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Ab initio electronic stopping power of protons in bulk materials
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The electronic stopping power is a crucial quantity for ion irradiation: it governs the deposited heat, the damage
profile, and the implantation depth. Whereas experimental data are readily available for elemental solids, the data
are much more scarce for compounds. Here we develop a fully ab initio computational scheme based on linear
response time-dependent density-functional theory to predict the random electronic stopping power (RESP) of
materials without any empirical fitting. We show that the calculated RESP compares well with experimental data,
when at full convergence, with the inclusion of the core states and of the exchange correlation. We evaluate the
unexpectedly limited magnitude of the nonlinear terms in the RESP by comparing with other approaches based
on the time propagation of time-dependent density-functional theory. Finally, we check the validity of a few
empirical rules of thumbs that are commonly used to estimate the electronic stopping power.
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I. INTRODUCTION

The stopping power of an irradiating ion in condensed
matter is defined as the kinetic energy loss per unit of path
length:

S = −dE

dx
. (1)

This quantity is central to many technological fields that
involve particle irradiation. Besides for materials in nuclear or
space environments [1] the stopping power is highly relevant
for the depth of implantation of dopants in electronics [2] and
for the accurate prediction of damage in the proton therapy
used in nuclear medicine [3]. Due to its importance, the
stopping power of ions has been the subject of intense research
for the last 80 years [4].

The stopping power consists of two components: the
nuclear stopping power Sn, which involves energy losses
due to collisions with the nuclei of the target, and the
electronic stopping power Se, which arises from the excitation
of the electrons of the target. As soon as the kinetic energy
of the impinging ion is larger than a few tens of keV/amu, the
electronic part becomes the vastly dominating contribution
[5].

Historically, the electronic stopping power has been first
evaluated with model scattering formulas [6–8]. This was
followed by the calculations based on the free-electron gas
(FEG), pioneered by Lindhard [9]. The electron gas modeling
and its further refinements have been continuously used since
then [10–14]. More recently, with the advent of density-
functional theory and its time-dependent version (TDDFT)
[15], the fully ab initio evaluation of the random electronic
stopping power (RESP) has become within reach [16–22].

Among the recent applications of TDDFT to the calculation
of stopping power, two frameworks have emerged: one is in
the linear response regime, in which the response functions are
expressed in terms of the frequency; the second is based on
the time-propagation approach, in which the time-dependent

Kohn-Sham (KS) equations have to be solved [23]. Both
approaches have advantages and limitations. Time propagation
incorporates the response to all orders and this is expected
to yield important contributions at low velocity. However,
the time discretization needs to be monitored [24–26] and
supercells have to be employed. This leads to very cumbersome
calculations. The linear-response framework is simpler, though
it still requires careful monitoring of the convergence. More-
over, the limitation to the linear terms might be questionable
for the low ion velocities and for projectiles with a higher
charge. The need for nonlinear terms to correctly capture the
dependence on the charge of the projectile has been known
for decades [27,28]. A striking illustration of the limitation of
the linear-response approximation is its failure to describe the
proton/antiproton asymmetry [19,20]. However, a complete
exploration of the linear-response theory for realistic materials
is still missing today.

In this work, we propose to push the linear-response
approach to its limit and appreciate its range of validity
to evaluate the RESP. We aim at exploring the power of
the calculations to predict experimental results, since the
experimental data are scarce for nonelemental crystals. Due
to the slow convergence of the calculations in practice, we are
careful about producing fully converged ab initio electronic
stopping power within linear-response theory. The agreement
with time-propagation results is surprisingly good as we will
show. We furthermore evaluate the validity of a few empirical
rules of thumb that are often used in practice, such as the
Bragg’s additivity rule or the bond effect.

The article is organized as follows: Sec. II is a general
presentation of the linear response TDDFT formalism applied
to the RESP. Sec. III details the practical implementation in
plane waves and proposes a working approach to achieve
convergence. Section IV presents the effect of the physi-
cal approximations on the RESP. Section V discusses the
validity of a few empirical rules. Conclusions are given in
Sec. VI. Hartree atomic units will be used throughout the text
(� = e = a0 = 1).
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II. LINEAR RESPONSE FORMALISM
FOR THE STOPPING POWER

In this section, we quickly recap the main computational
steps that allow one to evaluate the random electronic stopping
power in a periodic plane-wave formalism within linear
response theory.

A. Linear response TDDFT

In a landmark paper, Petersilka et al. [15] derived the
TDDFT equations within the linear response theory. Solving
TDDFT in linear response is tantamount to solving a Dyson-
like equation that relates the noninteracting Kohn-Sham
polarizability χKS to the fully interacting polarizability χ . In a
periodic material, this equation can be cast into a matrix form
when expressed in plane waves:

χGG′(q,ω) = χKS
GG′(q,ω) +

∑
G1G2

χKS
GG1

(q,ω)

× fHxcG1G2 (q,ω)χG2G′(q,ω), (2)

where G are reciprocal lattice vectors and q is a vector in
the first Brillouin zone (BZ). It should be understood that the
notation χGG′(q,ω) is shorthand for χGG′(q + G,q + G′,ω).
The kernel of the equation fHxc consists of a Hartree part

v(q + G) = 4π

|q + G|2 (3)

and of the so-called exchange-correlation kernel fxc, which
is the functional derivative of the Kohn-Sham exchange-
correlation potential with respect to the density. In the
present work, we will use only very simple approximations to
fxc: either the random-phase approximation that completely
neglects fxc or the adiabatic local-density approximation
(ALDA) that assumes a local dependence on the density, in
space and in time.

The Kohn-Sham polarizability is obtained through the
Adler-Wiser formula [29,30]:

χKS
GG′(q,ω) = 2

Nk�

∑
k
i,j

(fk−qi − fkj )

× Mkij (q + G)M∗
kij (q + G′)

ω − (εkj − εk−qi) + iη
, (4)

where the matrix elements read

Mkij (q + G) = 〈k − qi|e−i(q+G)·r|kj 〉. (5)

Here, � stands for the unit cell volume, and Nk for the
number of k points in the BZ. fki and εki are, respectively,
the occupations and the energies of the KS state |ki〉 with
band index i and wave vector k.

The inverse dielectric matrix is defined as the functional
derivative of the total Kohn-Sham potential vKS(r,t) with
respect to the external potential vext(r′,t ′). In reciprocal
space, it can be linked to the polarizability χ with a matrix

equation:

ε−1
GG′(q,ω) = δGG′ + v(q + G)χGG′(q,ω). (6)

The imaginary part of the inverse dielectric matrix is cen-
tral to describe the loss processes involved in electron
energy loss spectroscopy [31] or in inelastic x-ray scattering
[32,33].

B. Dielectric matrix expression of the random
electronic stopping power

Since the inverse frequency-dependent dielectric matrix
contains the loss function, it is also the central quantity to
quantify the slowing down of a charged particle in a condensed
matter target within linear response. As the matter is quite
delicate, we would like to seize the opportunity to reproduce
a full derivation of the random electronic stopping power
in the exact form it can be implemented in a plane-wave
formalism. A similar derivation can be found in Ref. [34] for
instance.

Describing an impinging particle with electric charge Z1

as a classical point charge moving at constant velocity v with
impact parameter b, its density reads

ρext(r,t) = Z1δ(r − b − vt). (7)

The power dissipated in a medium is measured by the classical
formula:

dE

dt
=

∫
dr jext(r,t) · E(r,t), (8)

where E is the total electric field and jext is the charge current
of the impinging particle. As we consider a point charge with
constant velocity v, the charge current can simply be written
jext(r,t) = ρext(r,t)v. If the x axis is taken along the velocity,
x = vt and we can apply the chain rule to link Eq. (8) to the
definition of the stopping power in Eq. (1):

Se(v,b) = −1

v

∫
dr ρext(r,t)v · E(r,t), (9)

where we have highlighted the dependence on the impact
parameter b. Se(v,b) is called the position-dependent stopping
power.

Let us express the total electric field as a function of the
external density. The electric field derives from a potential
φtot(r,t) following

E(r,t) = −∇rφtot(r,t). (10)

Note that the electric potential used here differs by a sign
from the electronic potentials vKS and vext introduced in
Sec. II A.

Equation (10) can be conveniently written in the Fourier
space:

E(r,t) = − 1

2πNk�

BZ∑
q

∑
G

i(q + G)

×
∫

dω ei(q+G)·r−iωtφtot(q + G,ω), (11)

where the Fourier transform of the electric potential φtot(q +
G,ω) has been introduced.
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The ratio between the electric potential φtot and the external
potential φext is measured by the inverse dielectric matrix that
has been introduced earlier in Sec. II A. Thus, the electric
potential can be expressed as

φtot(q + G,ω) =
∑
G′

ε−1
GG′(q,ω)φext(q + G′,ω), (12)

and the external potential, in turn, can be calculated from the
Poisson equation:

φext(q + G′,ω) = 4π

|q + G′|2 2πZ1

× δ[ω − v · (q + G′)]e−ib·(q+G′). (13)

The Fourier transform of the point charge ρext(r,t) has been
introduced. With this, we have indeed written the electric field
E(r,t) in terms of the external density.

Gathering the results from Eqs. (11)–(13), the integrations
over r and ω in Eq. (9) can be performed analytically to yield

Se(v,b) = i4πZ2
1

Nk�v

BZ∑
q

∑
GG′

ε−1
GG′[q,v · (q + G′)]

× v · (q + G)

|q + G′|2 e−i(G′−G)·be−i(G′−G)·vt . (14)

The last exponential in the previous equation is an oscillatory
term that gives no contribution if averaged over a long period of
time, except for those vectors (G′ − G) that are perpendicular
to the velocity v. Let us label J⊥ such a vector. Hence, Eq. (14)
can be recast into

Se(v,b) = i4πZ2
1

Nk�v

BZ∑
q

∑
GJ⊥

ε−1
GG+J⊥ [q,v · (q + G + J⊥)]

× v · (q + G)

|q + G + J⊥|2 e−iJ⊥·b. (15)

This is the final expression for the position-dependent elec-
tronic stopping power. This expression can describe for
instance the channeling effect of an ion traveling through the
voids of a crystalline structure.

Then the random electronic stopping power, the quan-
tity we are interested in this paper, is derived from the
position-dependent electronic stopping power by averaging
over the impact parameter. The oscillatory term in Eq. (15) is
nonvanishing only when J⊥ = 0. This observation yields the
final result:

Se(v) = i4πZ2
1

Nk�v

BZ∑
q

∑
G

ε−1
GG[q,v · (q + G)] × v · (q + G)

|q + G|2 .

(16)

This last result can be further refactored in order to highlight
that the stopping power is indeed real valued. Using the fact
that the response function ε−1(rt,r′t ′) is real valued, its Fourier
transform has the following symmetry (see Appendix A of
Ref. [34] for a derivation):

ε−1
GG′(q,ω) = [

ε−1
−G−G′ (−q, − ω)

]∗
. (17)

Then, for each q + G that appears in the summation in Eq. (16),
the corresponding −q − G will be part of the summation as

well. As a consequence, only the imaginary part of ε−1 yields
a contribution to the summation and the RESP can be finally
recast into

Se(v) = 4πZ2
1

Nk�v

BZ∑
q

∑
G

Im
{−ε−1

G,G[q,v · (q + G)]
}

× v · (q + G)

|q + G|2 . (18)

This expression for Se is identical to the formula published
by Campillo et al. [16] [see their Eq. (3.11)], apart from an
overall factor 2. Our Eq. (18) correctly reduces to the Lindhard
formula for the specific case of a homogeneous system as
shown in the Appendix. However, our numerical results do
agree with Campillo and co-workers as we will show in the
next section.

III. PRACTICAL IMPLEMENTATION IN A PERIODIC
PLANE-WAVE APPROACH

Many modern ab initio codes for periodic systems are
capable of calculating the inverse dielectric matrix ε−1

GG′(q,ω)
for finite frequencies ω. For instance, this quantity is requested
in the GW framework [35,36]. The present work relies on the
GW subroutine available in the ABINIT software [37].

A. Technicalities

As we will show in the following, the convergence of
the stopping power with respect to the parameters of the
calculation is strikingly slow even for systems with a small
unit cell. This makes the use of symmetry operations abso-
lutely crucial to perform calculations on an affordable time
scale.

Equation (18) can be rewritten with the use of the symme-
tries R contained in the crystal space group that produce the
star of q vectors. With this, Eq. (18) reads

Se(v) = 4πZ2

Nk�v

IBZ∑
q

∑
R∈Rq

×
∑

G

Im
{−ε−1

R−1G,R−1G[q,v · (Rq + G)]
}

× v · (Rq + G)

|Rq + G|2 , (19)

where the summation over q only runs over the irreducible
wedge of the Brillouin zone (IBZ).

Furthermore, the inverse dielectric matrix needs to be
evaluated for many energies ω = v · q + G. It would be almost
intractable to calculate and invert the dielectric matrix for each
requested ω. We rather calculate and invert the dielectric matrix
on a dense grid of frequencies and then perform a cubic spline
interpolation in order to evaluate its diagonal at the desired
energy.

Because of the discrete sampling of the BZ, the imaginary
part of the inverse dielectric matrix is a rather noisy function
of the energy, which can be smoothed with an increase of
the broadening η in Eq. (4). Due to the spline interpolation,
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the number of sampling energies becomes a parameter to be
converged.

B. Assessment against previous calculations

In order to assess our calculation method, we first checked
our results against the only series of articles [16–18] we are
aware of that implemented the linear-response RESP from
fully ab initio calculations in periodic systems. Using our
norm-conserving pseudopotential implementation in ABINIT,
we calculated the RESP of bulk silicon and bulk aluminum at
their experimental lattice constant.

Carefully following the technical details of Ref. [18], we
used the same convergence parameters in order to offer a direct
comparison in Fig. 1. As the authors of Ref. [18] point out
themselves, these results are not converged well enough to
permit comparison with experiment. In Fig. 1, we just aim at
demonstrating the correctness of the implementation.

Silicon and aluminum are described by valence electron
only norm-conserving pseudopotentials. The dielectric matri-
ces have been limited to a 15 × 15 representation in plane
waves, corresponding to an energy cutoff of 0.75 Ha in
silicon and of 1.35 Ha in aluminum. The number of bands is
limited to 200 for silicon and to 60 in aluminum. The k-point
mesh is 8 × 8 × 8 for Si and 10 × 10 × 10 for Al. Finally,
whereas Ref. [18] employs an analytic continuation technique
that extrapolates the inverse dielectric function from purely
imaginary frequencies to purely real frequencies, our work
relies on a direct evaluation of the response functions for real
frequencies. However, we have to employ a finite value for the
broadening parameter η entering in Eq. (4). A value η = 1.5 eV
was used to produce the the data reported in Fig. 1.

Despite the difference in the sampling of the inverse
dielectric matrix, the agreement between our calculations and
the previously published results is very good, which also
indicates that the data published in Ref. [18] are consistent
with our Eq. (18).
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v  ( a.u. )

0.00
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This work
Pitarke and Campillo

Al Si

FIG. 1. Comparison of the RESP of a proton within RPA from our
implementation (solid red line) against previously published results
from Ref. [18] (green diamonds). The calculations are converged with
the same level of accuracy as prescribed in the previous work.

C. Convergence issues

As already alluded to in the previous paragraph, the
calculation of RESP requires extremely large convergence
parameters that were not accessible 15 years ago and that
are still challenging nowadays.

First, we set the convergence with respect to the frequency
sampling grid, which can be easily handled. The maximum
frequency for χKS(ω) is determined by the maximum velocity
v and the dielectric matrix cutoff Ecut through ωmax ≈
|Gmax| × |vmax|. Then the frequency grid sampling is found
to be very well converged with six points per Hartree for all
the systems we study here.

In Fig. 2, we show the convergence of the RESP as a
function of the other parameters. The parameters can be
grouped into two independent sets: the number of bands Nb

and the dielectric matrix cutoff Ecut on one side (left-hand
panel of Fig. 2) and the k-point and q-point sampling on the
other side (right-hand panel of Fig. 2).

First of all, as a general comment, the convergence of
RESP appears as extremely slow compared to the convergence
parameters required in ground-state DFT or even in standard
excited state calculations within TDDFT. The number of
bands necessary to converge the RESP up to velocity v = 4.

a.u. (which corresponds to a proton at 0.4 MeV) is around
1500, to be compared to the four occupied bands of silicon.
The converged dielectric matrix cutoff energy is 25 Ha, to
be compared to the cutoff energy for wave functions in
norm-conserving pseudopotential of about 10 Ha. The RESP
peak necessitates at least 864 k points in the BZ, which
corresponds to a 6 × 6 × 6 Monkhorst-Pack grid with four
different origins, whereas standard calculations usually require
only 256 k points in the BZ (4 × 4 × 4 grid with four shifts).

The extremely slow convergence with respect to these
parameters has two different origins that can be ascribed to
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FIG. 2. Convergence of the RESP of a proton in silicon within
RPA as a function of the number of bands and of the dielectric matrix
cutoff in the left-hand panel and as a function of k points in the
right-hand panel. The convergence with respect to Nb and Ecut was
obtained with a fixed �-point sampling, whereas the convergence
with respect to the k-point grid was evaluated for a fixed number of
bands (400) and a fixed dielectric matrix cutoff (8 Ha).
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the different equations presented in Sec. II. That is why we
grouped the convergence parameters into two sets.

First, the dielectric matrix cutoff and the number of bands
are tightly related as can be inferred from the matrix element
in Eq. (5). If high-energy empty bands are included in the sum
of states formula of χKS, the representation of these states
in plane wave involves high-energy plane waves. These high
plane waves are coupled with the occupied states through large
reciprocal lattice vectors G in Eq. (5). This observation justifies
why the convergence with respect to bands and to the dielectric
matrix cutoff cannot be evaluated independently. In Fig. 2,
we have shown the RESP curves for the converged dielectric
matrix cutoff associated with a given number of bands. For
instance, for 400 bands, a dielectric matrix cutoff of 8 Ha is
sufficient. However, for 1500 bands, it should rather be set to
25 Ha.

Secondly, the BZ sampling appears through the k points in
Eq. (4) and through the q points in Eq. (18). Whereas the q
points are only constrained to be differences of k points due
to the evaluation of the matrix elements in Eq. (5), we have
limited ourselves to the very same grids for both k and q points
since a down-sampling analogous to Ref. [38] would have
induced marginal computational gains only. The convergence
with respect to k points in Eq. (4) is made smoother thanks
to a well adapted value of the broadening parameter η. For
instance, in the right-hand panel of Fig. 2, the curve with
� point was obtained η = 12 eV, while the result with 2048
points used η = 1 eV.

D. Extrapolation scheme

As the convergence is difficult to obtain and as the
convergence factors have different origins, it is legitimate
to evaluate the possibility to reach the global convergence
by adding up the different contributions. To this aim we
extrapolate the RESP using the formula

Se(extrap.) = Se(Nb,Ecut = low,Nk = high)

+ Se(Nb,Ecut = high,Nk = low)

− Se(Nb,Ecut = low,Nk = low), (20)

where low/high characterizes the convergence level for the
number of bands Nb and dielectric matrix cutoff Ecut on one
side and for the k-point grid on the other side.

In Fig. 3, we demonstrate that the extrapolation is indeed
justified. Calculations obtained for two levels of convergence
are shown in the upper panel of Fig. 3 for two different k-point
meshes. The better converged calculation uses Nb = 600 and
Ecut = 11 Ha, while the less converged calculations have Nb =
400 and Ecut = 8 Ha. In the lower panel, we evaluated the
difference between these two levels of convergence, either with
a �-point sampling (red line) or with a much denser sampling
(864 k points). The small difference of the curves for the two
k-point samplings in the lower panel of Fig. 3 demonstrates
that a coarse k-point sampling is indeed sufficient to capture
the slow convergence with respect to Nb and Ecut as proposed
in Eq. (20).

With these techniques at hand, we are now ready to calculate
RESP that are converged in absolute.
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FIG. 3. Comparison of the convergence rate of the RESP of a
proton in silicon for two k-point meshes: � (red lines) and 864 BZ
points (green lines). The upper panel shows the RESP for two levels
of convergence. The lower panel shows the difference between the
curve that is better converged with respect to Nb and Nk minus the
curve that is less converged for the two k-point meshes.

IV. PHYSICAL APPROXIMATIONS RELEVANT
FOR BULK MATERIALS

A. Ab initio against models based on the free-electron gas

Random-phase approximation (RPA) calculations in real
materials are still very challenging. We have just seen that the
convergence issues are dramatic. Therefore, models based on
the FEG have been developed and used with relative success
in the previous 50 years [9,10,12–14].

We propose to examine here the validity of these models
against the calculated ab initio RPA for silicon, as shown
in Fig. 4. The crudest modeling we consider is the analytic

0.0 1.0 2.0 3.0 4.0
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FIG. 4. FEG-based modeling of the RESP of a proton in silicon
against the reference ab initio RPA calculation.
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formula of Bethe [7]:

SBethe
e (v) = Z2

1ω
2
p

v2
ln

(
2v2

ωp

)
, (21)

where ωp = √
4πρ0 is the classical plasma frequency and ρ0

is the average electronic density. In Fig. 4, the Bethe formula
is not evaluated for v < 1. a.u., since the formula shows
a divergence there. However, the Bethe formula properly
captures the large v behavior. The Bethe formula can be tuned
with a mean ionization energy I inserted in the denominator
in the logarithm [39–41], but still the description is still not
adequate at the low velocities.

A huge improvement is due to Lindhard [9], who derived the
RPA RESP formula for a FEG at a given homogeneous electron
density ρ0. The Lindhard RESP still requires a numerical
evaluation of a double integral [10]. Figure 4 shows the
Lindhard RESP evaluated at the same average density as the
valence electrons of bulk silicon (rs = 2.00 a.u.). The Lindhard
RESP deviates noticeably from the ab initio RPA, especially
around the peak at v = 1.4 a.u. However, contrary to the Bethe
formula, the overall slope is now correct.

A route to improve the description of real inhomogeneous
solids is the local-density approximation (LDA) to RESP
[10,42]. This approximation assumes that the RESP of a solid
can be obtained as the spatial average over the Lindhard RESP
evaluated at the local density ρ(r):

Se(v) ≈ 1

�

∫
�

dr SLindhard
e (ρ(r),v). (22)

Using the valence density as obtained from the ab initio
calculation, Fig. 4 shows that the LDA based on Lindhard
produces a rather meaningful evaluation of the RESP of Si.
However, as we will see next, LDA based on Lindhard is not
adequate when including the tightly bound core electrons.

B. RPA versus ALDA

Even the ab initio RPA results do not compare well with
experiment yet. As exemplified in Fig. 5 for silicon, the RPA
evaluation of RESP largely underestimates the experimental
reference results.

We have so far employed the simplest approximation to the
TDDFT kernel, that it is its complete neglect. Whereas other
simple TDDFT kernels, such as ALDA, are known to have
very little effect on the optical spectra in solids [31,44,45],
it has been shown in previous works that ALDA brings
a significant improvement for the dynamic structure factor
S(Q,ω) as compared to inelastic x-ray scattering [32,33]. The
structure factor is proportional to an individual element of
the inverse dielectric matrix diagonal and the stopping power
Se is an integral over these elements. A good description of
the dynamic structure factor should then lead to success in
predicting the RESP.

Figure 5 demonstrates how the inclusion of the ALDA
kernel significantly increases the RESP in the low velocity
regime. However, for the larger velocities v > 2 a.u., the RESP
is completely insensitive to the TDDFT kernel. In other words,
thanks to ALDA, the agreement with respect to experiment is
excellent for low velocities up to the maximum of the peak,
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FIG. 5. RESP of a proton in silicon using different approxi-
mations for the TDDFT kernel: RPA (dashed red line) and ALDA
(solid green line). Silicon is described by its valence electrons only.
Experiment from the PSTAR database [43] (blue circles) is given as
a reference.

but the stopping power still remains largely underestimated for
higher velocities.

C. Contribution of the core states

To address the underestimation of the RESP for large
velocities, the natural step is to include the description of
the core states. Indeed, we have shown in Sec. III that the
RESP is very sensitive to the high-energy transitions included
in the response χKS and that a huge number of empty bands is
necessary to achieve convergence. In an analogous manner, the
RESP can be expected to be much affected by core electrons.
For instance, in silicon, the 2s and 2p electrons are located
about 100 eV below the valence and can contribute to the
loss processes for moderate values of the velocity v. The 1s

electrons which lie 1700 eV below the valence can instead be
disregarded.

The effect of the 2s2p electrons of Si on the RESP can
be appreciated from Fig. 6, where the calculations with two
pseudopotentials with or without 2s and 2p in the valence
have been carried out. The 2s2p electrons yield a significant
additional contribution to the RESP for velocities beyond
1.5 a.u., whereas they have no effect below. However, even
when introducing the core electrons, the RESP for high
velocity is underestimated by about 10%–15% with respect
to experiment.

Unfortunately, the calculations with explicit core states not
only have more occupied states in the summation of Eq. (4),
but also have a much harder pseudopotential, that in turn
induces a higher dielectric matrix cutoff. Silicon now requires
Ecut = 35 Ha instead of 25 Ha. With such a high computational
burden, it would be desirable to have an approximate scheme
to handle the core states.

Let us analyze further here the contribution from the core
electrons alone. In the lower panel of Fig. 7, we evaluate the
contribution of the core electrons to the RESP of Si for different
approximations as the difference between the RESP curves
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FIG. 6. RESP of a proton in silicon within ALDA including (solid
green line) or not (dashed red line) the contribution from the core 2s

and 2p electrons. Experiment from the PSTAR database [43] (blue
circle symbols) is given as a reference.

obtained in the upper panel. In contrast with the statement
issued for valence electrons, the effect of the ALDA kernel is
negligible. The ALDA and the RPA core RESP differ by at
most 0.005 a.u. which is to be compared with the value of the
total RESP of 0.1–0.2 a.u. for the depicted range of velocities.

We also considered the opportunity to have a cheap
evaluation of the core contribution using the LDA based on
the Lindhard stopping power. In the upper panel of Fig. 7, the
LDA RESP is calculated for both the valence electronic density
and the valence plus core electronic density. The difference
between the two can be compared with the full ab initio
calculation in the lower panel. The LDA technique is not
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FIG. 7. Upper panel: RESP of a proton in silicon within RPA (red
lines), ALDA (green lines), and LDA based on Lindhard (blue lines)
including (solid lines) or not (dashed lines) the contribution from
the core 2s and 2p electrons. Lower panel: Core-only contribution
to the RESP of Si as obtained through the difference between the
calculations with and without 2s and 2p within RPA, ALDA, or LDA
based on Lindhard.
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FIG. 8. RESP of a proton in Al within ALDA in linear response
(solid green line) compared to the time-propagation results of Schleife
and co-authors [22]. Experiment from the PSTAR database [43] (blue
circle symbols) is given as a reference.

perfectly adequate to describe the core contribution. Indeed,
the stopping power continuously increases starting from the
lowest velocities. In other words, the LDA core misses the
shell effect: the core contribution should be zero up to the
minimum velocity that allows the core electrons to be excited.

Even though the LDA technique could describe the core
contribution with reasonable accuracy, we rather use an
explicit introduction of the core electrons through adequate
pseudopotentials in all the following RESP results of the study.

D. Effect of the higher-order terms

In a recent study, Schleife and co-workers [22] produced a
high quality ALDA stopping power calculation for aluminum
using the time-propagation approach to TDDFT. Their calcu-
lations include the perturbation to all orders, whereas ours
are limited to the linear response by construction. Hence,
the comparison allows us to evaluate the magnitude of the
higher-order terms.

In Fig. 8, one can compare our linear-response results to
the time-propagation data of Ref. [22] for the traveling of an
off-channeled proton in Al, i.e., a proton whose velocity is not
aligned with the crystallographic direction of weak density.
The differences are indeed rather small, around 5% at most.
Considering the conceptual differences in the two approaches
and their respective convergence issues, we consider this close
match as a confirmation of the linear-response approximation.
Surprisingly, the error due to the linear-response approxi-
mation does not vary much with the proton velocity. This
comparison validates therefore the linear-response approach,
at least for protons with velocities larger than 0.5 a.u.

V. RESULTS FOR BULK MATERIALS

With the formalism described above, we can now check the
validity of some commonly stated rules of thumb concerning
the RESP.
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FIG. 9. Anisotropy of the RESP of a proton in 2H-SiC (left-hand
panel) and in graphite (right-hand panel) within ALDA including the
2s2p electrons of Si.

A. How weak is the RESP anisotropy of anisotropic materials?

With the recent interest in graphene [46], the question about
the magnitude of the anisotropy of the RESP is being raised. In
an anisotropic material, the RESP depends on the magnitude
of the velocity and on its direction. This anisotropy is usually
completely disregarded in the interpretation of the experimen-
tal data, either because the anisotropy is expected to be small,
or because the experimental samples are polycrystalline (and
the anisotropy is then averaged out).

We analyze in Fig. 9 the anisotropy of the RESP of
two prototypical crystals, 2H-SiC (silicon carbide in wurzite
structure) and graphite. Figure 9 shows the RESP along a
direction in the plane against the RESP along the out-of-plane
axis. The dense structure of wurzite SiC is weakly anisotropic
and, as expected, the RESP is almost insensitive to the direction
of v. The layered structure of graphite, which consists in
hexagonal planes of carbon separated by a large spacing,
may be expected to give rise to a larger anisotropy. However,
the RESP in the right-hand panel of Fig. 9 has a very small
direction dependence, which amounts to at most 3% in the
peak region.

The weak dependence of the RESP can be rationalized by
inspecting Eq. (18). In this equation, the imaginary part of ε−1

is known to be highly anisotropic for low-energy transfers, as
in graphite [47] for instance. However, Eq. (18) is a weighted
average of the loss functions for all the values of the transferred
momentum q + G. As seen from Eq. (18), a larger weight
v · (q + G) is given to those momenta that are parallel to the
velocity v. However, for these transferred momenta, the loss
function is evaluated for larger energies v · (q + G), at which
the anisotropy of the loss function is much weaker.

As a conclusion, the anisotropy of the RESP is always very
weak, even for crystal structures which are very anisotropic.

B. Is the Bragg’s additivity rule valid?

It has been observed since the early times of particle
irradiation [48] that the electronic stopping power is mainly
proportional to the average density of electrons, so that
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FIG. 10. RESP of a proton in Si, diamond, and 3C-SiC within
ALDA including the 2s2p electrons of Si. The Bragg’s rule SiC
(dashed blue line) was obtained using Eq. (23).

the stopping power of compounds could be obtained as a
weighted average of the stopping power of its constituents.
This statement, known as the Bragg’s additivity rule, would
read for silicon carbide as

Se(SiC)

ρat (SiC)
= Se(Si)

ρat (Si)
+ Se(C)

ρat (C)
, (23)

where ρat is the atomic density. From experimental databases,
some deviations for this rule are documented [11,49]. How-
ever, the deviations mainly occur for light elements, such as
the condensed phases of organic polymers.

In Fig. 10, we test the adequacy of Eq. (23) for 3C-SiC
(zinc-blende structure). This case should be the simplest case
for the Bragg’s rule, due to the similarity between the crystals
considered here. All three crystals, Si, diamond, and 3C-SiC,
have a similar crystal structure (diamond or zinc blende), have
the same local environment, and have the same electronic
configuration. The Bragg’s rule indeed shows its efficacy for
the large velocity regime, v > 2 a.u. However, for low to
moderate velocities, the deviation between the Bragg’s rule
RESP of SiC and the ab initio RESP of SiC is as large as 15%.

This very simple test case sheds light on a significant
violation of the Bragg’s rule. It casts doubts about the
application of this rule of thumb for more complex cases,
for instance, when the formal charge varies (oxides), or when
the bonding changes (single or double bonds).

C. Is the structural phase effect vanishing?

The empirical Bragg’s rule also implies that the details
of the crystal structure do not influence much the RESP.
We propose to check that assumption for two prototypical
examples.

Silicon carbide can crystallize in many different phases,
named polytypes. The left-hand panel of Fig. 11 shows the
RESP for the 2H-SiC (wurzite) and 3C-SiC (zinc blende).
These two phases only differ through the stacking of the planes
in the (111) direction. The local environment is exactly the
same in the two structures. In order to ease the comparison
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FIG. 11. RESP of a proton in SiC (left-hand panel) and in carbon
(right-hand panel) within ALDA including the 2s2p electrons of Si.
3C-SiC and 2H-SiC phases are shown for silicon carbide, whereas
graphite and diamond phases are shown for carbon. Note that the
right-hand panel shows the density renormalized RESP so as to
compare two phases with different densities.

between the two, we have used an ideal wurzite structure
instead of the experimental structure and we have used a
hexagonal supercell of the cubic polytype with six atoms.
Finally, the difference in the RESP for the two phases appears
to be negligible in the left-hand panel of Fig. 11.

The phases of carbon are a more challenging example.
Indeed, the diamond phase of carbon involves tetrahedrally
coordinated atoms with sp3 hybridized electrons, whereas
the graphite phase is a layered crystal with sp2 hybridized
electrons. In these two structures, the nature of the bonding
is affected and the consequences on the RESP (normalized
by the density) are huge as shown in the right-hand panel of
Fig. 11. The increase in stopping power of graphite follows
the empirical trends highlighted in Ref. [50], which is named
the bond effect.

Summarizing, the RESP appears to be sensitive to the
details of the bonds, however, the long-range structure is
clearly not a relevant parameter, as demonstrated by the
different stacking patterns in SiC.

VI. CONCLUSION

In this study, we have developed a numerical approach
to calculate the RESP of periodic solids, within the linear-
response approach to TDDFT. We have produced high
quality stopping power curves with the assistance of an
extrapolation technique. We have shown the necessity of a
proper description of the core electrons and of the exchange
correlation within ALDA. On the basis of a comparison with

the time-propagation results of Ref. [22], we have evaluated
an upper limit for the nonlinear effects of 5% in aluminum.

Using the ab initio RESP, we have checked some empirical
rules of thumb that are commonly employed for the experimen-
tal interpretation or for the prediction with empirical codes,
such as SRIM [11]. Whereas the anisotropy of the RESP
in anisotropic materials can be safely ignored, the Bragg’s
additivity rule and the phase insensitivity cannot be taken for
granted.
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APPENDIX: DERIVATION OF THE LINDHARD FORMULA
FROM THE GENERAL CASE OF A PERIODIC CRYSTAL

The homogeneous electron gas is a specific case of a
periodic system. It is a periodic system in which all translations
are allowed.

Starting from Eq. (18) that involves discrete sums over q
and G, we go to the limit of a continuous reciprocal space:

Se(v) = 4πZ2
1

(2π )3v

∫
dQ Im[−ε−1(Q,Q · v)]

Q · v
Q2

, (A1)

where Q = q + G. Here we have used the fact that the
homogeneous electron gas is completely isotropic, i.e.,
ε−1

GG(q,ω) = ε−1(Q,ω). Equation (A1) precisely corresponds
to the equation found in Refs. [51,52].

Let us now introduce spherical coordinates with the z axis
along v. The integration over the azimuthal angle can be readily
performed:

Se(v) = Z2
1

πv

∫ ∞

0
dQ

∫ π

0
dθ sinθQv cosθ

× Im[−ε−1(Q,Qv cosθ )]. (A2)

Finally, we apply a change of variable ω = Qv cosθ to
obtain the Lindhard formula [9,10]:

SLindhard
e (v) = Z2

1

πv2

∫ ∞

0

dQ

Q

∫ Qv

−Qv

dω ωIm[−ε−1(Q,ω)].

(A3)

Sometimes, the parity of integrand is used [since ε−1(ω) is
causal] to limit the range of integration even further:

SLindhard
e (v) = 2Z2

1

πv2

∫ ∞

0

dQ

Q

∫ Qv

0
dω ωIm[−ε−1(Q,ω)].

(A4)
With this derivation we assess that our Eq. (18) is consistent

with the derivation of Lindhard and shows that our prefactor
which differs from the one in Ref. [16] is correct.
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