them promising candidates for future
spintronics devices [35–37]. However, quantum mechanical
correlations between the carriers and impurities in DMS,
which are crucial for the Kondo effect, have so far not
been investigated thoroughly, since a vast number of inter-
esting effects, such as collective modes in the coherent spin
precession of carriers and impurities [38], carrier mediated
RKKY interaction [39] leading to a ferromagnetic order in

DMS [35], and bound or free magnetic polarons [40–47],
can already be found using a semiclassical or mean-field
approximation, where the carrier-impurity correlations are
disregarded. It has been argued in the literature [48] that
Kondo-type correlation effects are different in DMS than in
magnetically doped metals because in the latter only a few
magnetic impurities and a huge number of quasifree carriers
are present in the metal, whereas in the former case, in
particular in the case of (intrinsic) II-VI DMS, the number
of impurities usually exceeds the number of carriers. On the
other hand, a third-order many-body perturbation theory based
on the pseudofermion formalism [49] reveals Kondo-like
divergences in the propagator for the spin dynamics in DMS
due to the hole-impurity exchange interaction. From this it was
concluded that the carrier-impurity correlations should in fact
be important for the dynamics in DMS.

The main goal of the present article is to calculate and
discuss the magnitude of the additional effects arising in the
description of DMS, when the carrier-impurity correlations
are explicitly accounted for. It is assumed that only optically
induced spin polarized carriers are present, which interact
with magnetic impurities via the s-d exchange interaction.
This assumption is particularly well met in II-VI DMS like
CdMnTe, whereas the correlation effects might be modified in
other DMS materials like GaMnAs due to Coulomb effects.
We base our study on a microscopic quantum kinetic theory
derived by a correlation expansion scheme [50] that is capable
of a nonperturbative description of highly nonequilibrium
situations. One aspect of the effects of the carrier-impurity
correlations on the spin dynamics has already been found in
previous works [51–55]: The correlations mediate the transfer
of spins between the carriers and the impurities. Since in
the Markovian limit the quantum kinetic theory contains the
special case of rate equations which can also be derived by
a Fermi’s golden rule approach [51], this spin transfer can,
in fact, be treated perturbatively [56]. Note that in some
situations, e.g., for excitations close to the band edge in two-
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and lower-dimensional DMS [57], the Markov limit is not a
good approximation so that deviations from a golden-rule-like
exponential decay are predicted.

In the present study we show that the carrier-impurity
correlations are also responsible for another effect in the spin
dynamics that is not predicted by a perturbative method: a
renormalization of the precession frequency of carrier spins
compared with its mean-field value. It is shown that the
frequency renormalization contains logarithmic divergences in
the Markov limit in two-dimensional systems similar to those
known from diluted magnetic metallic alloys [58]. However,
here we find that these divergences never lead to unphysical
results in the spin dynamics. This is, first of all, due to the
fact that the singularities are integrable and yield finite values
for a nonsingular spectral electron distribution. Moreover, the
divergence in the frequency renormalization is only found
for t → ∞ where the amplitude of the precessing electron
spin has already decayed to zero. The Markov limit of the
quantum kinetic theory also allows to find an expression
for the carrier-impurity correlation energy which shows a
similar behavior as the frequency renormalization, including
Kondo-like logarithmic divergences in the two-dimensional
case.

The article is structured as follows: First, the quantum
kinetic theory is briefly reviewed as well as effective PESC
(precession of electron spins and correlations) equations [54]
based on the quantum kinetic theory. Then, the frequency
renormalization described by the PESC equations is calculated
and compared with the result of a Markovian approximation to
the PESC equations in two and three dimensions. A possible
electron spin dephasing mechanism due to the wave vector
dependence of the frequency renormalization is discussed.
Finally, we investigate the mean carrier-impurity correlation
energy.

II. THEORY

A. System

The Hamiltonian for conduction band electrons in DMS is
modeled by

H = H0 + Hsd, (1a)

H0 =
∑
kσ

�ωkc
†
σkcσk, (1b)

Hsd = Jsd

V

∑
Inn′kk′σσ ′

Snn′ · sσσ ′c
†
σkcσ ′k′ei(k′−k)RI P̂ I

nn′ , (1c)

where H0 describes the band structure and Hsd is the Kondo
Hamiltonian which originates from the exchange interaction
between the s-type conduction band electrons and the d

electrons of the magnetic ions. Throughout this article we
assume a parabolic band structure with ωk = �k2

2m∗ , where m∗
is the effective mass. Jsd and V are the coupling constant
and volume of the DMS and c

†
σk and cσk are the creation

and annihilation operators for electrons with spin index σ

and wave vector k. RI is the position of the I th magnetic
impurity and P̂ I

nn′ = |I,n〉〈I,n′| are the projection operators
corresponding to the spin state of the I th impurity, e.g., for

spin- 5
2 Mn impurities, n = {− 5

2 , − 3
2 , . . . , 5

2 }. Snn′ and sσσ ′ are
the spin matrices for spin- 5

2 and 1
2 systems, respectively.

B. Equations of motion

A microscopic quantum kinetic theory based on a corre-
lation expansion scheme was constructed in Ref. [50], where
equations of motion have been derived for the electron and
impurity density matrices C

σ2
σ1k and Mn2

n1
as well as their

correlations which are defined by

C
σ2
σ1k = 〈

c
†
σ1kcσ2k

〉
, (2a)

Mn2
n1

= 〈
P̂ I

n1n2

〉
, (2b)

Q
σ2n2k2
σ1n1k1

= V
〈
c
†
σ1k1

cσ2k2e
i(k2−k1)RI P̂ I

n1n2

〉(
1 − δk1,k2

)
, (2c)

where the brackets denote the quantum mechanical average as
well as an average over spatially homogeneously distributed
impurities [59]. From the assumption of a homogeneous
distribution it also follows that off-diagonal elements of the
carrier density matrix with respect to k average out, so that
the electron density matrix in Eq. (2a) can be addressed by a
single k index. The fact that the localized s-d interaction breaks
the translational invariance of the system manifests itself in the
theory, e.g., in a redistribution of carriers in k space [50]. The
equations of motion for these dynamical variables are given in
Ref. [53].

The full quantum kinetic equations are lengthy and their
solution requires considerable numerical effort. However, it
was found in Ref. [54] that they can be drastically simplified
in the case where the number of impurity ions NMn is much
larger than the number of the quasifree electrons Ne. This is
usually fulfilled especially in II-VI DMS where the magnetic
doping with Mn does not simultaneously lead to p or n doping
and the carriers stem exclusively from optical excitation. To
understand the effective equations derived in Ref. [54] it is
instructive to first consider the mean-field dynamics for the
spin sk = ∑

σ1σ2
sσ1σ2C

σ2
σ1k of electrons with wave vector k

and the impurities 〈S〉 = ∑
n1n2

Sn1n2M
n2
n1

. In the mean-field
approximation, i.e., if the correlations are neglected, one finds

∂

∂t
sk

∣∣∣∣
MF

= ωM × sk, (3a)

∂

∂t
〈S〉

∣∣∣∣
MF

= − 1

NMn

∑
k

∂

∂t
sk

∣∣∣∣
MF

, (3b)

where ωM := Jsd
�

nMn〈S〉. Equation (3b) follows from the total
spin conservation of the Kondo Hamiltonian. In the case
NMn � Ne, the change of the impurity spin is marginal and
can therefore be neglected. The precession of the electron
spin around the mean field due to the impurity magnetization,
on the other hand, is in general important. Equation (3a) is
solved by

sk = R〈S〉(ωMt)s′
k, (4)

where Rn(α) is the matrix describing a rotation around the
vector n with angle α and the precession frequency ωM =
ωM · 〈S〉/|〈S〉| is defined so that it has the same sign as the
coupling constant Jsd. In the mean-field approximation s′

k is
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constant. However, if we also account for the carrier-impurity
correlations, s′

k changes slowly in time and constitutes the
electron spin in a rotating frame. If the correlations are formally
integrated and inserted into the corresponding equations of
motion for the electron variables, the effective equations for
the electron spin component s′⊥

k1
perpendicular to the impurity

magnetization can be given as [54]

∂

∂t
s′⊥

k1
= −

∑
k

[
Re

(
G

ωk1 −ωM

ωk

)(b+

2
− b0n

↑
k

)
s′⊥

k1

+ Re
(
G

ωk1 +ωM

ωk

)(b−

2
+ b0n

↓
k

)
s′⊥

k1

+ Re
(
G

ωk1
ωk

)b‖

2

(
s′⊥

k + s′⊥
k1

)]

− 〈S〉
|〈S〉|

∑
k

[
Im

(
G

ωk1 −ωM

ωk

)(b+

2
− b0n

↑
k

)

− Im
(
G

ωk1 +ωM

ωk

)(b−

2
+ b0n

↓
k

)]
s′⊥

k1
. (5)

The coefficients in Eq. (5) are given by b± := 〈S⊥2〉 ± 〈S‖〉
2 ,

b0 := 〈S‖〉
2 , and b‖ := 〈S‖2〉, where the component of the

impurity spin operator in the direction of the mean impurity

spin is S‖ := Ŝ · 〈Ŝ〉
|〈Ŝ〉| , and the relevant second moments of the

impurity spin operator can be separated into parallel 〈S‖2〉
and perpendicular parts 〈S⊥2〉 = 1

2 〈S2 − S‖2〉. The memory
function

G
ωk1
ωk := J 2

sd

�2

nMn

V

∫ 0

−t

dt ′ei(ωk−ωk1 t ′) (6)

has to be interpreted as an integral operator and the time-
dependent variables that appear after G

ωk1
ωk in Eq. (5) are

evaluated at t ′. Finally, n
↑/↓
k are the occupation numbers of

the states with wave-vector k, i.e., the diagonal elements of
the density matrix with respect to the spin indices. Equation
(5) together with the corresponding equations for n

↑/↓
k given

in Ref. [54] are called precession of electron spins and cor-
relations (PESC) equations, since besides the electron spins,
also the correlations Q

αk2
βk1

:= ∑
σ1σ2

∑
n1n2

sσ1σ2 · Sn1n2Q
σ2n2k2
σ1n1k1

exhibit a precessionlike movement around the mean field due
to the impurity magnetization. Note that Eq. (5) is equivalent
to the full quantum kinetic theory of Ref. [50] except that
some source terms for the correlations are neglected that are
numerically insignificant (cf. Ref. [54] for details).

Equation (5) is only complicated and numerically challeng-
ing due to the time integral induced by the memory function
G

ωk1
ωk . Now, working in the rotating frame allows us to assume

that the electron variables change only slowly in time and
can equally well be evaluated at t instead of t ′. The memory
integral consists then only of

0∫
−t

dt ′ ei(ωk−ωk1)t
′ ≈ πδ(ωk − ωk1) − iP 1

ωk − ωk1

, (7)

where P is the Cauchy principal value. The Markov approx-
imation (7) was established by letting t → ∞ in the lower

limit of the integral and using the Sokhotski-Plemelj theorem.
The validity of the Markovian approximation can in general
depend on the values of k, k1, t as well as the time scale of
the change of the electron variables and therefore has to be
checked numerically.

If only the real part of the memory function is used in
Markov approximation and the imaginary part is neglected,
the PESC equations assume a golden-rule-type form, where the
spin transfer dynamics follows approximately an exponential
decay to the equilibrium value with rate

(τ⊥)−1 ≈J 2
sdnMn

�2V
π

[
D(ω1 − ωM )

b+

2
+ D(ω1 + ωM )

b−

2

+ D(ω1)b‖
]

(8)

for an electron with kinetic energy ω1, if the terms of second
order of the electron variables in Eq. (5) are neglected [54]. In
the expression for the rate, D(ω) describes the spectral density
of states and depends on the dimensionality of the system.

C. Frequency renormalization in the Markov limit

One issue that we would like to focus on in the present work
is the change in the precession frequency described in Eq. (5)
by the terms proportional to the imaginary part of the memory
function. Such a renormalization of the precession frequency
would be absent in any truncated perturbative approach [60].
It originates, like the spin transfer described by the real part of
the memory function, from the carrier-impurity correlations.

It is noteworthy that the frequency renormalization is
singular in the Markov limit described in Eq. (7), i.e., the
imaginary part of the memory function G

ωk1
ωk diverges if

ωk = ωk1 . However, this divergence does not lead to an
unphysical behavior. First of all, the divergence is a feature
of the Markovian limit. For finite times t , the left-hand side
of Eq. (7) is a finite integral over an analytic function and is
therefore itself analytic. For ωk = ωk1 , the value of the integral
is t which only goes to infinity in the Markov limit. As only
the electron spin component perpendicular to the impurity
magnetization is affected by the frequency renormalization
and this component decays approximately exponentially to
zero, an infinite precession frequency is never observable.

Similar to the Markovian spin transfer rate in Eq. (8), an
expression for the frequency renormalization 
ω can be given
in the Markov limit of Eq. (5), if the imaginary part of Eq. (7)
is used:


ω(ω1) = J 2
sd

�2

nMn

V

∫ ωBZ

0
dω D(ω)

×
[
b+

2

1

ω − (ω1 − ωM )
− b−

2

1

ω − (ω1 + ωM )

]
,

(9)

where, for the sake of simplicity, the terms proportional to n↑/↓
in Eq. (5) were neglected, since they only matter if a large
number of carriers is present. In two-dimensional systems,
the spectral density of states D2D(ω) = Am∗

2π�
�(ω) is constant,

where A is the sample area and �(x) is the step function. In

three dimensions, D3D(ω) = V
4π2 ( 2m∗

�
)
3/2√

ω �(ω) is propor-
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tional to the square root of ω. The corresponding frequency
renormalizations are


ω2D(ω1) = −J 2
sd

�2

nMn

d

m∗

2π�

{
b+

2
ln

∣∣∣∣ ω1 − ωM

ωBZ − (ω1 − ωM )

∣∣∣∣
− b−

2
ln

∣∣∣∣ ω1 + ωM

ωBZ − (ω1 + ωM )

∣∣∣∣
}
, (10a)

where d = V/A is the quantum well width, and


ω3D(ω1) = J 2
sd

�2

nMn

4π

(2m∗

�

)3/2
∫ ωBZ

0
dω

×
{

b+

2

√
ω

ω − (ω1 − ωM )
− b−

2

√
ω

ω − (ω1 + ωM )

}
,

(10b)

with ∫ ωBZ

0
dω

√
ω

ω − ω0

=
{

2
√

ωBZ − √
ω0 ln

∣∣ω0+ωBZ
ω0−ωBZ

∣∣, ω0 > 0,

2
√

ωBZ − 2
√|ω0| tan−1

(
ωBZ
|ω0|

)
, ω0 < 0.

(10c)

It should be noted that in two and three dimensions the
frequency renormalization depends explicitly on the frequency
ωBZ, which corresponds to the energy at the end of the
first Brillouin zone, and diverges in the limit ωBZ → ∞.
For typical pump-probe experiments with diluted magnetic
semiconductors, carriers are optically excited relatively close
to the band edge. For the excited electrons, one can safely
assume ω1 ± ωM � ωBZ. In this case, we find a logarithmic
dependence on ωBZ in the two-dimensional frequency renor-
malization.

With the same assumption also the integral in Eq. (10c) for
the three-dimensional renormalization can be simplified to∫ ωBZ

0
dω

√
ω

ω − ω0
≈ 2

√
ωBZ − π

√
|ω0|�(−ω0). (11)

Thus, we find a square-root dependence of the frequency
renormalization on the cut-off frequency ωBZ, as well as
a square-root dependence on ω0 = ω1 ± ωM which only
contributes if ω0 is negative.

The divergence in the limit ωBZ → ∞ is similar to the
metallic Kondo effect where the divergence in the resistivity
is also logarithmic in the bandwidth [2]. An effective spin-
dependent Hamiltonian leading to a carrier spin precession
which diverges logarithmically with the bandwidth has also
been derived in Ref. [58] in the formulation a theory of
spin resonance in diluted magnetic metallic alloys which is
based on a Kadanoff-Baym-like gradient expansion combined
with a Markovian approximation and the assumption of
a thermal electron distribution. The fact that the metallic
problem resembles rather the two-dimensional than the three-
dimensional case in DMS originates from both systems being
modeled by a constant density of states.

It is noteworthy that the divergence of the frequency renor-
malization at ω0 = ω1 ± ωM vanishes in the three-dimensional

case due to the integral over the density of states. In two-
dimensional systems, a diverging frequency renormalization
remains, but only for electrons with a unique value of the
kinetic energy. For realistic optical excitation, however, a
smooth spectral electron distribution can be expected so that
the change of the total precession frequency comprises an
averaging over frequency renormalizations of nearby states.
Since the logarithmic divergence is integrable, the total
frequency renormalization remains finite.

III. NUMERICAL CALCULATIONS

In order to check the validity of the Markov approximation
for the renormalization of the precession frequency of the
electrons, we compare the Markov result with calculations,
where the memory is taken into account explicitly. It seems
straightforward to use Eq. (5) with the time-integral operator
G

ωk1
ωk defined in Eq. (6) and solve the integrodifferential

equations numerically. This is, however, a very challenging
problem for the following reasons.

From the Markovian expression for the frequency renor-
malization, we find the explicit dependence on the value of
the cut-off energy �ωBZ. Therefore, also oscillations with
frequencies close to ωBZ have to be resolved, which are on
the time scale of a few femtoseconds since �ωBZ is in the
eV range. On the other hand, relevant changes of the total
electron spin takes place in the 10–100 ps range. Furthermore,
for each time step the calculation of each s′⊥

k1
requires a

sum over all possible k states so that the problem has the
complexity O(N2

k ), where Nk is the number of discretization
points for the k space. Note that also in k space, the details
of excitations close to the band edge in the meV range as
well as the full Brillouin zone up to energies of a few eV
have to be resolved. Such a problem also arises in the metallic
Kondo effect where numerical procedures, such as the famous
renormalization group [61], have been developed to deal with
the large value of the bandwidth [2]. Note that solving the inte-
grodifferential equation by finding an auxiliary variable, so that
the problem can be transformed into an ordinary differential
equation, is equivalent to using the original quantum kinetic
theory [54].

Here we solve this problem by using approximations that
allow a separation of electron spins with different wave vectors,
so that we find a O(Nk) problem for an individual electron with
wave vector k1. First of all, it is noteworthy that s′⊥

k1
in Eq. (5)

couples to the occupations n
↑/↓
k of states with different wave

vectors k. These terms, however, are of second order in electron
variables and have a marginal effect on the dynamics of the
perpendicular spin component [54], especially if the electron
density is small, as is usually the case for optically excited
carriers. Neglecting these terms, we can formulate equations
of motion for the complex perpendicular electron spin variable
(in the rotating frame):

s ′
k1

:= s ′x
k1

+ is
′y
k1

, (12)

where it is assumed that the impurity magnetization points
in the z direction. Then, the PESC-equations (5) assume the
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form

∂

∂t
s ′

k1
(t) = −J 2

sd

�2

nMn

V

∑
k

∫ t

0
dt ′

×
{

b+

2
ei[ωk−(ωk1 −ωM )](t ′−t)s ′

k1
(t ′)

+ b−

2
e−i[ωk−(ωk1 +ωM )](t ′−t)s ′

k1
(t ′)

+ b‖

2
cos

[(
ωk − ωk1

)
(t ′ − t)

][
s ′

k(t ′) + s ′
k1

(t ′)
]}

.

(13)

It can be seen immediately from Eq. (13) that in the equation
for s ′

k1
, electron variables of states with other wave vectors

only enter in the last term, i.e., the term proportional to s ′
k(t ′) +

s ′
k1

(t ′). Note that a time integration of cos[(ωk − ωk1 )(t ′ − t)]

yields
sin[(ωk−ωk1 )t]

(ωk−ωk1 )t which has a pronounced peak at ωk = ωk1 .
Thus, if the electron spin distribution is assumed to be a smooth
function in k space, the main contribution of the last term in
Eq. (13) will be approximately the same if we set

s ′
k(t ′) ≈ s ′

k1
(t ′). (14)

This approximation was shown to reproduce the non-
Markovian features of the spin transfer in Ref. [57]. Also,
in contrast to the other terms, the last term of Eq. (13), where
the approximation is used, does not influence the frequency
renormalization, due to the absence of an imaginary part of
the oscillating prefactor cos[(ωk − ωk1 )(t ′ − t)]. Now, with
the help of approximation (14), we end up with completely
decoupled equations for the spins s ′

k1
of electrons with different

wave vectors k1.
Finally, it is useful for the numerical solution of the inte-

grodifferential equation (13) to transform it into an ordinary
differential equation using auxiliary variables G

j

k1k:

∂

∂t
s ′

k1
= −J 2

sd

�2

nMn

V

4∑
j=1

∑
k

D(k)Gj

k1k, (15a)

∂

∂t
G

j

k1k = σj i
(
ωk − ωk1 + χjωM

)
G

j

k1k + bj

2
s ′

k1
, (15b)

with

σj = {1, − 1,1, − 1}, (15c)

χj = {1, − 1,0,0}, (15d)

bj = {b+,b−,b‖,b‖}, (15e)

and initial conditions G
j

k1k = 0 for t = 0. This reflects the fact
that before the preparation (e.g., optical excitation) there are
no free carriers available and therefore the carrier-impurity
correlations should initially be zero. Calculating the dynamics
of a single electron spin using Eqs. (15) has the complexity
O(Nk) and can be done without the need for a numerical
renormalization group procedure.

IV. RESULTS FOR THE FREQUENCY
RENORMALIZATION

The parameters used for the numerical calculations de-
scribe a Cd0.93Mn0.07Te sample with coupling constant Jsd =
−15 meV nm3, effective mass m∗ = 0.093m0 [62], where m0

is the free electron mass, and, in the case of a two-dimensional
system, a quantum well width of d = 5 nm. The cut-off
energy was taken to be �ωBZ = 3 eV. The initial impurity
magnetization was modeled to be thermally distributed and
is therefore completely defined by the mean value 〈S‖〉 ∈
[− 5

2 ; 5
2 ].

We assume that electrons have been spin selectively
prepared by optical excitation with circularly polarized light
so that the initial electron spin is perpendicular to the initial
impurity magnetization (Voigt geometry). Equations (15) are
used to calculate the finite-memory spin dynamics for electrons
with a defined wave vector k1 or, equivalently, kinetic energy

�ω1 = �
2k2

1
2m∗ . An exponentially decaying cosine

s ′x
ω1

(t) ≈ s ′x
ω1

(0)e−t/τ⊥ cos(ω′
Mt) (16)

is fit to the non-Markovian spin dynamics in order to find a
value for the effective decay rate τ−1

⊥ (ω1) and the precession
frequency ω′

M (ω1). The relative renormalization of the preces-
sion frequency is given by 
ω

ωM
with 
ω = ω′

M − ωM .
Figure 1 shows the relative frequency renormalization

obtained from a fit to the non-Markovian calculation and the
corresponding Markovian result for a δ-like initial spectral
electron distribution as a function of the kinetic energy �ω1.
First of all, it can be seen that in three-dimensional as well as in
two-dimensional systems the Markovian and non-Markovian
results coincide. In the three-dimensional case, the square-root
energy dependence of the renormalization for ω1 < ωM can
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FIG. 1. Dependence of the relative frequency renormalization 
ω

ωm

on the kinetic electron energy for two- and three-dimensional systems
according to the calculation including a finite memory [Eqs. (15)]
(points) and in the Markov limit [Eqs. (10)] (lines) for different values
of the average impurity spin |〈S〉| (in units of �).
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FIG. 2. Spin transfer rate τ−1
⊥ in Markov approximation (line)

according to Eq. (8) and exponential fit to the calculation including
a finite memory (crosses) using Eqs. (15) for |〈S〉| = 0.05 in a two-
dimensional system.

be seen clearly, while in two dimensions, the logarithmic
divergence at ω1 = ωM is apparent. The positive relative
frequency renormalization in three dimensions describes an
increase in the modulus of the precession frequency. In
two dimensions, the slightly positive background of the
renormalization is overcompensated by a negative value in
the region around the divergence.

In Fig. 2 the spin transfer rate according to the Markov
approximation is compared with the value obtained by the
exponential fit to the non-Markovian result for a calculation
with |〈S〉| = 0.05 in two dimensions. The step in the rate τ−1

⊥ at
ω1 = ωM , which is predicted in the Markov limit [cf. Eq. (8)],
is found to be slightly rounded off in the non-Markovian
calculation, but the deviations between both results are rather
small.

In order to find an estimate for the strength of the change
of the precession frequency for a more realistic electron
distribution, Fig. 3 shows the relative precession frequency
renormalization as a function of the average impurity spin
where the initial spectral electron distribution [cf. inset of
Fig. 3] was assumed to be Gaussian with center at Ec = �ωM

and standard deviation Es = 1 meV (0.1 meV) corresponding
to a full width at half maximum (FWHM) of ≈2.35 meV
(0.235 meV) or a Gaussian envelope of an exciting laser pulse
with a duration (FWHM) of ≈140 fs (1.4 ps). The calculations
for Fig. 3 were performed using the 2D Markovian expression
for the rates in Eq. (8) and the renormalized precession
frequencies in Eq. (10a). It can be seen that the magnitude
of the frequency renormalization can reach values of several
percent of the mean-field precession frequency and is negative
for small values of |〈S〉|. For larger values of the impurity
magnetization, the frequency renormalization approaches a
small positive value. One could expect that the narrower
electron distribution (Es = 0.1 meV) is closer to the δ-like
case than the wider distribution (Es = 1 meV) and therefore
the frequency renormalization should be more pronounced.
However, it can be seen from Fig. 3 that this is only the
case for very low values of |〈S〉| (below 0.01 in the case
studied here). For higher values of the impurity magnetization,
the relative frequency renormalization approaches the positive
background much faster in the calculations with the narrower
electron distribution.
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FIG. 3. Relative frequency renormalization 
ω

ωM
in a two-

dimensional system for a Gaussian spectral electron distribution
centered at Ec = �ωM with standard deviations of Es = 1 meV and
Es = 0.1 meV, respectively. The initial electron distribution as a
function of the kinetic energy is visualized in the inset as the blue
dash-dotted line (Es = 1 meV) and green dotted line (Es = 0.1 meV)
together with the corresponding frequency renormalization for δ-like
excitations (red line) for |〈S〉| = 0.05.

Note that in order to be able to measure or fit a precession
frequency, at least one period of the oscillations should be vis-
ible before the spin polarization is decayed. Thus, the minimal
value of the impurity magnetization, where one can reasonably
deduce a precession frequency from the time evolution of the
spin polarization, is given by |ωM | � τ−1

⊥ which yields, for the
parameters above, |〈S〉| � 0.01. Therefore, we find that short
laser pulses with pulse durations of the order of 100 fs provide
the most promising configuration for experiments to measure
the frequency renormalization. Under these conditions the
precession frequency of the average spin could be directly
measured, e.g., by time-resolved Kerr or Faraday rotation.
According to our results, the precession frequency should be
reduced by about a few percent compared with the mean-field
value. We note in passing that Ref. [63] reported a measured
enhancement of the spin transfer rates by roughly a factor
of 5 compared with the value predicted theoretically for free
carriers. This increase can be attributed to the excitation of
excitons which implies that the total exciton mass replaces
the effective electron mass m∗ in the density of states [31,64].
While an explicit simulation involving excitonic effects is out
of the scope of the present paper, a similar enhancement of the
frequency renormalization should be expected recalling that
also the latter is proportional to the density of states.

Since the frequency renormalization depends on the kinetic
energy and therefore the wave vector of an electron, the
question arises, whether this dependence leads to a dephasing
of spins of electrons with different k vectors. To address
this question, we show in Fig. 4 the value of the rate τ−1

⊥
obtained by an exponential fit to the time evolution of the
total carrier spin polarization, where the same Gaussian initial
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initial spectral electron distributions (cf. Fig. 3) as a function of the
average impurity spin with (blue dash-dotted line/green dotted line)
and without (red solid line) accounting for a renormalization of the
precession frequency.

electron distributions are used as in Fig. 3. It can be seen
that calculations, where the correlation induced frequency
renormalization is neglected, produce very similar decay rates
as calculations that account for this renormalization for most
of the possible values of the impurity magnetization. Only in
a regime where the impurity spin is small we find a slightly
larger value (�1%) of the rate at |〈S〉| ≈ 0.05 for Es = 1 meV
and |〈S〉| ≈ 0.005 for Es = 0.1 meV. This increasing decay
is the consequence of the dephasing of electron spins due to

the k dependence of the frequency renormalization. Since the
expression for the rate in the Markov limit [cf. Eq. (8)] and the
frequency renormalization [cf. Eq. (10a)] depend on the same
parameters, this dephasing mechanism is always accompanied
by a genuine spin transfer between impurities and carriers that
is typically much faster than the dephasing itself.

V. CORRELATION ENERGY

Most studies on DMS which probe the energies of electrons
in DMS use the mean-field approximation [24] and describe
the effects of the impurity magnetization as a renormalization
of the electron g factor which is known as the giant Zeeman
effect [65]. If, however, the buildup of carrier-impurity correla-
tions is taken into account, the mean s-d exchange interaction
energy 〈Hsd〉 will deviate from the mean-field value. The
correlation energy can, in principle, have an impact on the
thermodynamic properties of DMS which could help, e.g.,
in the description of the paramagnetic-ferromagnetic phase
transition in GaMnAs.

Since the derivation of the PESC-equations in Ref. [54] re-
quired finding explicit expressions for the correlations, we can
use this theory to get the correlation induced correction 〈H cor

sd 〉
to the mean-field exchange interaction energy analytically:

〈Hsd〉 = Jsd

V

∑
Inn′

σσ ′kk′

Snn′sσσ ′
〈
c
†
σkcσ ′k′ei(k′−k)RI P̂ I

nn′
〉

=:
∑

k

�ωM · sk + 〈
H cor

sd

〉
. (17)

Using the time-integral form of the correlations from
Ref. [54] we find

〈
H cor

sd

〉 = Jsd

V
nMn

∑
kk′

3∑
α=1

Qαk′
αk = −�

∑
k1k2

(
Im

{
G

ωk1 +ωM

ωk2

}[b+

2
n

↓
k2

− b−

2
n

↑
k1

− b0

2

(
n

↑
k1

n
↓
k2

+ n
↑
k2

n
↓
k1

)]

+ Im
{
G

ωk1 −ωM

ωk2

}[b−

2
n

↑
k2

− b+

2
n

↓
k1

+ b0

2

(
n

↑
k1

n
↓
k2

+ n
↑
k2

n
↓
k1

)] + Im
{
G

ωk1
ωk2

}{b‖

4

[(
n

↑
k2

+ n
↓
k2

) − (
n

↑
k1

+ n
↓
k1

)]})
. (18)

To understand Eq. (18) it is important to recall that the correlations typically build up on the time scale of a few femtosecond
[57], while the spin-up and spin-down occupations change on a picosecond time scale [51,54]. Thus, 〈H cor

sd 〉 is the stationary
value of the correlation energy for given values of adiabatically changing occupations n

↑/↓
k1

.
As in the discussion of the frequency renormalization, we neglect terms of second order in the electron variables and apply

the Markov approximation to find for the two-dimensional case

〈
H cor

sd

〉 ≈ −J 2
sd

�

nMn

V

Am∗

2π�

∑
k1

{
ln

∣∣∣∣ωBZ−(
ωk1 +ωM

)
ωk1 + ωM

∣∣∣∣b−n
↑
k1

+ ln

∣∣∣∣ωBZ − (
ωk1 − ωM

)
ωk1 − ωM

∣∣∣∣b+n
↓
k1

+ ln

∣∣∣∣ωBZ−ωk1

ωk1

∣∣∣∣b‖

2

(
n

↑
k1

+n
↓
k1

)}
.

(19)

The mathematical structure of the correlation energy 〈H cor
sd 〉 in

Eq. (19) is very similar to that of the frequency renormalization
in Eq. (9). To see this relation, it is helpful to express the
occupations n

↑/↓
k1

of the spin-up and spin-down subbands
in terms of the occupation nk1 of both bands and the
spin component s

‖
k1

parallel to the impurity magnetization

(quantization axis) via

n
↑/↓
k1

= nk1

2
± s

‖
k1

. (20)

As it is common for spin-dependent single particle energies
like the Dresselhaus [66] or Rashba terms [67], one could
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expect that the spin-dependent part of the correlation energy
can be written as an effective magnetic field in which the
electron spins precess. This additional precession movement
could be made responsible for the frequency renormalization
discussed above. However, although the corresponding effec-
tive field due to the correlation energy has the same form
as the frequency renormalization, it is larger by a factor of
2. We attribute this to the fact that the correlation energy is
not an average over a Hermitian single particle operator, but
comprises multiparticle effects, where the naive identification
of an effective magnetic field can lead to incorrect predictions.

A particularly interesting and transparent case is that where
the impurity magentization 〈S〉 vanishes. Then, the correlation
energy takes the form

〈
H cor

sd

〉 = −J 2
sd

�

nMn

V
〈S2〉Am∗

2π�

∑
k1

ln
∣∣∣ωBZ − ωk1

ωk1

∣∣∣nk1 . (21)

Thus, for 〈S〉 = 0, we find a logarithmic divergence of the
correlation energy with respect to ωBZ → ∞ and ωk1 → 0. In
both limits, the correlation energy is negative and independent
of the sign of the coupling constant Jsd. Note that this is
different from the mean-field contribution to the interaction
energy which is proportional to Jsd and therefore has a
different sign for a ferromagnetic or antiferromagnetic s-d
coupling. The negative correlation energy suggests that the
formation of correlated carrier-impurity states is energetically
favored, similar to the situation in metallic Kondo systems [2].
Again, we find that the divergence at ωk1 → 0 in Eq. (21) is
integrable so that the total correlation energy always assumes
finite values. To estimate the magnitude of the correlation
energy in the case where 〈S〉 = 0 we consider a Gaussian
spectral electron distribution centered at the band edge with
standard deviation Es = 1 meV. For the parameters of the
Cd0.93Mn0.07Te quantum well discussed above, we find from
Eq. (21) a value of 〈H cor

sd 〉 ≈ −1.8 μeV per electron. Thus, the
correlations can be destroyed by thermal fluctuations when the
temperature T exceeds 20 mK.

Note that, here, we describe the dynamic buildup of Kondo-
type correlated carrier-impurity states that takes place on a
short time scale after an initial preparation of a nonequilibrium
spin distribution. On a longer time scale (∼100 ps) the
thermalization of excited carriers in DMS may lead to the
formation of, e.g., bound (BMP), free (FMP), or exciton (EMP)
magnetic polarons [30,40,46,47,68,69]. These states comprise
carriers whose wave functions are limited to a finite volume in
which the impurities are spin polarized. They become relevant,
if their total free energy is lower than that of free carriers in a
bath of homogeneously polarized ions. The treatment of such
effects is beyond the scope of the present study. However, from
the fact that the s-d interactions leads to correlation energies
in the μeV range, while typical values of polaron binding
energies are several tens of meV [30], we can conclude that
a semiclassical treatment of Hsd, which is usually the case
in the literature [30,40,46,47,68,69], is indeed justified for
thermodynamic considerations that become relevant on time
scales longer than those considered in this paper.

VI. CONCLUSION

A microscopic quantum kinetic theory is employed to
describe the spin dynamics of carriers and magnetic impurities
in diluted magnetic semiconductors (DMS) accounting also for
the dynamics of the carrier-impurity correlations. The role of
the correlations is examined to shed light into the controversy
about their importance: While some authors assume that the
Kondo physics due to carrier-impurity correlation is of minor
importance [48], others [49] find divergences in a perturbative
treatment of the spin dynamics in DMS, similarly to the
appearance of divergences found in the metallic Kondo effect
[1,58]. In the present study, we find that the correlations,
besides mediating the spin transfer between carriers and
impurities, are also responsible for a renormalization of the
precession frequency.

We find by numerical simulations that simple Markovian
expressions reproduce well the frequency renormalization
obtained by using the quantum kinetic theory. The numerical
calculations as well as the Markovian expressions predict that
the frequency renormalization is small in three-dimensional
DMS but diverges logarithmically in two-dimensional systems
for electrons with a specific kinetic energy. However, we
find that these divergences are integrable when a nonsingular
electron distribution is considered, so that for realistic optical
excitation scenarios the average frequency renormalization can
reach values of up to a few percent. Since in these cases the
relative frequency renormalization is negative, the precession
frequency of the electron spin is reduced.

Although the k dependence of the frequency renormal-
ization can in principle lead to a dephasing of carrier spins,
the spin transfer from the carriers to the impurities is usually
much faster, so that this dephasing mechanism yields only
very small corrections to the total decay of the carrier
spin.

In order to experimentally probe the correlation induced
frequency renormalization, the spectral features of the laser
pulse have to be precisely controlled. Furthermore, it was
reported [70] that an antiferromagnetic impurity-impurity
interaction influences the thermal equilibrium value of the
Mn magnetization, which in turn changes the measured
electron spin precession frequency. Therefore, it is common to
introduce a fitting parameter T0 and to describe the equilibrium
Mn magnetization by a Brillouin function with effective
temperature Teff = T0 + T , where T is the temperature of
the sample. This complicates the identification of correlation
induced changes in the precession frequency. To distinguish
both effects it is useful that in addition to the dependence
on the spectral position and shape of the exciting pulse,
the relative frequency renormalization due to the correlations
is independent of the impurity density, while the impurity-
impurity interaction depends on the mean distance between the
impurity ions and is not influenced by the excitation conditions.
Because of this and from the different parameters entering
the prefactor of the frequency renormalization, we find that
the most promising samples for experimentally accessing
the correlation induced frequency renormalization are very
narrow quantum wells with large effective masses and a large
coupling constant Jsd while the impurity concentration should
be relatively low. Also, we find that the spectral properties of
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ultrashort pulses with durations in the 100 fs range suit this
purpose.

The explicit expressions for the correlations in the Markov
limit also allow us to find a quasiequilibrium value for the
correlation energy in terms of carrier and impurity variables.
The form of the correlation energy is similar to the expression
for the frequency renormalization and hints towards the
appearance of Kondo-type correlated carrier-impurity states,
independent of the sign of the coupling constant, which builds
up dynamically on a femtosecond time scale after preparing an

initial nonequilibrium spin distribution which is initially not
correlated.
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[15] Ł. Cywiński and L. J. Sham, Phys. Rev. B 76, 045205 (2007).
[16] M. Nawrocki, R. Planel, G. Fishman, and R. Galazka, Phys. Rev.

Lett. 46, 735 (1981).
[17] S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and

N. Samarth, Phys. Rev. B 56, 7574 (1997).
[18] J. H. Jiang, Y. Zhou, T. Korn, C. Schüller, and M. W. Wu, Phys.

Rev. B 79, 155201 (2009).
[19] T. Dietl, Nat. Mater. 9, 965 (2010).
[20] D. Awschalom and M. Flatté, Nat. Phys. 3, 153 (2007).
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