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Theoretical study of large proximity-induced s-wave-like pairing from a d-wave superconductor
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We use the proximity effect to generate effective topological superconductors by placing metals with strong
spin-orbit coupling in contact with a superconductor, aiming to produce Majorana zero modes useful for
topologically protected quantum computation. In recent experiments, several quintuple layers of Bi2Se3 were
epitaxially grown on the high-Tc material Bi2Sr2CaCu2O8+δ , and conflicting experimental results were reported.
We use the standard mean-field approach to study this heterostructure and find it is unlikely to have a large
proximity-induced superconducting gap. Despite the seemingly correct temperature dependence, the s-wave gap
claimed to be observed may not be purely superconducting in origin. Future work on the proximity-induced bulk
superconducting gap and the interfacial band structure should shed light on this issue.
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I. INTRODUCTION

The proximity effect in superconductor-metal interfaces,
or the leakage of Cooper pairs from the superconductor into
the metal, has been studied since its experimental discovery
in 1960 [1]. The magnitude of the induced superconducting
gap generally depends on the quality of the interface, external
fields, and certain material-dependent properties, in particular
the Fermi surfaces and energy spectra of both the superconduc-
tor and metal [2–4]. The symmetry of the induced supercon-
ducting gap is typically identical to that of the superconductor
unless there exists symmetry-breaking perturbations, such as
the lattice-symmetry mismatch, ferromagnetism in the metal
[5,6], or the presence of large spin-orbit interactions [7].

Recently, the application of the proximity effect to the
surface states of a topological insulator (TI), with the goal
to produce the topological superconductivity, has stimulated
intense theoretical and experimental effort. In addition to
s-wave superconductors [7–10], d-wave superconductors also
show interesting proximity effect on the surface states of a
TI [9,11–16]. Wang et al. [16] observe a surprisingly large s-
wave-like pairing gap on the top surface of a seven-quintuple-
layer-thick Bi2Se3 film on Bi2Sr2CaCu2O8+δ (BSCCO) by
using angle-resolved photoemission spectroscopy (ARPES).
By applying a suitable incident photon energy (approximately
50 eV), at which the contribution from the surface states
dominates that from the bulk states, a gap of up to 15 meV on
the outermost surface states of the Bi2Se3/BSCCO system is
detected. The change of the pairing symmetry from d-wave in
BSCCO to s-wave-like on the surface states from the proximity
effect is claimed to reflect a nontrivial coupling in this system
[16]. However, two separate experimental groups [14,15] with
similar setups do not reproduce the proximity-induced pairing
gap on the Bi2Se3/BSCCO. Earlier tunneling measurements
[13] suggest the proximity-induced gap at the interface is d

wave. These conflicting observations prompt us to address the
issue theoretically and ask whether such a large proximity-
induced s-wave gap is possible.

In this paper, we use the tunneling model pioneered by
McMillan [17] to study the superconducting proximity effect
between Bi2Se3 and BSCCO. We assume the interface between
the superconductor and the metal is clean or with only weak
random impurities, and the superconducting gap in BSCCO

is identical1 for all coupling strengths between BSCCO and
Bi2Se3. We model the superconductivity within BSCCO via
mean field, and evaluate within Bi2Se3 the induced pairing
amplitude, defined as the sum of the expectation value of
Cooper pairs in momentum space, for a range of symmetries.
Our results show that the proximity-induced superconducting
gap is small and mainly d wave, and the unambiguous way
to find the condensates is through the evaluation of pairing
amplitudes. The smallness of s-wave and p ± ip pairing
amplitudes supports the absence of a large induced s-wave-like
superconducting gap.

Based on our results, we suggest the discrepancies between
the experiments [14–16] are due to different interface coupling
strengths between Bi2Se3 and BSCCO across the various
samples. The observed gap in Ref. [16] may not purely be due
to superconductivity, but also to a mass gap generated by bands
crossings caused by large interfacial tunnelings as compared
with the samples used in Refs. [14] and [15]. The growth
temperature in Ref. [14] is certainly much higher than that in
Ref. [16], suggesting the interface tunneling strength is larger
in sample of Ref. [16]. Further analysis on the symmetry of the
bulk superconducting gap of Bi2Se3 in the samples of Ref. [16]
should reveal its d-wave nature, as the bands overlap between
the bulk bands of Bi2Se3 and BSCCO should be smaller than
the overlap between the surface states. Another way to verify
our claim is to measure the band structure of Bi2Se3 at the
interface, which should show a d-wave single particle gap
structure with lobes pointing in the nodal direction when the
system temperature is higher than Tc, the superconducting
transition temperature of BSCCO.

We note that earlier work by Z. X. Li et al. [18] has also ad-
dressed the same issue with a two-bands model of the Bi2Se3.
In their work there are two quantum well states other than

1Here we treat the BSCCO as the bulk, and its superconductivity is
not influenced by the contact surface with Bi2Se3. More rigorously,
this interface gap should be evaluated self-consistently, and the gap
magnitude of BSCCO at the interface would be smaller than its bulk
value. Considering this would further decrease the proximity-induced
gap at the Bi2Se3. Thus the gap obtained in the main text should be
viewed as the theoretical upper bound.

2469-9950/2016/93(3)/035140(12) 035140-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.035140


WAN-JU LI, SUNG-PO CHAO, AND TING-KUO LEE PHYSICAL REVIEW B 93, 035140 (2016)

the surface state present at the Fermi surface for the 7QL-thick
Bi2Se3. They also introduce small (around 100 meV) repulsive
and attractive interactions within the Bi2Se3. At the top layer
(away form the interface with BSCCO), they find s-wave
dominant pairing due to the suppression of d-wave pairing
near the � point and claim that disorder could further enhance
s-wave pairing. The proximity-induced superconducting gap
magnitude in their paper [18] is also around 1 meV with
similar tunneling strength. Their results support the reports
in Refs. [14,15] of the absence of a superconducting gap
despite its s-wave gap structure. Furthermore, the dominant
s-wave pairing gap in Ref. [18] is the result of multilayer
structure of Bi2Se3 (through enforcing s-wave interactions in
Bi2Se3 and disorder, which prefer s wave) and choice of Fermi
surface around � point. This mechanism is different from our
work where the formation of s-wave-like gap is the combined
effects of superconducting proximity effect and hybridization
of bands between Bi2Se3 and BSCCO.

We organize this paper as follows. In Sec. II, we introduce
our model Hamiltonians for the BSCCO/Bi2Se3 system.
Assuming good contact surface between the two, we compute
various paring amplitudes and proximity-induced gaps in the
surface state of Bi2Se3 at different tunneling strengths. In
Sec. III, we discuss other possible factors which could enhance
the proximity-induced superconductivity. In Sec. IV, we find
the combined effect of strong hybridization of bands and
superconducting proximity effect gives rise to s-wave-like gap
structure. In Sec. V, we summarize our results and suggest
possible experimental approaches to verify our claim.

II. PROXIMITY EFFECT: BSCCO AND Bi2Se3

We start with the model Hamiltonian describing the Bi2Se3,
a type of three dimensional topological insulator(TI), grown on
top of the BSCCO. We assume only single metallic layer in the
Bi2Se3 in our computation, which can be viewed as one of the
two dimensional surfaces of the three dimensional topological
insulator Bi2Se3 in contact with BSCCO if the bulk band were
insulating. The motivations for forming this heterostructure
[7,14–16] is to produce effective p ± ip superconductivity, a
form of topological superconductivity, on its interface. The
edge modes or vertex states of the topological superconductor
host the Majorana modes [7], the simplest anyon, which could
be useful for quantum computations.

To describe the superconducting proximity effect between
surfaces of BSCCO and Bi2Se3, we use the following single-
band bilayer model Hamiltonian:

H = HBSCCO + HBi2Se3 + Ht,

HBSCCO =
∑
�k,σ

d
†
�k,σ

(Ed (�k) − μd )d�k,σ

+
∑
�k, �k′

V (�k, �k′)d�k,↑d−�k,↓d
†
−�k′,↓d

†
�k′,↑, (1)

HBi2Se3 =
∑
�k,α,β

c
†
�k,α

(Êc(�k)αβ − μcÎαβ)c�k,β

Ht =
∑
�k,σ

(t�kc
†
�k,σ

d�k,σ + t∗�k d
†
�k,σ

c�k,σ ).

Here, HBSCCO, HBi2Se3 , and Ht describe the Hamiltonian
for two-dimensional surface of BSCCO, surface state of
Bi2Se3, and the single-particle tunneling terms between the
two surfaces. Here, α, β denote spin indices, d�k,σ and c�k,σ

the electron annihilation operators of BSCCO and Bi2Se3

in momentum space representation, and �k = (kx,ky) is the
linear momentum of the two-dimensional surface. Îαβ is the
identity matrix, and Êc(�k)αβ is a 2 × 2 matrix characterizing
the spin-orbit interaction of surface state of TI. Attractive
V (�k, �k′) with d-wave symmetry is assumed to give d-wave
superconductivity of BSCCO under the BCS mean-field
approximation. The tunneling amplitude tk is proportional
to the wave functions overlap between that of BSCCO and
Bi2Se3. We have assumed few or weak random nonmagnetic
impurities such that spin and momentum are conserved in the
tunneling term, and constant tunneling amplitude nearby the
relevant Fermi level (tk = t).

The explicit form of Ed (�k) and Ec(�k)αβ are obtained from
the tight binding models, with parameters specified from first
principle studies for Bi2Se3 [19,20] and BSCCO [21]. The
single band dispersion for BSCCO is

Ēd (�k) ≡ Ed (�k) − μd = −h( cos(kxa1) + cos(kya1))

+h′ cos(kxa1) cos(kya1)

−h
′′
( cos(2kxa1) + cos(2kya1))

−h
′′′

( cos(2kxa1) cos(kya1) + cos(kxa1) cos(2kya1))

+h
′′′′

( cos(2kxa1) cos(2kya1)) − μd. (2)

Here, h = 0.2975 eV, h′ = 0.1636 eV, h
′′ = 0.0259 eV,

h
′′′ = 0.0558 eV, h

′′′′ = 0.0510 eV, μd = −0.1305 eV, a1 �
3.82 Å. For the Bi2Se3 crystal, to account for the C6 crystal
symmetry and different orientations on the proximity effect
seen in the experiments, we include the warping terms [19]
in our model Hamiltonian. From Ref. [19], the low-energy
dispersion of Bi2Se3 close to the Brillouin zone center is given
by

Ēc(�k) = Ec(�k) − μc

= p0 + p1
(
k2
x + k2

y

) + p2(σxky − σykx)

+p3(k3
+ + k3

−)σz − μc, (3)

where p0 = 0.035 eV, p1 = 1.38556 eV Å
2
, p2 = 0.795 eV Å,

p3 = 0.3535 eV Å
3
, k± = kx ± iky , and σx , σy , and σz are the

2 × 2 Pauli spin matrices. The p2 term is the Rashba spin-orbit
term. For our calculations, we need to extend this low-energy
Hamiltonian to the whole Brillouin zone in momentum space
and keep the single Dirac-cone-like structure. The quadratic
k terms have undesired behavior in the large-k region and
does not give the consistent band structures compared with
experiments at large momenta. To include the warping terms
and avoid the issues of inconsistency at large k, we keep
the linear term unchanged, remove the quadratic terms, and
replace kxa2 with sin(kxa2) and kya2 with sin(kya2) for the
third-order warping terms. Here, a2 = 4.138 Å is the lattice
constant of Bi2Se3. The low-energy dispersion in Eq. (3) is
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FIG. 1. (a) Energy dispersion of surface state of Bi2Se3 described
in Eq. (4). The relevant energy scale in the main text is colored
in shaded blue region. (b) We plot the Fermi surfaces of Bi2Se3

including the warping cubic terms at μ2/h � 1.3 (red thin line) and
μ2/h � 2.6 (blue thick dashed line), and BSCCO (green thick line).
The μ2/h � 2.6 is just for illustrating the hexagonal symmetry of the
Fermi surface, which is difficult to see with the Fermi level (μ2/h �
1.3) set by the experiments.

then modified as

Ēc(�k) = p0 + p2(σxky − σykx) + p3

a3
2

(2 sin3(kxa2)

− 6 sin(kxa2) sin2(kya2))σz − μc. (4)

The chemical potential μc exhibiting surface states of Bi2Se3

is estimated to be around 0.4eV for the relevant experiment
[15]. Noting that Eq. (4) is not of tight binding form but
from an effective low-energy Hamiltonian of surface state
of Bi2Se3 with parameters fixed by first-principles studies
[19,20]. The first-order derivative of Ēc(�k) is discontinuous at
zone boundary (kxa2, kya2 being ±π ) after imposing periodic
boundary condition. For the low-energy limit (energy scale
less than p2a2 ∼ 3.2 eV) discussed in this paper, this artifact
does not enter into our equations or modify our results. The
region of relevant energy scale in our discussion here is plotted
in Fig. 1(a).

For the numerical computations shown below, we take
nearest-neighbor hopping h of BSCCO in Eq. (2) as the
energy unit. We use kxa1 ≡ k̃x and kya1 ≡ k̃y as dimensionless
momentum space parameters although there is a minor
difference in their lattice size (a2/a1 � 1.08). In this unit, the
d-wave superconducting gap is defined as

�(�k)∗ =
∑

�k′

V (�k − �k′)〈d†
�k′,↑d

†
−�k′,↓〉

= �∗( cos(k̃x) − cos(k̃y)). (5)

Here, the gap magnitude |�| � 40 meV (or |�|/h � 0.13) is
assumed to be fixed (termed the “bulk limit” below) by viewing
the superconductivity of BSCCO not influenced by the contact
of Bi2Se3. The expectation value is taken with the ground state
of the whole mean-field Hamiltonian H . In principle, we may
also compute this gap magnitude self-consistently, as shown
for the model calculations in Appendices A–C, by fixing the
interaction strength V (�k, �k′). The obtained proximity-induced
superconducting gaps or pairing amplitudes are smaller com-
pared with those obtained with the bulk limit. To obtain an

upper bound on the proximity-induced gap on Bi2Se3, we
stick with this bulk limit in the main text of the paper.

We identify the proximity-induced superconductivity in
Bi2Se3 by computing two quantities: the pairing amplitude
and the quasiparticle energy gap. The pairing amplitude Ai is
defined as

A∗
i = −

∑
�k′

fif
′
i 〈c†�k′,α

c
†
−�k′,β

〉 = Ãifi (6)

with fi being the symmetry factor and i denoting s, p,
p ± ip, or d wave symmetry (α and β are spin indices.
fs = 1, fp = sin(k̃x) or sin(k̃y), fp±ip = sin(k̃x) ± i sin(k̃y),
and fd = cos(k̃x) − cos(k̃y). f ′

i has similar definition as fi with
�̃k replaced by �̃k′. This fif

′
i geometric factor comes from the

angular expansions of V (�k − �k′), and Ãi is the corresponding
magnitude. Even (spatial) wave symmetry has odd spin
angular momentum and vice versa, as required by the Pauli
exclusion principle. This dimensionless pairing amplitude
directly reflects the amount of Cooper pairs formed at Bi2Se3,
but it is not directly probed by tunneling measurement [13]
nor spectroscopy like ARPES [14–16]. The physical quantity
probed in these experiments is the quasiparticle energy gap.
We identify the energy gap due to proximity effect in two
approaches: one is from the density of state (DOS) of Bi2Se3

and another is obtained from the numerical results of energy
bands difference in the diagonalized bases of total Hamiltonian
H . The DOS calculation is done with Hartree approximation
(ignoring the exchange term), as shown in Appendix A 1,
and perform the momentum integral on the imaginary part
of electron Green’s function of Bi2Se3. From the shape of the
DOS, we may identify the gap symmetry and magnitude, but
will not have momentum space resolution. The numerically
obtained energy bands difference with momentum dependence
complements this.

From Eq. (4), we find the desired surface state band
structure of Bi2Se3, showing clear hexagonal Fermi surface
at larger chemical potential as shown in Fig. 1(b). This
hexagonal structure is not apparent at the experimental relevant
Fermi level. However, with the breaking of circular symmetry,
the presence of Zeeman like σz term [22], and the crystal
orientation of Bi2Se3 which is 45◦ or 15◦ different [16]
from that of BSCCO, we have generated s-wave, p-wave,
and p ± ip-wave pairing in additional to d-wave pairing
on the Bi2Se3 surface. The crystal orientation difference, as
demonstrated in Fig. 1(b), is important for the existence of
s-wave [16] pairing. There would be no s-wave pairing if
rotated by 15◦ (or equivalent 45◦ with C6 symmetry in warping
corrected Bi2Se3 surface state) due to the d-wave pairing from
the BSCCO and the alignment of symmetry axes of Bi2Se3 in
nodal directions. Same argument also applies to the lacking
of s-wave pairing without the inclusion of warping terms.
The aforementioned pairing amplitudes are denoted by As ,
Ap, Ap±ip, and Ad and their values with different tunneling
strengths t are listed in Table. I.

In Fig. 2(a), we plot the DOS of Bi2Se3 surface state
at tunneling strength t/h = 0.67 with superconducting gap
�/h � 0.13 in BSCCO. The proximity-induced gap is mainly
d-wave-like as shown in Table I, with d-wave gap magnitude
around 0.0016h or 0.5 meV (about half from DOS plot due
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TABLE I. Various possible pairing amplitudes at different tun-
neling strengths t . Gap magnitude of BSCCO is fixed at �/h � 0.13
with pairing amplitudes evaluated with 160 × 160 k points. Āi is
defined as Ãi = Āi × 10−5.

t Ās Āp Ād Āp±ip

0.01 −7.1698 −0.29080 2.7588 −2.9932i

0.1 −8.7897 −4.9422 209.67 −47.220i

0.67 −364.21 −93.741 8713.9 −1254.4i

1.0 −545.43 12.993 17739 −1381.5i

1.5 −406.05 768.48 32251 1150.2i

2.0 1475.2 2659.3 41063 6947.7i

to the d wave nature). This magnitude is slightly larger2 than
the gap obtained from the difference of particle hole bands
of Bi2Se3 nearby the Fermi level shown in Fig. 2(b), which
is around 0.3 meV evaluated with 160 × 160 k points. The
s-wave-like component read out from Fig. 2(b) is about 0.08
meV, which gives roughly consistent ratio as (Ãs + ˜Ap±ip)/Ãd

shown in Table I (the p ± ip also gives s-wave-like gap).
In the ARPES experiment of Ref. [16], seven quintuple

layers (QL) of Bi2Se3 are used, and the measurement is done at
the top plane which is not in contact with BSCCO. The model
calculations done above is just for a single (surface) layer of
Bi2Se3 in direct contact with BSCCO, assuming the thickness
of Bi2Se3 is sufficient large that the Dirac modes on the two
opposite surfaces are present. As we have assumed a very
smooth contact between the two materials, the gap magnitude
obtained, via DOS or rediagonalized band structures, in our
calculations (corresponding to the proximity-induced gap at
the surface in contact with BSCCO) should be viewed as
the maximum value. Our result shows that the gap is small
(<1 meV at t/h = 0.67) and mainly d-wave-like even with
the inclusion of warping and correct crystal orientation, which
tends to support the absence of the proximity effect [14,15]
in the surface states of the Bi2Se3/BSCCO system. Below,

2The d wave gap reads out from the DOS might be larger than
its actual value as the normal state bands also mix with the spectral
weight of quasiparticles.

1.5 0 1.5
Ω

0.0025

0.005
DOS

(a) (b)

FIG. 2. (a) DOS in Bi2Se3 with t/h = 0.67 and |�|/h � 0.13.
Blue line is the raw numerical data and purple line is the polynomial
fit for easier identification of gap location. The frequency unit is meV.
(b) Angular dependence of gap in momentum space obtained from
the band structure in Bi2Se3/BSCCO system with warping terms.
t/h = 0.67 with angular separation of 5◦.

we discuss other factors not included in the aforementioned
discussions, and see how they modify our results.

III. OTHER RELEVANT FACTORS

We have assumed smooth interface and computed only the
proximity-induced gap at the surface of Bi2Se3 in direct contact
with BSCCO. In the actual experiments [14–16], the ARPES
were done on the opposite surface of a few quintuple layers
thick Bi2Se3. From the ARPES data the Fermi level of a few
QL thick Bi2Se3 actually crosses the bulk band and the bulk
is not insulating. Furthermore, in the growth process, there
are always some impurities generated at the bulk or surface of
Bi2Se3. Last but not least, the lattice size of BSCCO is 3.8 Å
and that of Bi2Se3 is 4.138 Å. The latter is taken to be the same
as that of BSCCO in our mean-field calculations. We discuss
how these factors influence our results below.

The simplest way to consider the proximity effect on the
other surface of Bi2Se3 is to assume the two surfaces are tunnel-
coupled. In this case, the model becomes trilayer rather than
bilayer one. For moderate tunneling strength, the multilayer
structure always has smaller pairing amplitude compared with
bilayer system (as shown in the generic model discussion in
Appendix B). Thus the simplest way to include this finite
thickness effect of Bi2Se3 will not be able to account for the
15 meV measured in Ref. [16].

We may include the bulk band by treating it as a two-band
metal on the metallic surface in contact with the BSCCO.
This is because the Fermi surface of the Bi2Se3 also cut
through the bulk band, and in some literature [8] it is
called a topological metal. In principle, the bulk bands share
the tunneled Cooper pairs from the superconductor with
the surface band, therefore at the same tunneling strength the
pairing gap at the surface decreases compared with that without
the inclusion of bulk band in a self-consistent calculation.3

If the two bands are coupled via repulsive interactions, the
pairing gaps at different bands could be different as suggested
to be measured experimentally in Ref. [16], where different
frequencies are used to distinguish the measurement of bulk
from that of surface. As both bands share the superconducting
gap from BSCCO, the inclusion of bulk gap tends to lower the
proximity-induced gap of the surface band, rendering it even
smaller than 0.6 meV at t/h = 0.67.

The impurities in the bulk and surfaces of Bi2Se3 could in
general suppress the nodal pairings, and make s-wave pairing
dominant for sufficient thick sample [18]. The drawback is
the scattering from the impurities also tend to diminish the
pairing gap, making it unlikely to achieve the large (�10 meV)
proximity-induced s-wave-like gap. Another way to enhance
this s-wave component is to introduce an isotropic, attractive
interaction as in Ref. [18]. However, in our zero-temperature

3The inclusion of bulk band decreases the pairing gap at the contact
surface, but it helps enlarge the effective tunneling term (from
insulating to metallic) between the contact surface and the surface
measured in ARPES. Large interfacial tunneling term helps maintain
the magnitude of the pairing gap measured in ARPES as shown in
model discussion in Appendix B. Here, the focus is put on whether it
helps enlarge the proximity-induced gap at the contact surface.
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calculations, including this attractive interaction will make
the Bi2Se3 superconducting without coupling to BSCCO. The
undoped Bi2Se3 has not been seen to be superconducting
in the experiment,4 and therefore we do not include this
factor in our discussion. It is possible that interfacial s-wave
superconductivity could be formed at the interface of BSCCO
and Bi2Se3, and we verify that this interfacial attractive
interaction does enhance the s-wave pairing amplitude in
Bi2Se3 layer, but the enhancement is small (around 25%) with
moderate interaction strength (twice the attractive interaction
strength of BSCCO at t/h = 1.3).

There are two other factors which could possibly enhance
the pairing amplitudes in this system. One is the lattice
mismatch issue, and the other is the possibility of forming
enlarged Fermi surface in Bi2Se3 due to its growth on BSCCO
(the gating issue). For different Fermi surface structure, the
lattice mismatch could usually lead to more overlaps in bands
when taking the lattice mismatch into considerations (see the
generic model discussion in Appendix C). However, given the
small lattice mismatch (lattice size ratio a2/a1 � 4.1/3.8 �
1.08) the major enhancement of proximity-induced gap should
come from the enlargement of Fermi surface on the Bi2Se3

surface. Based on our calculations, even raising to twice of the
original chemical potential of Bi2Se3 does not significantly
enhance the proximity-induced gap magnitude (around twice
and also mainly d-wave-like). Judging from the discrepancy
of shape and gap magnitude with ARPES data shown in
Ref. [16], and the fact that the estimates we have here should
be the theoretical upper bound for a clean interface, we tend
to support the experimental results in Refs. [14,15].

IV. POSSIBLE S-WAVE GAP

How do we explain the experimental findings in Ref. [16]?
It is suggested [14] that the grounding issues could lead to
incorrect readings of superconducting gaps, but this factor
might not reflect the temperature dependence of the gap in a
way correlated with the BSCCO observed in Ref. [16]. We
suspect the observed s-wave-like gap is the result of strong
hybridizations between the bands of Bi2Se3 and BSCCO due
to the large tunneling amplitude. In this case, the observed gap
is not purely due to proximity-induced superconductivity, but
also the mass gap generated by single-particle tunneling.

We find for t/h > 2, the single-particle mass gap along all
directions (both nodal and antinodal ones) is generated even
if we turned off the superconductivity in BSCCO, and we use
this as the upper bound5 of tunneling amplitude as no gap

4Bi2Se3 is not superconducting at ambient pressure, but the high
pressure leading to structural change does lead to superconductivity.
See P. P. Kong et al., J. Phys.: Condens. Matter 25, 362204 (2013).
Also in Bi2Se3 made by pulsed laser deposition the Bi2Se3 becomes
superconducting due to proximity effect from the superconducting
Bi islands grown on its surface. See P. H. Le et al., APL Materials 2,
096105 (2014).

5This critical value depends on the tight binding model of BSCCO
we use, but the physics of hybrid gap, or superconducting gap mixing
with single-particle gap, mentioned in the main text exists for all
different models. For Ref. [21], it is t/h = 2 and for the tight-binding
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FIG. 3. (a) The DOS of Bi2Se3 at t/h = 2 with superconducting
gap in BSCCO �/h � 0.13. All other parameters are the same as
those in the main text. Frequency in units of meV. (b) Gap structure
(red dots) at t/h = 2 compared with the experimental data (black
square) shown in Ref. [16].

opening along antinodal lines is found at T > Tc in Ref. [16].
From Table I, we find at t/h = 2 the proximity-induced pairing
amplitudes are still dominated by d-wave pairing, but the shape
of the gap as shown in Fig. 3(b) is similar to s wave. The gap
magnitude read out from the DOS of Bi2Se3 in Fig. 3(a) is
around 13.4 meV at t/h = 2, and no gap along the antinodal
direction of BSCCO is seen when the superconductivity is
turned off. The lobes of this mass gap is pointing along the
nodal directions of BSCCO, making it look like s-wave gap
structure, as shown in Fig. 3(b), when the superconductivity is
turned on.

The aforementioned s-wave-like gap opening is consistent
with the temperature dependence observed in Ref. [16],
i.e., no gap at T > Tc and s-wave-like gap at T < Tc. At
t/h = 2, the onset of proximity-induced superconductivity
is estimated, from the change of DOS, to be around 60 K,
which is roughly consistent with the data [16]. Factoring in
the aforementioned lattice mismatch, enlarged Fermi surfaces,
possible s-wave pairing interaction at the interface, could
possibly give rise to the scale and features similar to the
experimental results in Ref. [16]. We emphasize that the
s-wave-like structure shown in Fig. 3 is the combined results
of bands hybridization between Bi2Se3 and BSCCO and the d-
wave superconductivity from BSCCO. The proximity-induced
pairing amplitude in Bi2Se3 is still dominated by d wave.
This scenario is different from the dominant s-wave pairing
discussed in Ref. [18], in which the s-wave pairing gap is
completely from the proximity-induced superconductivity.

V. CONCLUSION

In this paper, we use the mean-field approach to compute
the superconducting pairing amplitudes and gap magnitude
in a superconducting-metal interface. We find the pairing
amplitude is mainly d-wave except at small t (t/h � 0.01
with h the nearest-neighbor-hopping amplitude in BSCCO).
With reasonably large t (2 > t/h � 0.1), the gap structure,

model used in Ref. [24], it is t/h = 1.3. For the tight-binding model
used in Refs. [25,26], the critical t/h is around 3. This value mainly
depends on the energy dispersion of BSCCO at � point in momentum
space.
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obtained from our DOS and band calculations, is mainly d

wave with gap magnitude less than 1 meV.
We suggest one possible reason why the large s wave like

gap (∼15 meV) is observed in Ref. [16], while the other
two similar setups [14,15] show no significant (>5 meV)
proximity-induced gap. We argue the gap in Ref. [16] is not
purely due to superconductivity, but rather contains a large
component due to a large tunneling amplitude (t/h � 2). The
pairing amplitude evaluated at large t is still dominated by the
d-wave channel, and its mixing with the single-particle gap
makes it more s-wave-like, as shown in Fig. 3(b). Thus we pro-
pose that sample-to-sample variations in interfacial coupling
between Bi2Se3 and BSCCO explain the discrepancy between
the observed gaps, and also that the induced superconductivity
is much smaller than would be naively concluded from the
observations of Ref. [16].

A piece of supporting evidence for this claim, as also
pointed out in Refs. [14] and [15], is the lack of supercon-
ducting coherence peak in the observed ARPES spectrum
in Ref. [16]. Furthermore, it is claimed [16] that the bulk
conducting bands of Bi2Se3 are also superconducting, but
with a much smaller gap. As the bulk bands are further away
from the quasiparticle bands in BSCCO and their effective
tunneling amplitudes are smaller due to smaller wave function
overlaps, it is possible that the gap induced in the bulk
bands is dominated by the d-wave superconducting gap and
the measured gap might be mainly from proximity-induced
superconductivity. More detailed measurements of the bulk
spectrum should shed light on this issue. This case also
serves as a cautionary example: measuring the temperature
dependence of a gap at an interface is not sufficient to show
that the gap is superconducting in origin.
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APPENDIX A: PERTURBATIVE RESULTS FOR
PROXIMITY-INDUCED PAIRING AMPLITUDE

We derive the analytical, perturbative results of supercon-
ducting proximity effect for some generic bilayer and trilayer
systems using Green’s functions formalism. The perturbative
term is the attractive interaction in the superconducting layer,
and we further assume the tunneling amplitude is small to
simplify our results. The form of self-energy in the Green’s
function is assumed to take the Hartree form (neglecting
exchange interactions) with mean-field approximations. The
real part of self-energy just shifts or renormalizes the chemical
potential. Under these approximations the self-consistent
equation of the superconducting layer is the same as the
uncoupled one, and the leading term of pairing amplitude in
the first metallic layer is proportional to t2. The generic model
Hamiltonian we considered in the appendix is

H =
∑

�k,l,σ,σ ′

(εl(�k) − μl)σσ ′c
†
�klσ

c�klσ ′ +
∑

�k,i<j,σ

tij

× (c†�kiσ
c�kjσ + c

†
�kjσ

c�kiσ ) +
∑

�k, �k′,�q,l,l′

Vll′ (�q)c†�kl↑c(�k−�q)l↑

× c
†
( �k′−�q)l′↓c �k′l′↓. (A1)

Here, l,i,j range from 1,2,3, . . . ,N with 1 denote elec-
tron/hole operators on the superconducting layer and 2, 3 (say
N = 3) denote two bands in one metallic layer or two metallic
layers. In this model, Hamiltonian we consider the usual form
of density density interactions. Below we show explicitly the
calculations for three cases: bilayer, trilayer, and metallic layer
with spin-orbit interactions.

1. Two layers with single band

Here we perform perturbative calculations via the Green’s
function formalism. Using the four component Nambu spinor
bases 
�k = (c†�k1↑ c−�k1↓ c

†
�k2↑ c−�k2↓)T , the Green’s func-

tion is given by

G(�k,τ ) = −〈Tτ
(�k,τ )
†(�k,0)〉. (A2)

For Vl(�q) = 0, the retarded Green’s function G0(�k,ω) takes
the form

G0(�k,ω) =

⎛
⎜⎜⎝

ω − ε̄1(�k) + iη 0 t 0
0 ω + ε̄1(�k) + iη 0 −t

t 0 ω − ε̄2(�k) + iη 0
0 −t 0 ω + ε̄2(�k) + iη

⎞
⎟⎟⎠

−1

(A3)

with ε̄l(�k) = εl(�k) − μl . Turning on Vl(�q) = 0 gives self-energy correction on the bare Green’s function G0(�k,ω) from
perturbations in Vl(�q). We take �q = �k + �k′ as in the BCS theory and denote Vl(�q) = Vl(�k, �k′) = Vl in the following. The
perturbation in Vl gives

G(�k,ω)−1 = G0(�k,ω)−1 − �(�k,ω). (A4)
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Based on first-order perturbation in Vl(�q), the Hartree corrected [23] �(�k,ω) � �H takes the following form:

�H =

⎛
⎜⎜⎝

�1(�k,ω) S1(�k,ω) 0 0
S
†
1(�k,ω) −�1(−�k,−ω) 0 0

0 0 �2(�k,ω) S2(�k,ω)
0 0 S

†
2(�k,ω) −�2(−�k,−ω)

⎞
⎟⎟⎠

with ρ(�k,ω) ≡ − 1
π
�(G(�k,ω)), fi(ω) = θ (μi − ω) the Fermi-

Dirac distribution at zero temperature, and

�1(�k,ω) �
∑

�k′

V1

2

∫ ∞

−∞
dωρ11( �k′,ω)f1(ω), (A5)

�2(�k,ω) �
∑

�k′

V2

2

∫ ∞

−∞
dωρ33( �k′,ω)f2(ω), (A6)

S1(�k,ω) �
∑

�k′

V1

∫ ∞

−∞
dωρ12( �k′,ω)f1(ω), (A7)

S2(�k,ω) �
∑

�k′

V2

∫ ∞

−∞
dωρ34( �k′,ω)f2(ω). (A8)

Equations (A5)–(A8) is named Hartree approximation, and
under this approximation the �i and Si terms have momentum
but no frequency dependence. For a given set of Vi , the �i and
Si can be obtained via iterations. We take V1 < 0 and V2 = 0
to simulate the case of first layer being superconductor and

second layer being normal metal before placed together. Note
that

〈c†�k1↑c
†
−�k1↓〉 =

∫
dω

−1

π
�(G(�k,ω)12), (A9)

〈c†�k2↑c
†
−�k2↓〉 =

∫
dω

−1

π
�(G(�k,ω)34), (A10)

with G(�k,ω)ij denote i, j component of the 4 × 4 Green’s
function. The momentum sum, along with appropriate sym-
metry factor fi defined in Eq. (6), in the above equations give
the pairing amplitude mentioned in the main text. The DOS of
metallic layer ρ(ω) is computed by

ρ(ω) = 1

π

∑
i=3,4

lim
η→0

�
[∫

d�k
(2π )2

GR
ii(ω + iη,�k)

]
. (A11)

Using the assumptions (A5)–(A8) and the conditions V1 = 0,
V2 = 0 in Eq. (A4), we have

G(�k,ω)12 = S1(�k,ω)(ω̃2 − ε̄2(�k)2)

(ω̃2 − ε̄2(�k)2)[(ε̄1(�k) + �1(�k,ω))2 + S1(�k,ω)2 − ω̃2) + 2t2(ω̃2 + ε̄2(�k)(ε̄1(�k) + �1(�k,ω))] − t4
, (A12)

G(�k,ω)34 = −t2S1(�k,ω)

(ω̃2 − ε̄2(�k)2)[(ε̄1(�k) + �1(�k,ω))2 + S1(�k,ω)2 − ω̃2) + 2t2(ω̃2 + ε̄2(�k)(ε̄1(�k) + �1(�k,ω))] − t4
(A13)

with ω̃ = ω + iη for retarded Green’s function. For t = 0, we
have 〈c†�k2↑c

†
−�k2↓〉 = 0 and

〈c†�k1↑c
†
−�k1↓〉 = −S1(�k,ω)

2
√

(ε̄1(�k) + �1(�k,ω))2 + S1(�k,ω)2

≡ −S1(�k,ω)

2E1(�k)
. (A14)

The single-particle self-energy correction terms �i can be
absorbed into the renormalized chemical potential μi , and
we remove this term in the following expressions for
simplicity.

By combining Eq. (A14) with Eq. (A7), we get the
self-consistent gap equation in the BCS theory by identifying
superconducting gap �1(�k) = S1(�k,ω). For small but finite t ,
we take the leading t2 correction in the evaluation of frequency
integral for G(�k,ω)34. Under this small t approximation the
pole structure is the same as in Eq. (A14), and we have

〈c†�k2↑c
†
−�k2↓〉 � t2S1(�k,ω)

2E1(�k)(E1(�k)2 − ε̄2(�k)2)
. (A15)

Note that it is straightforward to obtain full analytic results
without this small t (tunneling strength) approximation, but
the results are less illuminating. We stick with the Hartree and
small t approximations in this Appendix A to illustrate the
main idea.

From Eq. (A15) the rough estimate gives the second layer
superconductivity gap magnitude |�2|:

|�2| � kBTc2 � t2∣∣ε2
2 − E2

1

∣∣ |�1| � t2kBTc1∣∣ε2
2 − E2

1

∣∣ . (A16)

Here, we use |�2| � | ∑�k V1〈c†�k2↑c
†
−�k2↓〉|, and Ei and εi as

the average of Ei(�k) and ε̄i(�k) in momentum space as a rough
estimate. From this estimate, we know for ε̄2(�k) very different
from ε̄1(�k) (“mismatched” Fermi surface) the denominator in
Eq. (A16) increases, giving rise to smaller gap magnitude as
expected. The gap symmetry of the second layer is determined
by both the first layer gap symmetry and the Fermi surfaces
from both layers. We do not use this estimate in the main
text, but Eq. (A16) gives naive intuitions why the mismatched
Fermi surfaces give smaller proximity-induced pairing
amplitude.
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2. Two bands or three layers

For two metallic bands or two metallic layers, we follow the same definition of generalized Green’s function and extend the
4 × 4 bases to 6 × 6 ones to accommodate this extra degree of freedom. For V1(�q) = 0, we have the retarded Green’s function
G0(�k,ω) taking the form

G0(�k,ω) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ω − ε̄1(�k) + iη 0 t12 0 t13 0
0 ω + ε̄1(�k) + iη 0 −t12 0 −t13

t12 0 ω − ε̄2(�k) + iη 0 t23 0
0 −t12 0 ω + ε̄2(�k) + iη 0 −t23

t13 0 t23 0 ω − ε̄3(�k) + iη 0
0 −t13 0 −t23 0 ω + ε̄3(�k) + iη

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

.

(A17)

For �(�k,ω) � �H as in previous case, we have

G(�k,ω)12 = S1(�k,ω)
[
t4
23 − 2t2

23(ω̃2 + ε̄2(�k)ε̄3(�k)) + (ω̃ − ε̄2(�k))2(ω̃ − ε̄3(�k))2]/De(�k,ω),

G(�k,ω)34 = S1(�k,ω)[(t13t23 − t12(ω̃ − ε̄3(�k))(t13t23 + t12(ω̃ + ε̄3(�k))]/De(�k,ω),

G(�k,ω)56 = S1(�k,ω)[(t12t23 − t13(ω̃ − ε̄2(�k))(t12t23 + t13(ω̃ + ε̄2(�k))]/De(�k,ω),

De(�k,ω) ≡ t4
13(ε̄2(�k)2 − ω̃2) + 4t3

12t13t23ε̄3(�k) + t4
12(ε̄3(�k)2 − ω̃2) + 2t2

13

{
t2
23[−ω̃2 + ε̄2(�k)(ε̄1(�k) + �1(�k,ω))]

+ (ω̃2 − ε̄2(�k)2)[ω̃2 + ε̄3(�k)(ε̄1(�k) + �1(�k,ω))]
} − 4t12t13t23

[(
ω̃2 − t2

13

)
ε̄2(�k) + ω̃2ε̄3(�k) + (ε̄1(�k) + �1(�k,ω))

× (
ω̃2 − t2

23 + ε̄2(�k)ε̄3(�k)
)] + 2t2

12

(
t2
23[−ω̃2 + (ε̄1(�k) + �1(�k,ω))ε̄3(�k)] + t2

13

(−ω̃2 + 2t2
23 + ε̄2(�k)ε̄3(�k)

)
+ [ω̃2 + (ε̄1(�k) + �1(�k,ω))ε̄2(�k)(ω̃2 − ε̄3(�k)2)] + [(S1(�k,ω)2 − ω̃2) + (ε̄1(�k) + �1(�k,ω))2]

[(
t4
23 − 2t2

23(ω̃2

+ ε̄2(�k)ε̄3(�k)
) + (ω̃2 − ε̄2(�k)2)(ω̃2 − ε̄3(�k)2)

]
.

The tunneling strength tij depends on the overlap integrals,
i.e., the symmetry of the respective eigenstates. For the special
case of t13 = 0 (such as the trilayer case, where there is no
direct tunneling between the first superconductor layer and
third metallic layer) but finite and small t12 and t23, we take
the leading order in tij for G(�k,ω). With this approximation,
we carry out the frequency integral and obtain

〈c†�k1↑c
†
−�k1↓〉 � −S1(�k,ω)

2E1(�k)
, (A18)

〈c†�k2↑c
†
−�k2↓〉 � t2

12S1(�k,ω)

2E1(�k)(E1(�k)2 − ε̄2(�k)2)
, (A19)

〈c†�k3↑c
†
−�k3↓〉 � −S1(�k,ω)t2

12t
2
23

2E1(�k)(E1(�k)2 − ε̄2(�k)2)(E1(�k)2 − ε̄3(�k)2)
.

(A20)

Similar to the bilayer case, we obtain the rough estimate for
proximity-induced gap magnitude on the third layer: |�3| �
| ∑�k V1〈c†�k3↑c

†
−�k3↓〉| � t2

23

|E2
1−ε2

3 | |�2| � t2
12t

2
23

|(E2
1−ε2

2 )(E2
1−ε2

3 )| |�1|.
The same formulation can be extended to the case of two

bands in a single metallic layer. In this case, we perform the
same calculations but with t23 = 0 and nonzero but small t12

and t13. The label 2 and 3 here denote the two bands in the
metallic layer. We will not present the calculations here, but
just mention that it is a straightforward extension of the current
formula.

3. Metallic layer with spin-orbit interactions

For two-dimensional electron gas in a symmetric quantum
well, such as the heterostructure in the bilayer system discussed
above, or the surface state of three dimensional topological
insulator, the anisotropy or asymmetry in general leads to
some type of spin-orbit interactions. To include this factor,
we consider a generic linear momentum dependent spin-orbit
coupling in our two-dimensional metallic layer:

Hso � αkxσy + βkyσx = 1
2 (α + β)(kxσy + kyσx)

+ 1
2 (α − β)(kxσy − kyσx). (A21)

The term times (α + β) is named Dresslhaus effect, often
occurring in systems lacking reflection symmetry. The other
term associated with (α − β) is called Bychkov-Rashba effect
which happens when inversion symmetry is broken. To
explicitly incorporate the spin degree of freedom we use
four component Nambu bases on a single layer: 
�k,l =
(c�kl↑ c�kl↓ c∗

−�kl↓ − c∗
−�kl↑)T . Here, l = 1,2 denotes layer

index and this basis is chosen as the basis for direct product
of spin and electron hole space. For real �1, the matrix form
of the Hamiltonian describing the superconducting layer (HS),
normal metal layer (HN ), and tunneling term between the two
Ht , in this four-component basis are

HS = (ε1(�k) − μ1)τz ⊗ σ0 + �1τx ⊗ σ0,

HN = (
ε

(0)
2 (�k) − μ2

)
τz ⊗ σ0 + τz ⊗ (αkxσy + βkyσx),

Ht = t τz ⊗ σ0. (A22)
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Note that we use ε
(0)
2 (�k) to denote the diagonal (in

spin space) part of the HN , and ε2(�k) − μ2 = ε
(0)
2 (�k) ±√|αkx |2 + |βky |2 − μ2 is used to denote the eigenvalue of

HN as in other sections. Furthermore, in Eq. (A22), we have
assumed �1 = �(�k) = �(−�k) by placing the conventional
even pairing superconductor (s- or d-wave superconductor) on
top of the metallic layer. The 4 × 4 matrix forms of Eq. (A22)
are

HS =

⎛
⎜⎜⎜⎝

ε̄1(�k) 0 �1(�k) 0

0 ε̄1(�k) 0 �1(−�k)

�∗
1(�k) 0 −ε̄1(�k) 0

0 �∗
1(−�k) 0 −ε̄1(�k)

⎞
⎟⎟⎟⎠,

HN =

⎛
⎜⎜⎜⎝

ε̄2(�k) εso(�k) 0 0

εso(�k)∗ ε̄2(�k) 0 0

0 0 −ε̄2(�k) −εso(�k)

0 0 −εso(�k)∗ −ε̄2(�k)

⎞
⎟⎟⎟⎠.

Here, εso(�k) ≡ βky + iαkx . The tunneling term Ht with
constant tunneling amplitude t takes the form

Ht =

⎛
⎜⎜⎜⎝

t 0 0 0

0 t 0 0

0 0 −t 0

0 0 0 −t

⎞
⎟⎟⎟⎠.

This 4 × 4 matrix for Ht connects the bases of 
�k,1 and

�k,2, with the assumption of momentum conservation. In

this paper �1(−�k) = �1(�k) as our superconductor is ei-
ther s-wave or d-wave type. The full Hamiltonian, given
by

H =
(

HS Ht

H ∗
t HN

)
,

is described by a 8 × 8 matrix or in the (
�k,1,
�k,2) bases.
Assuming t is real and denoting ω̃ = ω + iη as before,
the matrix element of the retarded Green’s function G =
(ω − H + iη)−1 related to second layer pairing amplitude A2

are

G(�k,ω)57 = −G(�k,ω)68

= �1(�k)t2[t4 − 2t2(ω̃2 + ε̄1(�k)ε̄2(�k)) + (|�1(�k)|2 − ω̃2 + ε̄1(�k)2)(|αkx |2 + |βky |2 − ω̃2 + ε̄2(�k)2)]/De1(�k,ω), (A23)

G(�k,ω)58 = 2�(�k)t2(iαkx + βky)[t2ε̄1(�k) − (|�1(�k)|2 − ω̃2 + ε̄1(�k)2)ε̄2(�k)]/De1(�k,ω),

De1(�k,ω) = ([t4 − 2t2ω̃2 + (�(�k)2 − ω̃2)(|αkx |2 + |βky |2 − ω̃2)]2 + 4t2ε1(�k)ε2(�k)(ε̄1(�k)2 + �(�k)2 − ω̃2)(|αkx |2 + |βky |2

+ ω̃2 − ε̄2(�k)2) − 4t2ε̄1(�k)ε̄2(�k)(t4 − 2t2ω̃2) + (�(�k)2 − ω̃2)ε̄2(�k)2{2[t4 − 2t2ω̃2 − (�(�k)2 − ω̃2)

× (|αkx |2 + |βky |2 + ω̃2 − ε̄2(�k)2)]} + ε̄1(�k)4(|αkx |2 + |βky |2 + ω̃2 − ε̄2(�k)2)2 + 2ε̄1(�k)2{(|αkx |2 + |βky |2)

× [−t4 + �(�k)2(|αkx |2 + |βky |2)] − [2�(�k)2(|αkx |2 + |βky |2) + (t2 + |αkx |2 + |βky |2)2]ω̃2

+[�(�k)2 + 2(|αkx |2 + |βky |2 + t2)]ω̃4 − ω̃6 + [3t4 − 2t2ω̃2 − 2(�(�k)2 − ω̃2)(|αkx |2

+|βky |2 + ω̃2)]ε̄2(�k)2 + (�(�k)2 − ω̃2)ε̄2(�k)4}. (A24)

This G(�k,ω)57 = −G(�k,ω)68 has to do with the fact that there is no σz term in this spin-orbit metallic Hamiltonian (which is not
the case in the main text). Following the same Hartree and small t approximations as in Appendix A 1, we get

〈c†�k2↑c
†
−�k2↓〉 � −�1(�k)t2(|αkx |2 + |βky |2 + ε̄2(�k)2 − E1(�k)2)

2E1(�k)[(E1(�k)2 − |αkx |2 − |βky |2)2 − 2(E1(�k)2 + |αkx |2 + |βky |2)ε̄2(�k)2 + ε̄2(�k)4]
, (A25)

〈c†�k2↑c
†
−�k2↑〉 � �1(�k)t2(iαkx + βky)ε̄2(�k)

E1(�k)[(E1(�k)2 − |αkx |2 − |βky |2)2 − 2(E1(�k)2 + |αkx |2 + |βky |2)ε̄2(�k)2 + ε̄2(�k)4]
. (A26)

From the numerator of Eq. (A26) and Eq. (A25), it is clear
that the leading pairing amplitude of spin triplet (↑↑ or ↓↓) is
of p ± ip form, and that of spin singlet is of s- or d-wave form
[depending on the source superconductor, i.e., the symmetry
of �1(�k)]. This is indeed verified numerically as shown in
Tables II and III, in which we use s-wave superconductor as
first layer with dispersion ε̄1(�k) = cos(kx) + cos(ky) + 1. In
this computation, we have solved the superconducting gap
equation self-consistently, and before coupling the metallic
layer the gap magnitude of the s wave superconductor is 1 by
choosing V1 = −0.07.

TABLE II. Pairing amplitude for various (α,β) with μ2 = 1.5,
t = 0.1, V1 = −0.07, and 160 × 160 k points is used in momentum
summation. ε

(0)
2 (�k) = 0 for the top two rows and ε

(0)
2 (�k) = |�k| =√

k2
x + k2

y for the bottom row. Pairing amplitude A2p+ip is related to
Ã2p+ip listed in the table by A2p+ip = Ã2p+ip(α sin(kx) + iβ sin(ky)).

(α,β) A2s Ã2p �1

(1,±1) 0.07782 −0.07747i 0.92121

( 1√
2
,±

√
3
2 ) 0.09534 −0.08590i 0.92104

(0,0) 0.14964 0.0 0.92181

035140-9



WAN-JU LI, SUNG-PO CHAO, AND TING-KUO LEE PHYSICAL REVIEW B 93, 035140 (2016)

TABLE III. Pairing amplitude for various (α,β) with ε
(0)
2 (�k) =

1.8 − ( cos(kx) + cos(ky)), μ2 = 1.5, t = 0.1, V1 = −0.07, and
160 × 160 k points is used in momentum summation. Pairing
amplitude A2p+ip is related to Ã2p+ip listed in the table by A2p+ip =
Ã2p+ip(α sin(kx) + iβ sin(ky)).

(α,β) A2s Ã2p �1

(1,±1) 0.02927 −0.00988i 0.92093

( 1√
2
,±

√
3
2 ) 0.03055 −0.00860i 0.92085

(0,0) 0.30395 0.0 0.92009

Equation (A26) also illustrates why the d-wave pairing
in the superconductor change the pairing orientations as the
different signs of d-wave pairing gap modifies the relative sign
along kx and ky directions. Note that there is no p-wave pairing
in this spin triplet sector (↑↓ + ↓↑) but only p ± ip pairing in
the (↑↑) or (↓↓). This has to do with the lack of σz terms in the
model Hamiltonian Eq. (A22). By introducing Zeeman field
terms [22], we can also generate the p-wave pairing in this
(↑↓ + ↓↑) spin sector as shown in the discussion of warping
terms in Sec. II.

APPENDIX B: COMPARISON BETWEEN BILAYER
AND TRILAYER SYSTEM

Here we compare the proximity-induced pairing amplitudes
of the bottom metallic layer in the bilayer and trilayer
system. The bottom metallic layers of both systems have
the same linear dispersion EN = |�k| and chemical potential
μN = 1.5. For both bilayer and trilayer systems, we choose the
same dispersion ESC = cos kx + cos ky and chemical potential
μSC = −1 in the superconducting layer. The top and bottom
Fermi surfaces are chosen to take different forms to highlight
the issues of mismatched Fermi surfaces, leading to poor
superconducting proximity effect, in general, compared with
the matched ones. An intriguing question is whether the middle
metallic layer could serve as a good bridging layer to enhance
this proximity-induced pairing amplitude in the bottom layer,
compared with the direct coupling in the bilayer system.

The tunneling strength of the bilayer and trilayer systems
are labeled by tb and tt , assuming the tunneling strengths
to be identical in the trilayer system for the ease of scaling
argument. Compared to the bilayer system, electrons in the
trilayer system have to hop twice from the top superconducting
layer to the bottom metallic layer. To compare the results of
the trilayer systems with those of the bilayer system, we label
the effective hopping term of the trilayer system as t2

t and
that of bilayer system as tb [here, we choose �0 = 1 so the
dimensionless quantity is (tt /�0)2 = t2

t . Same for tb/�0 = tb].
We then compare the pairing amplitudes of N1 and N2 as a
function of effective hopping terms tb and t2

t , respectively.
To test this bridging layer idea, we choose two special

energy dispersions for the middle metallic layer Eb1 =
4 cos kx cos ky + 2 cos 2kx + 2 cos 2ky and Eb2 = (cos kx +
cos ky − 1.05)(cos kx + cos ky + 1.05). The chemical poten-
tials μb1 = μb2 = 0 are chosen such that the Fermi surface
covering both that of the top and bottom layer, as shown in
Figs. 4(b) and 4(c). We plot the pairing amplitude strengths

(a) (b) (c)

(d)
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3

2

1

0

1

2

3

FIG. 4. EN = |k| and ESC = cos kx + cos ky with μN = 1.5 and
μSC = −1.0; Vsc1 = 0.08; 40 × 40 k points. (a) Fermi surface
of the bilayer system. (b) Fermi surface of the trilayer system
for Eb1 = 4 cos kx cos ky + 2 cos 2kx + 2 cos 2ky with μb1 = 0.0. (c)
Fermi surface of the trilayer system for Eb2 = (cos kx + cos ky −
1.05)(cos kx + cos ky + 1.05) with μb2 = 0.0. (Green for the SC
layer, red for the N layer and blue for the bridge layer.) (d). Pairing
amplitude of the bilayer and trilayer systems.

A2 as a function of the effective hopping terms tb and t2
t for

bilayer and trilayer systems in Fig. 4(d). As shown in Fig. 4(d),
for small effective hopping terms, this choice of bridging layer
does enhance the pairing amplitude of the bottom metallic
layer. For larger effective hopping terms, however, the bilayer
system always has larger pairing amplitudes than the trilayer
system regardless of the shape of middle metallic layer Fermi
surface.

In contrast to the previous case where the Fermi surface
of the bridging layer matches those of the superconducting
and bottom metallic layer, we further study the case where
the Fermi surface of the bridging layer lies between those
of the two layers. The same dispersions are chosen for the
top and bottom layers while the bridging layer has a linear
dispersion Eb3 = |�k| with the chemical potential μb3 > μN as
shown in Fig. 5(b). The result is shown in Fig. 5. In contrast
to the matching of both Fermi surfaces shown in Fig. 4, the
enhancement here is relatively large in terms of magnitude and
the range of the effective hopping terms. However, at larger
tunneling strengths the direct coupling in the bilayer system
still gives larger pairing amplitude.

All of these numerical results can be understood qualita-
tively from the analytic pairing amplitude derived perturba-
tively with Hartree approximations in Appendix A 2. Under
the small tunneling strengths approximation, the proximity-
induced superconductivity pairing amplitude for the second
and third layers in a trilayer system are given in Eqs. (A19)
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(b)

(c)

FIG. 5. EN = |k| and ESC = cos kx + cos ky with μN = 1.5 and
μSC = −1.0; Vsc1 = 0.08; 40 × 40 k points. (a) Fermi surface of the
bilayer system. (b) Fermi surface of the trilayer system for Eb3 = |k|
with μb3 = 2.2. (Green for the SC layer, red for the N layer and blue
for the bridge layer.) (c) Pairing amplitude of the bilayer and trilayer
systems.

and (A20), which we rewrite as

〈c†�kb↑c
†
−�kb↓〉 � t2

b�1(�k)

2E1(�k)(E1(�k)2 − ε̄b(�k)2)
,

〈c†�kt↑c
†
−�kt↓〉 � −�1(�k)t4

t

2E1(�k)(E1(�k)2 − ε̄m(�k)2)(E1(�k)2 − ε̄b(�k)2)
.

In the above, we replace the tunneling amplitudes by the
bilayer and trilayer ones. The form of the second layer pairing
amplitude 〈c†�k2↑c

†
−�k2↓〉 in Eq. (A19) is the same as the bottom

metallic layer pairing amplitude in bilayer system under this
Hartree and small tunneling strength(s) approximation, and we
relabel the 〈c†�k2↑c

†
−�k2↓〉 by 〈c†�kb↑c

†
−�kb↓〉. Within these approxima-

tions, |〈c†�kt↑c
†
−�kt↓〉/〈c†�kb↑c

†
−�kb↓〉| � (t4

t /t2
b )/|E1(�k)2 − ε̄m(�k)2|,

which is in general smaller than one even if we set t2
t =

tb. The way to make this ratio larger than one is when
|E1(�k)| � |ε̄m(�k)|, the so-called resonant condition in the
scattering theory. This condition is made when the middle layer
dispersion ε̄m(�k) are not completely in line with the original

TABLE IV. Terminologies used in this table: FSM = Fermi
surface matched; LM = Lattice matched; FSmM = Fermi surface
mismatched; LmM = Lattice mismatched. For lattice mismatch cases,
we choose the ratio of lattice size in superconductor/metal as 3/4. All
other model parameters are specified in the text of Appendix C.

Cases FSM, LM FSM, LmM FSmM, LM FSmM, LmM

A2 −0.42214 −0.27422 −0.13747 −0.25523
�1 0.90649 0.91302 0.91354 0.91299

one given by ε̄1(�k), but with the Bogoliubov quasiparticle level
E1(�k). This is why the range and magnitude of enhancement
shown in Fig. 5 is greater than that in Fig. 4. At larger tunneling
strength, the shift of energy level by the single-particle
tunneling becomes more important, and the proximity-induced
gap actually decreases as discussed in Appendix B. As the
suppression of pairing amplitude in the trilayer is twice of the
bilayer, the bilayer always has greater pairing amplitude at
larger tunneling strengths as shown in Figs. 4 and 5.

Knowing that adding an additional middle metallic layer
in general does not help improve the proximity effect, we
discuss the issues of lattice mismatch, which is quite general,
but difficult to compute for incommensurate lattice ratios, for
interface between different materials in the next section.

APPENDIX C: LATTICE MISMATCH ISSUES

For different materials, the lattice sizes and shapes are
usually different. Here, we focus our discussions on the cases
of square lattice, and the lattice mismatch discussed here
means different lattice lengths. We compare the obtained
pairing amplitude A2 in the metallic layer and the self-
consistent gap magnitude �1 of the superconducting layer. For
matched Fermi surfaces and lattice sizes we choose ε1(�k) =
−ε2(�k) = cos(kx) + cos(ky), μ1 = −μ2 = −1.0, with 1 and
2 denoting superconducting and metallic layer and tunnel-
ing amplitude t = 0.1. For mismatched lattices we choose
ε1(�k) = cos(3kx) + cos(3ky), μ1 = −μ2 = −1.0, −ε2(�k) =
cos(4kx) + cos(4ky), t = 0.1, and V1 = −0.07. Similar choice
is done for the mismatched Fermi surface with parameters
chosen as ε1(�k) = ε2(�k) = cos(kx) + cos(ky), μ1 = −μ2 =
−1.0, t = 0.1, and V1 = −0.07. The results are listed in
Table IV.

It is clear that for originally matched Fermi surfaces, the
factor of mismatched lattice makes less overlapping region
of Fermi levels. Therefore we shall expect the decrease in
the proximity effect. For the originally mismatched Fermi
surfaces, this lattice mismatch factor actually increases the
percentage of overlapping Fermi levels, and possibly enhance
the proximity effect compared with original identical lattices.
These intuitions are consistent with what we obtained in the
numerical results shown in Table IV.
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