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Recently there have been several proposals of materials predicted to be nodal-ring semimetals, where zero
energy excitations are characterized by a nodal ring in the momentum space. This class of materials falls between
the Dirac-like semimetals and the more conventional Fermi-surface systems. As a step towards understanding
this unconventional system, we explore the effects of the long-range Coulomb interaction. Due to the vanishing
density of states at the Fermi level, Coulomb interaction is only partially screened and remains long-ranged.
Through renormalization group and large-Nf computations, we have identified a nontrivial interacting fixed
point. The screened Coulomb interaction at the interacting fixed point is an irrelevant perturbation, allowing
controlled perturbative evaluations of physical properties of quasiparticles. We discuss unique experimental
consequences of such quasiparticles: acoustic wave propagation, anisotropic dc conductivity, and renormalized
phonon dispersion as well as energy dependence of quasiparticle lifetime.
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I. INTRODUCTION

Tremendous efforts have been made to understand the
symmetry-protected gapped topological phases since the dis-
covery of topological insulators [1,2]. Following this progress,
various theoretical and experimental studies have begun to
explore the gapless analogs of symmetry-protected topological
phases such as the Dirac [3–5] and Weyl semimetals [6–10],
where low energy excitations possess Dirac-like spectra. Re-
cently, three-dimensional materials with symmetry-protected
Fermi line nodes have also been theoretically proposed and
experimentally synthesized [11–24]. These systems have nodal
rings in momentum space protected by various combinations
of time-reversal invariance, inversion, chiral, and other lattice
symmetries. These nontrivial systems are predicted to host
topologically protected surface states. However, so far no
efforts have been made to study the effects of interactions.

In this study, we investigate the effects of the long-range
Coulomb interaction in nodal-ring semimetals. This is known
in various other fermion systems. In the best-studied system,
the Fermi liquid metal, 1/r long range interaction is marginal,
but the Fermi liquid survives due to the strong Thomas-Fermi
screening which makes the Coulomb interaction effectively
short-ranged. This is caused by metals having an extended
Fermi surface and a constant density of states at the Fermi
level. The results are known in the other limit, where the energy
vanishes only at isolated points of the Brillouin zone. Graphene
(in two dimensions), Weyl semimetals (in three dimensions),
and double Weyl semimetals receive logarithmic correc-
tions due to the Coulomb interaction that remains marginal
[25–29]. In the quadratic band-touching case, a non-Fermi
liquid phase was found [30,31]. For anisotropic Weyl fermions,
the Coulomb interaction becomes anisotropic and irrele-
vant [32].

Nodal-ring semimetals lie in between these two well-
studied limits. The energy gap closes on a one-dimensional
line node, on which the density of states vanishes. Because of
this, short-range interaction was found to be irrelevant [33,34].

Screening of the Coulomb interaction is expected to be much
weaker compared to the Fermi liquid metal, because fewer
states are available to participate. Nonetheless, we show below
that the Coulomb interaction is relevant at the noninteracting
fixed point. Through renormalization group (RG) analysis and
large-Nf computations, we identify a nontrivial interacting
fixed point where the partially screened Coulomb interaction
becomes irrelevant, making the fermions asymptotically free
in the low energy limit. This allows us to treat the partially
screened Coulomb interaction as a perturbation and calculate
the lifetime of the quasiparticles. It is found that the quasipar-
ticle scattering rate vanishes as E2 at low energies even though
the partially screened Coulomb interaction is still long-ranged.

II. MODEL

We start with a noninteracting effective Hamiltonian for the
nodal-ring semimetal. This can be written as

H0 = k2
x + k2

y − k2
F

2m
σx + γ kzσ

y ≡ εa(k)σa, a = x,y,

(1)
where the Pauli matrices σx and σy describe the orbital or
pseudospin degrees of freedom. This Hamiltonian is similar
to that of Ref. [18]. This system has a nodal Fermi ring in
the kx-ky plane of radius kF , and a linear dispersion in the kz

direction. Its energy spectrum is

E±(k) = ±
√(

k2
x + k2

y − k2
F

2m

)2

+ (γ kz)2, (2)

for the empty (+) and filled (−) bands. In order to describe
the effects of Coulomb interaction, we use the Euclidean path
integral formalism for the action in 3 + 1 dimensions:

S =
∫

dτ d3xψ†[∂τ − ieφ + H0]ψ + 1

2

∫
dτ d3x(∂iφ)2.

(3)
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The bosonic field φ represents the instantaneous Coulomb
interaction introduced by the Hubbard-Stratonovich
transformation.

To study how important the interaction is at low energies, we
start with finding the engineering dimension of the coupling
constant. The nontrivial Fermi surface (ring) in the system
affects the scaling dimensions of both fermionic and bosonic
fields.

Here we use an RG scheme where a momentum cutoff is
applied in the directions around the Fermi ring. We scale the
fermion momentum toward the Fermi ring [33,35]; kF is fixed
and scaling is done only in the Dirac dimensions in which

there are linear dispersions. Using definitions kr =
√

k2
x + k2

y

and k̃r ≡ kr − kF , k̃r and kz are scaled. However there is no
scaling in the angular [φ ≡ cos−1(kx/kr )] direction since this
represents the gapless degree of freedom. Because of this
anisotropy, it is easier to calculate the scaling dimensions from
an action written in momentum space rather than in the form
given in Eq. (3). Here we generalize the expression to general
d spatial dimensions and write the Coulomb interaction as a
four-fermion term:

S ∼
∫

ω,k
ψ†(−iω + H0)ψ

+ e2
∫

ω1,ω2,ω3,k,k′,q

1

q2
ψ†(k + q)ψ(k)ψ†(k′ − q)ψ(k′).

(4)

We have used the notation
∫
ω

= ∫
dω,

∫
k = kF

∫
dd−1k

∫
dφ

and
∫

q = ∫
ddq. The constants that have no scaling dimensions

such as kF and π have been dropped for clarity. Note that while
k and k′ are scaled only in the Dirac directions with d − 1
dimensions, q is scaled in all d dimensions. This is because
the important contribution arises from when the momentum
carried by the Coulomb interaction is small and when the
fermions are close to the Fermi ring. The scaling dimensions
can be found to be [k̃r ] = 1, [kz] = 1, [ω] = 1, [qi] = 1,
[ψ] = −(d + 1)/2, and [e2] = 3 − d. Therefore the critical
dimension is the physical dimension d = 3. From this we
would conclude that the Coulomb interaction is marginal.

III. RG ANALYSIS

The energy scales of this problem are the Coulomb energy
Ec = e2mvF , the kinetic energy Ek = mv2

F , and the energy
cutoff E� = vF �. We also define a velocity anisotropy
parameter η = γ /vF , where vF = kF /m is the fermion radial
velocity in the kz = 0 plane. The following dimensionless
ratios determine the scaling behaviors:

α = Ec

Ek

= e2

vF

, β = Ec

E�

= e2kF

vF �
, η = γ

vF

. (5)

To allow for anisotropic Coulomb interaction, we use as the
action for the boson,

Sφ = 1

2

∫
dτ d3x

[
a((∂xφ)2 + (∂yφ)2) + 1

a
(∂zφ)2

]
. (6)

We perform a one-loop momentum shell RG around the
Fermi ring by calculating the boson and fermion self-energies

q, ω
→

q, qn

←
p, ω

FIG. 1. Diagrammatic representations of (a) boson self-energy
and (b) fermion self-energy. Straight arrowed lines represent the
fermion propagators and wiggly lines the boson propagators.

to find the RG flow for various parameters. The Feynman
diagrams for these self-energies are shown in Fig. 1. The boson
self-energy is

�(q,iω) = −e2
∫

k
Tr[G0(k + q,� + ω)G0(k,�)], (7)

where G0(k,i�) = (−i� + H0)−1 is the bare Green’s function
of the fermions.

For ω = 0, this gives

�(q,0) = e2
∫ �

k

2

4

(
1 − εa(k + p/2)εa(k − p/2)

Ek+q/2Ek−q/2

)

× −2

Ek+q/2 + Ek−q/2
, (8)

where Ek = E+(k) is defined by the dispersion relation shown
in Eq. (2). We define the momentum shell integral as

∫ �

k =
1

(2π)3

∫ 2π

0 dφ(
∫ �

μ
+ ∫ −μ

−�
)kF dk̃r

∫ ∞
−∞ dkz with μ = �e−d�.

The resulting integral can be done after expanding the
integrand to second order in qr and qz. We find

�(qr,qz) ≈ − e2

(2π )2

(
q2

z

2m2γ

3kF

+ q2
r

kF

6γ

)
d�

�r

= −β ′
(

aq2
r

1

2aη
+ 1

a
q2

z 2aη

)
d�, (9)

where β ′ = β 1
3(2π)3 . This is infrared (IR) divergent as �r → 0

and the Coulomb interaction is strongly renormalized.
Similarly the fermion self-energy is calculated setting

external momentum to p = (kF + px,0,pz).

�f ( p) = −e2
∫ �

q

H0(p + q)

E(pq)

1

a
(
q2

x + q2
y

) + 1/aq2
z

≡ − α

(2π )2
[σxvF pxF1(aη) + σyγpzF2(aη)]d� (10)

The momentum shell integral is defined as
∫ �

q = 1
(2π)3

(
∫ �

μ
+ ∫ −μ

−�
)dqx

∫ ∞
−∞ dqydqz. The detailed calculation and ex-

pressions for F1 and F2 are given in Appendix A. This scaling
of the fermion self-energy is consistent with the marginal
engineering dimension of the bare Coulomb interaction. The
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final RG flow equations for α, β ′, and aη are

dα

d�
= α

[
−1

2
β ′

(
1

2aη
+ 2aη

)
− α

(2π )2
F1(aη)

]
,

dβ ′

d�
= β ′ + β ′

[
−1

2
β ′

(
1

2aη
+ 2aη

)
− α

(2π )2
F1(aη)

]
,

d(aη)

d�
= aη

[
1

2
β ′

(
1

2aη
− 2aη

)
+ α

(2π )2
[F2(aη) − F1(aη)]

]
.

(11)

There are two fixed points: the noninteracting fixed point at
α = 0, β ′ = 0 (aη is arbitrary) is unstable and the interacting
one at α = 0, β ′ = 1, aη = 1/2 is stable. From the noninter-
acting fixed point, α is marginally irrelevant and β is relevant.
The nonzero value of β ′ at the nontrivial interacting fixed point
shows a strong renormalization of the Coulomb interaction
while α = 0 shows that the renormalized Coulomb interaction
is irrelevant to the fermions.

After a step of eliminating high energy degrees of freedom,
the boson propagator D(q) can be written as

D−1(q) = a

(
1 + β ′ 1

2aη
d�

)(
q2

x + q2
y

) + 1

a
(1 + β ′2aηd�)q2

z .

(12)

Therefore the anomalous dimension is 1 which arises from the
existence of a kF scale. The renormalized propagator at the
new interacting fixed point satisfies

D−1(q) ∼ q2−1
r + |qz|2−1 = qr + |qz|. (13)

This will be confirmed by a direct calculation below.

IV. LARGE N f CALCULATION

The screened Coulomb interaction in d = 3 can also be
directly calculated using the random phase approximation.
This can be viewed as a large Nf calculation where Nf is the
number of fermion flavors. The physical case is Nf = 2 for the
spin states. After introducing a sum over fermion flavors and
modifying the coupling constant to e√

Nf

, the same Eqs. (7)

and (8) are calculated without the q expansions or the k cutoffs.
The result is

�(qr,qz,ω = 0) = − e2

(2π )3

(
kF qr

γ
C1 + 2m|qz|C2

)
, (14)

where C1 = 6.86, C2 = 7.28 are calculated numerically.
Therefore, for a small |q|, the screened Coulomb potential
is

Vs(q) ∼ 1
C1kF

γ
qr + 2mC2|qz|

. (15)

Notice that the screened Coulomb interaction still has algebraic
momentum dependence 1/|q|, in sharp contrast to that of Fermi
liquids. The presence of kF in nodal-ring excitation is not
enough to make the Coulomb interaction short-ranged. Fur-
thermore, the directional dependence is qualitatively the same
even though the nodal-ring spectrum is strongly anisotropic.
It is important to note that this result is independent of choice

in the RG scheme since no cutoff has been imposed. The RG
calculation is a weak coupling analysis whereas this is a strong
coupling analysis with 1/Nf as a control parameter. However,
this result is still consistent with the RG result presented in
Eq. (13), which provides validity to both.

The imaginary part of the bosonic self-energy determines
the decay. This can be calculated by performing a Wick
rotation. This gives the results

Im�(qr = 0, qz, ω + i0+) ∼ θ

(
ω

γqz

− 1

)
,

Im�(qr, qz = 0, ω + i0+) ∼ ω2

kF qr

.

(16)

Therefore there is no damping in the direction perpendicular
to the ring, while the boson with in-plane momentum shows
damping less than that of the Fermi liquid. Landau damping,
for comparison, gives Im�(q,ω) ∼ ω/q.

The vertex correction vanishes at the one-loop level. This
can be easily checked by setting all the external momenta
and frequency to 0. This is as required by the Ward identity
because the fermion self-energy [Fig. 1(b)] has no frequency
dependence.

V. FATE OF THE QUASIPARTICLES

We have seen above that the bosons are strongly renormal-
ized. However, since the screened Coulomb interaction is still
long-ranged, we must check whether the interaction destroys
the Fermi liquid or not. The fate of the quasiparticles can
be determined from the self-energy of the fermions. Using
the renormalized boson propagator as shown in Fig. 2, the
self-energy is

�f (p,iωn) =
∫

q,qn

1

−iωn − iqn +H0(p + q)

−e2

q2 − �(q,iqn)
.

(17)

We find that this is both UV and IR convergent and therefore
the screened Coulomb interaction is an irrelevant perturbation
to the fermions. Therefore the fermions remain as valid
quasiparticles of the system and are effectively decoupled.
The result is again consistent with the RG analysis presented
earlier.

The lifetime of these fermions can be found from the
imaginary part of the self-energy after analytic continuation
by the relation 1/τ = −2 Im �f . The channel that has the
largest contribution is the one that satisfies Fermi’s golden rule.
Focusing on this channel, for a fermion with initial momentum

q, qn

←
p, ω

FIG. 2. The straight line represents the fermion propagator as in
Fig. 1 and the double wiggly line represents the renormalized boson
propagator.
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p close to the line node and energy Ep, we have

1

τ
∼ 2e4

∫
k,q

1

�(q,0)2

(
1 − εa(k)εa(k + q)

EkEk+q

)

× δ(Ek + Ek+q + Ep+q − Ep). (18)

Leading order contributions only come from the region where
the intermediate wave vector k is very close to the nodal ring.
In fact, k needs to be closer to the ring than q is to the origin.
We find that 1

τ
∼ m

k2
F

E2
pC(χp), where χp controls the in-plane

component versus the out-of-plane component of p. C(χp) is a
numerical factor that can be numerically calculated for any χp.
It is identically zero when the in-plane component disappears.
This is because there is no decay channel that satisfies the
energy-momentum conservation. This can be seen above by
Im �(qr = 0,qz,ω) = 0 when qz is small. Overall, 1/τ ∼ E2

p,
and therefore the quasiparticles are long-lived. Interestingly it
has the same energy dependence as the Fermi liquid case.
While the density of states of this system is vanishing at
the Fermi level (∼ ω), this is compensated by the partially
screened Coulomb potential.

VI. EXPERIMENTAL SIGNATURES

Similar to surface acoustic wave propagation experiments
in two-dimensional materials [36–38], a bulk sound wave prop-
agation measurement in a periodic potential with wavelength
λ ∼ 1/q can be used to probe the momentum dependence of
the dielectric function. The sound velocity shift and attenuation
is found as

�vs

vs

= α2

2

1

1 + f (q)2
, κ = α2q

2

f (q)

1 + f (q)2
, (19)

where f (q) = C( vs

vF
)2 kF

q
, C = π

16
e2

γ ε
, and α is the coupling

constant between the piezoelectrics and medium which de-
pends on the geometry. In contrast, in the Fermi liquid metal,
f (q) = C ′ vs

vF
( kF

q
)2, C ′ = 2e2

εvF
.

A related physical observable is the dc conductivity. Using
the Kubo formula and taking the limits q → 0, then ω → 0,
we find the dc conductivity in the clean limit to be finite (due to

the underlying particle-hole symmetry) and anisotropic: σxx =
σyy = e2

�

kF vF

64γ
and σzz = e2

�

kF γ

32vF
with restored units. These

results are consistent with a previous computation for a similar
system [20].1 The characteristic screening of the Coulomb
interaction also affects the phonon dispersion. Longitudinal
acoustic phonon dispersion follows ω(q)2 = �2

p/ε(q), where
�p is the plasma frequency of the ions. This shows an unusual
ω(q) ∼ √

q dependence for small q.

VII. CONCLUSION

It is shown that the long-range Coulomb interaction in
nodal-ring semimetals leads to a nontrivial fixed point where
the screened Coulomb interaction acquires an anomalous
dimension. On the other hand, the screened Coulomb in-
teraction becomes irrelevant at the interacting fixed point
while remaining long-ranged. Hence the quasiparticles are
asymptotically free and physical properties can be computed
using a perturbation theory. We show that the quasiparticles
have a long lifetime even though the screening of charged
impurity potential would follow an unusual power-law form
due to the anomalous dimension. Sound wave propagation
and acoustic phonon dispersion show unique momentum
dependences. Anisotropic dc conductivity is found and is
proportional to the size of the nodal ring. These properties
could be tested in future experiments. Interesting future
directions include studies of the coupling to critical bosonic
modes and impurity and/or disorder effects.
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APPENDIX A: RG CALCULATION

The fermion self-energy is

1In a Weyl semimetal this value approaches 0 linearly as frequency
approaches 0 and in Fermi liquids this diverges. Another system
where a constant value is seen is two-dimensional graphene.

�f (kF + px,0,pz) = −e2
∫ �

q

H0(p + q)

E(p + q)

1

a
(
q2

x + q2
y

) + 1/aq2
z

≈ −e2
∫ �

q

(
aq2

z γ
2(

a2
(
q2

x + q2
y

) + q2
z

)(
vF q2

x + γ 2q2
z

)3/2 vF pxσx + aq2
xv

2
F(

a2
(
q2

x + q2
y

) + q2
z

)(
vF q2

x + γ 2q2
z

)3/2 γpzσy

)
.

(A1)

Using local Cartesian coordinates for q, we integrate from −∞ to ∞ in qy and qz, and from μ = �e−d� to � in |qx |. This gives
us

�f (kF + px,0,pz) = − α

(2π )2

(
σxvF px2

a2η2K(1 − a2η2) − E(1 − a2η2)

a2η2 − 1
+ σyγpz2

E(1 − a2η2) − K(1 − a2η2)

a2η2 − 1

)
d�

≡ − α

(2π )2

[
σxvF pxF1(aη) + σyγpzF2(aη)

]
d�, (A2)
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where E(x) is the complete elliptic integral of the second kind defined by E(x) = ∫ π/2
0 (1 − x sin2 θ )1/2dθ and K(x) is the

complete elliptic integral of the first kind defined by K(x) = ∫ π/2
0 (1 − x sin2 θ )−1/2dθ . The energy ratio α and anisotropy

parameter η are defined in the main text.
Including the calculated self-energies, we can write the effective action as follows:

S = S +
∫

d4xψ†(−�)ψ + 1

2

∫
d4xφ(−�)φ

=
∫

d4x

[
ψ†

[
∂τ − ieφ + σxvF

(
1 + α

(2π )2
F1(aη)d�

)
∂r + σyγ

(
1 + α

(2π )2
F2(aη)d�

)
∂z

]
ψ

+ 1

2
a

(
1 + β ′ 1

2aη
d�

)
((∂xφ)2 + (∂yφ)2) + 1

2a
(1 + β ′2aηd�)(∂zφ)2

]
. (A3)

RG equations for various parameters are

d ln vF

d�
= α

(2π )2
F1(aη),

d ln η

d�
= α

(2π )2
[F2(aη) − F1(aη)],

d ln e2

d�
= −1

2
β ′

(
1

2aη
+ 2aη

)
,

d ln a

d�
= 1

2
β ′

(
1

2aη
− 2aη

)
.

(A4)

Combining these, we can find RG flow equations for α, β, and aη. These are presented in the main text.

APPENDIX B: LARGE-N f CALCULATION OF THE SCREENED COULOMB INTERACTION

By scaling k̃r ≡ kr − kF → |qx |r , kF → |qx |κ and kz → |qz|z, we can write the boson self-energy with ω = 0 as follos; we

further define ξ ≡ q2
x

2m
κ/(γ qz):

�(qx,qz) = − e2

(2π )3

∫
r,θ,z

kF |qx ||qz|
(

1 − ξ 2(2r + cos θ )(2r − cos θ ) + (
z + 1

2

)(
z − 1

2

)
√

ξ 2(2r + cos θ )2 + (z + 1/2)2
√

ξ 2(2r − cos θ )2 + (z − 1/2)2

)

× 1√
ξ 2(2r + cos θ )2 + (z + 1/2)2 +

√
ξ 2(2r − cos θ )2 + (z − 1/2)2

1

γ |qz|

= − e2

(2π )3

kF |qx ||qz|
γ |qz| f1(ξ )

= − e2

(2π )3

kF |qx ||qz|
q2

x

2m
κ

f2

(
1

ξ

)
. (B1)

The second line is better suited to see the behavior of ξ 	 1 and the third line is better suited for ξ 
 1. f1(ξ ) can be calculated
numerically and fitted by a C1 + C2

1
ξ

curve which yields C1 = 6.86 and C2 = 7.28. This gives the leading order behavior of the
boson self-energy at ω = 0 provided in the main text.

Effects of finite ω are seen mainly in the imaginary part of the boson self-energy, which is 0 when ω = 0. This can be
calculated by performing a standard Wick rotation:

Im �(q,ω + i0+) = −πe2
∫

k
Tr(P+(k + q/2)P−(k − q/2))(δ(−ω + Ek+q/2 + Ek−q/2) − (ω → −ω)). (B2)

Pα(k) are operators that project the states on to the lower and upper bands:

Pα(k) = 1

2

(
1 + α

H0(k)

|E(k)|
)

(α = ±). (B3)

For a positive frequency, the integral becomes

Im �(q,ω + i0+) = −πe2
∫

k
Tr(P+(k + q/2)P−(k − q/2))δ(−ω + Ek+q/2 + Ek−q/2)

= −e2 π

(2π )3

∫
dk⊥k⊥(2π )

∫
dkz

2

4

(
1 − εa(k + q/2)εa(k − q/2)

Ek+q/2Ek−q/2

)
δ(−ω + Ek+q/2 + Ek−q/2). (B4)
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The integral is only nontrivial when q �= 0. For convenience, we separate it into two cases: one where the external momentum
lies in the ring plane and the other where it is perpendicular to the plane:

Im �(qz,ω + i0+) = − πe2

(2π )2

1

8

mπ√(
ω

γpz

)2 − 1
|qz|�

((
ω

γqz

)
− 1

)
. (B5)

Im �(qx,ω + i0+) =
⎧⎨
⎩

− e2

(2π)3
kF |qx |

γ
π2

2

( − E
(

�2

4

) + K
(

�2

4

))
if |�| < 2,

− e2

(2π)3
kF |qx |

γ
π2

4
√

�2−4

(−(�2 − 4)E
(− 4

�2−4

) + �2K
(− 4

�2−4

))
if |�| > 2,

(B6)

where � ≡ 2m
kF |qx |ω is the dimensionless frequency. E(x)

[K(x)] is the complete elliptic integral of the second [first]
kind defined earlier. The asymptotic behavior of this is

Im �(qr,ω + i0+) =

⎧⎪⎨
⎪⎩

− e2

(2π)3
kF qr

γ
π3�2

32 if |�| < 1,

− e2

(2π)3
kF qr

γ
π3

4�
if |�| 	 1.

(B7)

APPENDIX C: FERMION SELF-ENERGY CORRECTION

Here we show the irrelevance of the screened Coulomb
interaction to the fermions. As a representative example, we
only present the renormalization of the fermion dispersion in
the pz direction. For simplicity, we fix the fermion momentum
to p = (kF ,0,pz), such that it is only slightly off the line node
in the pz direction, and set the frequency to 0. We also fix the
internal frequency to 0 (take the Coulomb interaction to be
instantaneous) as the effects of a nonzero frequency in the real
part of the boson propagator are quite small. In the limit where
the momentum transfer |q| is small, the bare term of the boson
propagator is less important than the self-energy correction,
and we can set

�f (p,0) →
∫

q

H0(p + q)

E(p + q)

e2

Nf �(q,0)
. (C1)

Here we are only interested in the σy component of the
self-energy. Imposing a momentum cutoff in the qx and qy

directions, we get

�f (0,p)σy = − 1

Nf

γpz

∫ �

−�

dqx

∫ �

−�

dqy

×
∫ ∞

−∞
dqz

(
1

2m

(
2kF qx + q2

x + q2
y

))2

((
1

2m

(
2kF qx + q2

x+q2
y

))2+γ 2q2
z

)3/2

× 1

C1
kF

γ
|qy | + C22m|qz|

≈ − 1

Nf

γpzCz

�

kF

, (C2)

where

Cz =
2G

4,3
4,4

(
(C1)2

4(C2)2

∣∣∣ 1
2 ,1,1, 3

2
1
2 , 1

2 , 1
2 ,1

)

π3/2(C1)
∼ 1.72.

Since the self-energy is linear in the cutoff, the screened
Coulomb interaction is irrelevant to the fermions. Alterna-
tively, the full integral without cutoffs can be carried out
numerically, which gives the same conclusion.

APPENDIX D: LIFETIME OF THE FERMIONS

Starting from the Euclidean fermion self-energy, we can
calculate the imaginary part of the self-energy by analytic
continuation:

�f (p,iω) = e2

Nf

∫
q,�

i(� + ω) + H(p + q)

(� + ω)2 + E2
p+q

1

�(q,�)

≈ − e4

Nf

∫
q,k

2π

�(q,0)2

(
1 − εa(k)εa(k + q)

EkEk+q

) iω + Ek+Ek+q+Ep+q

Ep+q
Hp+q

(Ek + Ek+q + Ep+q)2 + ω2
. (D1)

This can be analytically continued by taking iω → ω + iη, and the imaginary part of this would be

Im �f (p,Ep) = − e4

Nf

∫
q,k

π2

�(q,0)2

(
1 − εa(k)εa(k + q)

EkEk+q

)
δ(Ek + Ek+q + Ep+q − Ep)

(
1 + εx(p + q)

Ep+q

σx + εy(p + q)

Ep+q

σy

)
,

(D2)

where we have used the approximation

1

�(q,�)
≈ �(q,�)

�(q,0)2
. (D3)

To proceed, we divide the integral into two regions, one where k is farther from the Fermi ring than q is to the origin (Ek > Eq)
[Eq is defined in the main text below Eq. (19)] and the opposite case (Ek < Eq). For the former case, we can expand the energies
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up to linear order in q:

Ep+q − Ep ∼ Eq sin χq sin χp + Eq cos χq cos χp cos θ,

Ek + Ek+q ∼ 2Ek + Eq sin χq sin χk + Eq cos χq cos χk cos φ, (D4)

δ(Ek + Ek+q + Ep+q − Ep) ∼ δ(2Ek + Eq sin χq(sin χk + sin χp) + Eq cos χq(cos χk cos φ + cos χp cos θ )).

Here we have defined φ, θ , and χk (and similarly χp and χq) such that

γ kz = Ek sin χk,
kF

m
k̃r = Ek cos χk, kr · qr = |kr ||qr | cos φ,

(D5)

γ qz = Eq sin χq,
kF

m
qr = Eq cos χq, pr · qr = |pr ||qr | cos θ,

where kr is the k projected on to the kx-ky plane. However, it is impossible to satisfy the δ function in Eq. (D4) and Ek > Eq

simultaneously. Therefore, there is no phase space that conserves momentum and energy in this case, leading to a 0 contribution
to Im �f (p,Ep).

For the case where Ek < Eq , the second line in Eq. (D4) needs to be modified. Instead of expanding terms in powers of q, we
expand in powers of kr − kF and kz. However, q is still assumed to be small compared to kF :

Ek + Ek+q = Ek

(
1 + sin χk sin χq + cos χq cos χk cos φ√

cos2 χq cos2 φ + sin2 χq

)
+ Eq

√
cos2 χq cos2 φ + sin2 χq + O

(
E2

k

Eq

)
. (D6)

In the limit of Ek/Eq < 1 the coherence factor becomes

1 − εα(k)εα(k + q)

EkEk+q

= 1 − sin χk sin χq + cos χq cos χk cos φ√
cos2 χq cos2 φ + sin2 χq

+ O

(
E2

k

Eq

)
, (D7)

which, to leading order, has no energy dependence. Combining
everything, the integral gives

Im�f (p,Ep) = − π2

Nf

4m

k2
F

E2
pC(χp). (D8)

The largest contributions come from the in-plane scattering
where the momentum transfer is opposite to the external
momentum. The angle integrals can be done numerically for
any given χp. For χp = π/2, which is when the external
momentum is only off the Fermi ring in the z direction, this
integral is zero, meaning the lifetime is longer than E2

p.

APPENDIX E: PROPAGATION OF ACOUSTIC WAVES

From linear response theory we have

〈ρ(q,ω)〉 = −χ (q,ω)φext(q,ω) = �0(q,ω)φtot(q,ω). (E1)

The �0 here differs from the random phase approximation
(RPA) calculated in the main text (�) by a factor of (ie)2:

− 1

χ (q,ω)
= 1

�0(q,ω)
+ V (q), (E2)

σxx = − iω

q2
�0(q,ω), (E3)

− 1

χ (q,ω)
= 4πe2

εq2
− iω

q2σxx(q,ω)
. (E4)

Using results already obtained, this gives

−χ (q = qẑ,ω = vsq) = εq2

4πe2

1

1 − iσm/σxx

, (E5)

where σm = εω
4πe2 and Reσxx ≈ vskF

64γ
(vs/vF )2.

The induced energy per unit area is

δU = −1

2
χ |φext|2 (E6)

= 1

2

εq2

4πe2

1

1 − i σm

σxx

|φext|2. (E7)

Measure the energy shift with respect to the shift for
σxx → ∞:

�U = δU − δU (σxx = ∞) (E8)

= 1

2

εq2

4πe2

−1

1 − i σxx

σm

|φext|2. (E9)

The acoustic wave has energy density proportional to q2.
Therefore the energy U per unit surface area is U = q2C2H :

�U

U
= �q

q
= −�vs

vs

+ iκ

q
, (E10)

�vs

vs

− iκ

q
= α2/2

1 + iσxx(q,ω)/σm

. (E11)

This gives the results presented in the main text.
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