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Nernst and magnetothermal conductivity in a lattice model of Weyl fermions
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Weyl semimetals (WSMs) are topologically protected three-dimensional materials whose low-energy
excitations are linearly dispersing massless Dirac fermions, possessing a nontrivial Berry curvature. Using
semiclassical Boltzmann dynamics in the relaxation time approximation for a lattice model of time-reversal (TR)
symmetry broken WSMs, we compute both magnetic field dependent and anomalous contributions to the Nernst
coefficient. In addition to the magnetic field dependent Nernst response, which is present in both Dirac and Weyl
semimetals, we show that, contrary to previous reports, the TR-broken WSM also has an anomalous Nernst
response due to a nonvanishing Berry curvature. We also compute the thermal conductivities of a WSM in the
Nernst (∇T ⊥ B) and the longitudinal (∇T ‖ B) setup and confirm from our lattice model that in the parallel
setup, the Wiedemann-Franz law is violated between the longitudinal thermal and electrical conductivities due
to the chiral anomaly.
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I. INTRODUCTION

After the theoretical prediction of topological insulators,
and their subsequent experimental realization, the field of
topological condensed matter has grown manifold [1–9]. The
topological order manifested in these systems is not associated
with spontaneous breaking of a symmetry, but rather can be
described by a topological invariant which is insensitive to a
smooth deformation of the Hamiltonian. Usually the robust
topological protection is associated with a nonzero spectral
gap in the bulk of the system, and the presence of protected
zero energy surface states is regarded as the hallmark of a
nontrivial topological phase of matter. However, recently it has
been proposed that systems in three spatial dimensions, in the
presence of broken time-reversal (TR) and/or space-inversion
(SI) symmetry, can also be topologically protected even
without a bulk energy gap [10–21]. These are Weyl semimetals
(WSMs)—the nomenclature based on the Dirac/Weyl equation
which is used to describe their low-energy excitations [22].

A number of recent experiments have claimed to be able to
observe the Weyl semimetal phase in an inversion asymmetric
compound TaAs [23–25], and also in a three-dimensional
(3D) double gyroid photonic crystal [26], without breaking
TR. Another route which can result in the experimental
verification of this WSM phase is to first realize a 3D
Dirac semimetal and then break time-reversal symmetry by
applying a magnetic field, which will split a Dirac cone
into a pair of Weyl nodes. Na3Bi and Cd3As2 were recently
proposed to be Dirac semimetals [27,28], and also have
been confirmed experimentally by a series of experiments
[29–37]. In Bi1−xSbx for x ∼ 3–4% also the Dirac semimetal
phase has been predicted [38–40], and experimental signatures
of realizing a WSM phase by breaking TR have been
reported [41].

A simple WSM with broken time-reversal symmetry can
be described by a pair of linearly dispersing massless Dirac
fermions governed by the Hamiltonian H±(k) = ±�vF σ ·
(k − K±), where σ is the vector of Pauli spin matrices defined
in the space of two nondegenerate energy bands, vF is the
Fermi velocity, and K± are the two band touching points

separated from each other in momentum space by k0 =
K+ − K−. It is essential that k0 is nonzero to ensure that the
system breaks TR and is topologically nontrivial, in which case
H+ and H− describe two Weyl fermions of opposite chirality.
The two band touching Weyl points act as a source and a sink
(monopole and antimonopole) of Berry curvature, which acts
as a fictitious magnetic field on the electron wave function
in momentum space [42]. For k0 = 0, the two Weyl points
collapse onto each other giving rise to a topologically trivial
(i.e., with a zero Berry curvature flux) massless degenerate
Dirac fermion. The topological nature of a WSM leads to a host
of interesting physics, for example Berry curvature induced
anomalous transport, namely charge and thermal Hall conduc-
tivities [43–48], and open Fermi arcs on surfaces [11,49–55].
Anomalous transport phenomena, however, have been already
known to exist in a variety of systems which possess a
nontrivial distribution of the Berry curvature flux [56,57]. In
a WSM, more interestingly, each Weyl node is chiral, with
the chirality quantum number protected by a quantized flux of
the Berry curvature, also known as Chern flux, which results
in another peculiar phenomenon known as the chiral anomaly
(or the Adler-Bell-Jackiw anomaly) [10,16,58,59]. The chiral
anomaly concerns the nonconservation of chiral charge, i.e.,
an imbalance of charge between two distinct species of chiral
fermions in the presence of nonorthogonal applied electric
and magnetic fields. Several transport signatures have been
proposed to test a chiral anomaly such as negative longitudinal
magnetoresistance [16,21,60,61] and chiral magnetic effect
[16,62,63], the former of which has been recently claimed to
be observed in experiments [24,37,41,64].

A Dirac node can be split into two Weyl nodes by breaking
either the TR symmetry or SI symmetry. Figure 1 shows
a linearly dispersing Dirac node split into a pair of Weyl
nodes when TR symmetry is broken, and also shows the
energy-band spectrum of a lattice model of Weyl fermions
obtained by diagonalizing the Hamiltonian in Eq. (56). The
simple model of Weyl semimetal described in the previous
paragraph by H±(k) breaks TR, however it is also possible
to realize a Weyl system when TR is intact but inversion
symmetry is broken [14,65,66]. This implies that the system
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FIG. 1. Top: Linearized band dispersion for Dirac and Weyl
semimetals (kz is suppressed). (a) A doubly degenerate Dirac
semimetal. (b) Transition from a Dirac semimetal to a Weyl
semimetal (represented by a pair of Dirac cones separated by a
finite momentum) by breaking of time-reversal symmetry. Bottom:
Energy-band spectrum for the lattice model of Weyl fermions (kx

suppressed) described in Eq. (56). The two band touching points
occur at K± = (0,0, ± π/2).

must host more than one flavor of pairs of Weyl fermions for the
vector sum of k0 to vanish. In the SI broken Weyl semimetal,
because of TR symmetry there is no Berry curvature induced
anomalous charge or thermal Hall effect in the absence of an
external magnetic field. However, in the TR broken WSM,
because of a finite Berry curvature flux through any plane
intermediate between the Weyl nodes in the momentum space,
the anomalous charge and thermal Hall conductivities are
nonzero [13,44–46].

In this paper, we work with a TR broken phase of WSM and
consider its Nernst response. Experimentally, the Nernst effect
measures the transverse electrical response to a longitudinal
thermal gradient in the presence of a perpendicular magnetic
field. The Nernst effect has been used as an important
experimental probe in a number of physical systems such
as high-temperature cuprate superconductors [67–70], and
charge density waves [71,72]. Since the TR-broken WSM
has a nonzero anomalous Hall response (i.e., nonzero Hall
efffect induced by the Berry curvature even in the absence
of a magnetic field) it is expected that the anomalous Nernst
response will also be nonzero. This is because the anomalous

Hall conductivity σxy and the anomalous Peltier coefficient
αxy , which measures the transverse electrical current in
response to a longitudinal temperature gradient, are related

by the celebrated Mott relation, αab = −π2

3
k2
BT

e

∂σab

∂μ
. In turn,

a nonzero αxy implies an anomalous (zero field) Nernst
coefficient given by αxy/σxx . In recent work [45], however,
based on a linearized model of a TR-broken Weyl semimetal,
the anomalous Nernst response has been argued to be zero,
because a linearized Weyl Hamiltonian with unbounded (or
very high) ultraviolet cutoff of the Dirac spectrum produces
∂σxy/∂μ = 0. Here we show, from a lattice model of a
WSM (with the lattice regularization providing a physical
ultraviolet cutoff to the low-energy Dirac spectrum) that the
anomalous Peltier coefficient, and in turn the anomalous
Nernst coefficient, is finite and measurable in a physical
time-reversal breaking Weyl semimetal such as Bi1−xSbx .
In the main part of the paper, we use the semiclassical
Boltzmann equations in the relaxation time approximation in
the presence of a nonzero magnetic field and a Berry curvature,
and derive the thermoelectric and charge conductivity tensors
(both longitudinal and Hall) which we use to calculate both the
conventional (i.e., magnetic field dependent) and topological
(i.e., zero field) Nernst coefficients.

Additionally, we also investigate the thermal conductivity
of a WSM based on the Boltzmann equation approach.
Unlike earlier works which were based on a linearized
WSM model [45,46], we employ a lattice Bloch Hamiltonian.
With the Nernst experimental setup, i.e., the temperature
gradient ∇T applied perpendicular to the magnetic field
B, we find that the transverse magnetothermal conductivity
obeys the Wiedemann-Franz law [73] (i.e., the ratio of the
thermal and electrical conductivity is the Lorenz number L0,
both with and without the external magnetic field). In the
parallel setup (∇T ‖ B), however, there is an additional B2

dependence of the Lorenz number, thus violating the standard
Wiedemann-Franz law for quasiparticles in a Landau Fermi
liquid, arising from the chiral anomaly. Our results confirm
that the violation of the Wiedemann-Franz law between the
longitudinal magnetothermal and electrical conductivities [47]
persist in the physically more transparent lattice model and is
not an artifact of the linearized low-energy model.

This paper is organized as follows: In Sec. II, we discuss
the Boltzmann semiclassical approach to calculate the Nernst
response in a Weyl semimetal. We derive expressions for
both longitudinal and transverse charge (σab) and Peltier (αab)
conductivity tensors, taking into account perturbative electric
and magnetic fields, and a finite temperature gradient, for a
Hamiltonian with a nonvanishing Berry curvature. Though the
approach is general and can be applied for various configura-
tions, we will compute our expressions relevant for the Nernst
experimental setup. Section III concerns the Nernst response
in a linearly dispersing model of Dirac and Weyl fermions. We
compute the magnetic field dependent Nernst response for a
single Dirac node, and also for a pair of Weyl nodes which
have a nonvanishing flux of the Berry curvature. Additionally
Weyl fermions also exhibit an anomalous Nernst response
even at zero magnetic field when one imposes a physical
ultraviolet cutoff on the energy spectrum, and we show that this
imposition gives a nonzero Peltier coefficient αxy . Section IV
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concerns the lattice WSM model and its Nernst response. In
Sec. V, the magnetothermal conductivity is analyzed, and the
Wiedemann-Franz law is studied for orthogonal (∇T ⊥ B)
and parallel (∇T ‖ B) setups. We conclude in Sec. VI.

II. BOLTZMANN FORMALISM FOR NERNST RESPONSE
IN A LATTICE WEYL SEMIMETAL

Nernst effect measures the transverse electrical response
to a longitudinal thermal gradient in the presence of a finite
magnetic field and the absence of a charge current, i.e., Ey =
−ϑ dT/dx, where ϑ is defined to be the Nernst coefficient and
−dT /dx is the temperature gradient applied along the x axis.
The use of three conductivity tensors, σ̂ , α̂, and l̂, suffices to
relate the charge current J and thermal current Q to an applied
electric field and temperature gradient. We reserve the symbol
κ̂ for the thermal conductivity tensor which will be the focus of
Sec. V. We can write the following linear-response equation:(

J
Q

)
=

(
σ̂ α̂
ˆ̄α l̂

)(
E

−∇T

)
. (1)

The tensors ˆ̄α and α̂ are related to each other by Onsager’s
relation: ˆ̄α = T α̂. In the absence of charge current (J = 0), we
have E = σ̂−1α̂∇T . The Nernst coefficient ϑ can be derived
to be

ϑ = Ey

(−dT /dx)
= αxyσxx − αxxσxy

σ 2
xx + σ 2

xy

, (2)

which is a function of thermoelectric tensor αab and charge
conductivity tensor σab. We will evaluate αab and σab using
semiclassical Boltzmann treatment in the relaxation-time
approximation, accounting for an external magnetic field and
a finite Berry curvature.

A nonzero Berry curvature in a Bloch Hamiltonian acts like
a fictitious magnetic field in the momentum space [57], which
substantially modifies transport properties of the system,
giving rise to anomalous behavior. Anomalous transport due to
the Berry curvature has been crucial in understanding intrinsic
Hall and Nernst conductivity in ferromagnetic materials
[42,74–76]. The Berry curvature for a Bloch Hamiltonian
H (k) is defined to be �ka

= εabc∂kb
Ac(k), where A(k) is the

Berry connection given by A(k) = 〈uk|i∇k|uk〉, for a Bloch
eigenstate |uk〉. In the presence of Berry curvature �k, the
semiclassical equation of motion for an electron takes the
following form [42,77]:

ṙ = 1

�

∂ε(k)

∂k
+ ṗ

�
× �k, (3)

where k is the crystal momentum, ε(k) is the energy disper-
sion, and p = �k. The first term in Eq. (3) is the familiar
relation between semiclassical velocity ṙ and the band energy
dispersion ε(k). The second term is the anomalous transverse
velocity term originating from �(k). In the presence of
electric and magnetic fields we have the standard relation
ṗ = eE + eṙ × B. These two coupled equations for ṙ and ṗ
can be solved together to obtain [78,79]

ṙ = D(B,�k)

[
vk + e

�
(E × �k) + e

�
(vk · �k)B

]
, (4)

ṗ = D(B,�k)

[
eE + e

�
(vk × B) + e2

�
(E · B)�k

]
, (5)

where D(B,�k) = [1 + e(B · �k)/�]−1. D(B,�k) is also the
prefactor which modifies the invariant phase-space volume
dpdx → D(B,�k)dpdx, giving rise to a noncommutative
mechanical model [78], because the Poisson brackets of coor-
dinates is nonzero. For brevity of notation, we will sometimes
omit showing the explicit dependence of D(B,�(k)) on B and
�(k) and instead write just D. In Eqs. (4) and (5), we have also
defined vk = �

−1∂εk/∂k to be the band velocity. The second
term in Eq. (4) gives rise to anomalous transport perpendicular
to the applied electric field, while the third term gives rise to
chiral magnetic effect. The third term in Eq. (5) (proportional
to E · B) is the source of chiral anomaly, triggering negative
magnetoresistance. It has been shown recently that negative
magnetoresistance can be derived using the semiclassical
equations of motion employing Boltzmann transport [60].
Other recent works have also developed a modified Boltzmann
equation, taking into account Berry curvature and chiral
anomaly effects [45,46,79–81]. In these works a linearized
model of the WSM has been examined, i.e., a pair of Dirac
nodes topologically protected by chirality quantum numbers.

In this paper we solve the Boltzmann equation in the
presence of the Berry curvature and chiral anomaly terms for a
lattice model of a WSM. The steady-state Boltzmann equation
in the relaxation-time approximation is given by

(ṙ · ∇r + k̇ · ∇k)fk = −fk − feq

τ
, (6)

where τ is the scattering time, feq is the equilibrium
Fermi-Dirac distribution function, and fk is the distribution
function of the system in the presence of perturbations. The
scattering time τ can in general be a function of the crystal
momentum, i.e., τ = τ (k), but we shall treat it as independent
of momentum for simplicity.

We will first consider the case when B = 0 and derive the
longitudinal and anomalous Hall conductivities. The linear-
response relations between the charge current and the applied
fields dictate

Ja = σabEb + αab(−∇bT ). (7)

The charge current in the presence of an electric field and a
temperature gradient is given by [42]

J = − e

∫
[dk]

(
vk + e

�
E × �k

)
fk

+ kBe∇T

�
×

∫
[dk]�ksk. (8)

In the above expression, [dk] ≡ d3k
(2π)3 . The quantity sk =

−feq lnfeq − [(1 − feq)ln(1 − feq)] is entropy density for the
electron gas. The first term in Eq. (8) is the current in
response to an applied electric field E, also accounting for the
transverse anomalous velocity acquired by an electron wave
packet due to �(k). The second term is the anomalous response
to the temperature gradient ∇T , which can be obtained
using the semiclassical wave-packet methods taking into
account the orbital magnetization of the carriers arising from
the finite spread of the wave function [42]. It can also be derived
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by first calculating the transverse heat current in response to
an electric field and then using Onsager’s relation [82]. The
heat current Q takes the following form after accounting for
both normal and anomalous contributions [42,83–85]:

Q =
∫

[dk](εk − μ)vkfk + e

β�

∫
[dk](E × �k)sk

+ kB∇T

β�
×

∫
[dk]�k

(
π2

3
feq + β2(ε − μ)2feq

)

− kB∇T

β�
×

∫
[dk]�k

(
ln

(
1 + e−β(εk−μ)2)

+ 2Li2(1 − feq)
)
, (9)

where Li2(z) is the polylogarithmic function of order 2, which
is generally defined as

Lis(z) =
∞∑

k=1

zk

ks

for an arbitrary complex order s, for a complex argument
|z| < 1. The first term in Eq. (9) is the standard contribution to
the heat current in the absence of Berry curvature. The second
term is the Berry curvature mediated transverse response to
electric field E which can be understood by the following
simple argument: in the presence of the Berry curvature and
the electric field, the electron velocity acquires the additional
anomalous term eE × �k. Multiplying this velocity by the
entropy density of the electron gas, we obtain this contribution
to the transverse heat current [82]. From Eq. (1) we can
write the transverse response of J and Q on the applied
temperature gradient and electric field respectively as Jx =
αxy∇yT , and Qx = ᾱxyEy . Comparing the coefficients αxy

and ᾱxy from Eqs. (8) and (9), it is easy to note that they obey
Onsager’s relation, ᾱxy = T αxy , as expected. From Eq. (1),
the anomalous response Q on an applied temperature gradient
can be written as Qx = lxy∇yT . The quantity lxy in Eq. (1)
can be calculated as lxy = −k2

BT c2/�, where [84]

cn =
∫

[dk]�z

∫ ∞

ε−μ

dε(βε)n
∂feq

∂ε
. (10)

The energy integral in Eq. (10) reduces to the following for
n = 2 [84,85]:∫ ∞

ε−μ

dε(βε)2 ∂feq

∂ε

= π2

3
feq + β2(ε − μ)2feq

− (
ln

(
1 + e−β(εk−μ)2) + 2Li2(1 − feq)

)
. (11)

Equations (11) and (10) combined with lxy = −k2
BT c2/� give

the last two ∇T dependent terms in Eq. (9).
Keeping only linear order dependence on the applied field

E and ∇T , the following ansatz is assumed for the distribution
function, fk [86] which is a solution to the steady-state
Boltzmann equation [Eq. (6)]:

fk = feq + τ

(
−∂feq

∂ε

)
vk ·

(
−eE + ε − μ

T
(−∇T )

)
. (12)

We will further assume that the electric field and temperature
gradient have nonzero components only along the x direction.
Substituting for fk from Eq. (12) in Eq. (8) for the current
J, and comparing the resulting expression with Eq. (7), the
longitudinal components of the conductivity tensors σab and
αab can be easily read to be

σxx = e2
∫

[dk]v2
xτ

(
−∂feq

∂ε

)
, (13)

αxx = − e

T

∫
[dk]v2

xτ (ε − μ)

(
−∂feq

∂ε

)
, (14)

where vx ≡ �
−1∂εk/∂kx . The transverse components are

σyx = e2

�

∫
[dk]�feq, (15)

αyx = kBe

�

∫
[dk]�ksk, (16)

which are purely anomalous because we have assumed E and
∇T are applied along the x direction, and there is no magnetic
field.

We now discuss the case of a finite magnetic field. We
consider a particular configuration relevant for the experiments
measuring the Nernst coefficient, i.e., ∇T = ∇xT x̂, B =
Bẑ, and E = 0, although the approach will work for other
configurations also, like the parallel setup discussed in Sec. V.
The Boltzmann equation [Eq. (6)] takes the following form
after making substitutions for ṙ and ṗ from Eqs. (4) and (5):

vxτ∇xT
ε − μ

T

(
−∂feq

∂ε

)
+ eB

�

(
−vx

∂

∂ky

+ vy

∂

∂kx

)
fk

= − fk − feq

D(B,�k)τ
. (17)

The following ansatz is chosen for the distribution fk which
also accounts for the correction factor (�) due to a finite
magnetic field:

fk = feq −
(

Dτvx∇xT
ε − μ

T
− v · �

)(
−∂feq

∂ε

)
. (18)

The Boltzmann equation [Eq. (17)] thus becomes

eB

�

(
vy

∂

∂kx

− vx

∂

∂ky

)(
−D∇xT

ε − μ

T
vxτ + v · �

)

= −v · �

τ
. (19)

Imposing the condition that this equation must be valid for
all values of v, we find that �z = 0, and the equation can be
simplified to

eB∇xT
ε − μ

T
Dτ

(
vx

mxy

− vy

mxx

)
+ eB

(
vy�x

mxx

− vx�y

myy

)

= −vx�x

(
− eB

mxy

+ 1

Dτ

)
− vy�y

(
eB

mxy

+ 1

Dτ

)
. (20)
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In order to solve the above equation, we introduce complex variables V = vx + ivy and � = �x − i�y and rewrite the equation
in the following manner:

Re

[
eBτD∇xT

ε − μ

T
V

(
1

mxy

+ i

mxx

)]
= Re

[
V �

(
ieB

mxx

− 1

Dτ

)
+ eBV �∗

mxy

]
, (21)

where m−1
ij = �

−2∂2E(k)/∂ki∂kj is the inverse band-mass tensor and Re(z) stands for the real part of z. Equation (21) can be
solved for �:

�x = eBτD(B,�k)∇xT
ε − μ

T

[
vx

mxy
− vy

mxx

][− eBvy

mxx
+ eBvx

mxy
− vx

Dτ

] + [
vx

mxx
+ vy

mxy

][
eBvx

mxx
− eBvy

mxy
− vy

Dτ

]
[− eBvy

mxx
+ eBvx

mxy
− vx

Dτ

]2 + [
eBvx

mxx
− eBvy

mxy
− vy

Dτ

]2
,

(22)

�y = eBτD(B,�k)∇xT
ε − μ

T

[
vx

mxy
− vy

mxx

][− eBvy

mxy
+ eBvx

mxx
− vy

Dτ

] − [
vx

mxx
+ vy

mxy

][− eBvy

mxx
+ eBvx

mxy
− vx

Dτ

]
[− eBvy

mxx
+ eBvx

mxy
− vx

Dτ

]2 + [
eBvx

mxx
− eBvy

mxy
− vy

Dτ

]2
.

(23)

For convenience of notation, we rewrite �x and �y as �i =
τ∇xT

ε−μ

T
ci , incorporating into ci the remaining factors apart

from τ∇xT
ε−μ

T
of Eqs. (22) and (23). Using Eq. (18) and

the results for �x and �y , we can now explicitly write the
distribution function fk as

fk = feq −
[
τ∇xT

ε − μ

T

(
∂feq

∂ε

)]
[(cx − D)vx + cyvy].

(24)

The expression for the charge current J, in the presence of B
and �k, is also modified by the factor D(B,�k) [42,45], as
we pointed out earlier that D(B,�k) = [1 + e(B · �k)/�]−1 is
the multiplicative factor which alters the phase-space volume
locally,

J = −e

∫
[dk]D−1ṙf + kBe∇T

�
×

∫
[dk]�ksk. (25)

Substituting Eq. (24) in Eq. (25) and again comparing with the
linear-response relations in Eq. (1), the thermoelectric tensor
αij can be solved to

αxx = e

∫
[dk]v2

x

[
τ

ε − μ

T

(
−∂feq

∂ε

)
(cx − D)

]
, (26)

αyx = e

∫
[dk]

[
v2

ycy + (cx − D)vxvy

][
τ

ε − μ

T

(
−∂feq

∂ε

)]

+ kBe

�

∫
[dk]�zsk. (27)

The temperature dependence of the zero-field anomalous
contribution in Eq. (27) is hidden in the entropy density
sk of the electron gas. Similarly, the electrical conductivity
components (transverse and longitudinal) are obtained to be

σxx = e2
∫

[dk]v2
xτ

(
−∂feq

∂ε

)
(cx − D), (28)

σyx = e2
∫

[dk]
[
v2

ycy + vxvy(cx − D)
]
τ

(
−∂feq

∂ε

)

+ e2

�

∫
[dk]�zfeq . (29)

As a good check of our calculation we also recover the results
for σab and αab found in Ref. [45] where the tensorial nature of
mij is ignored and m = �μ/v2

F . The transverse components,
i.e., Eqs. (27) and (29), are a sum of two terms: the first term
captures the effect of a finite B which is further modified
by the Berry curvature �k, due to the factors cy , cx , and D

which are nontrivial functions of the Berry curvature. The first
terms in Eqs. (27) and (29) depend on the scattering time τ ,
and we call these “modified” B-dependent Hall conductivities
(because they are modified due to the Berry curvature). The
Berry curvature also alters the expressions for longitudinal
conductivities given in Eqs. (26) and (28) because of the factor
cx − D. In the limits when �k → 0, the factor cy → ωτ for
a quadratic band dispersion, up to linear order in B (where
ω = eB/m is the cyclotron frequency). In the same limit, the
factor cx − D → −1 up to zeroth order in B, thus yielding
the standard expression for σxx and αxx given in Eqs. (13)
and (14). In contrast, the second term in Eqs. (27) and (29),
which is Berry curvature dependent, persists in the absence
of a magnetic field, and is a purely anomalous contribution.
We shall roughly examine the limit in which the factor
D(B,�k) = [1 + e(B · �k)/�]−1 significantly deviates from
1. Defining k = 2πK/a, where a is the lattice constant, and
K is dimensionless, e(B · �k)/� = a2�K/l2

B , where lB is the
magnetic length and �K is dimensionless. For a magnetic field
of 1 T, a ∼ 2 Å, e(B · �k)/� ∼ 10−4�K . The Berry curvature
for a single linearly dispersing Weyl node centered at the origin
is �K = K/4|K|3, thus D(B,�k) ≈ 1 for low magnetic fields
and away from band touching point (K0 = 0) in the momentum
space (i.e., approximately |K| 
 0.01 in this case). This is ex-
pected, as qualitatively one understands that the effect of Berry
curvature peaks when the energy-band gap Eg → 0. When
the effects of Berry curvature can be neglected, the following
standard expressions are derived from Eqs. (27) and (29) for
Hall conductivities, keeping terms only up to linear order in B:

σxy = −e3τ 2B

�

∫
[dk]

(
∂f0

∂ε

)(
v2

x∂
2ε

∂k2
y

− vxvy∂
2ε

∂kx∂ky

)
, (30)

αxy = −e3τ 2B

T �

∫
[dk](ε − μ)

(
∂f0

∂ε

)(
v2

x∂
2ε

∂k2
y

− vxvy∂
2ε

∂kx∂ky

)
.

(31)
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In Sec. III, we will use the formula obtained for αab and σab

to calculate the Nernst coefficient in Eq. (2), first analytically
for a simple Dirac and Weyl linearized Hamiltonian, and then
numerically in Sec. IV, for a lattice model of Weyl fermions.

III. NERNST RESPONSE IN LINEARIZED MODEL DIRAC
AND WEYL SYSTEMS

In this section, we will concern ourselves with the Nernst
response of a linearized spectrum of Dirac and Weyl sys-
tems. We examine the magnetic field dependent transverse
conductivities (αxy and σxy) for a linearly dispersing Dirac
node, which are analytically tractable using the Boltzmann
approach. We repeat the procedure for a pair of Weyl nodes
taking into consideration the Berry flux modification of the
normal B-dependent conductivities.

A. Nernst effect in a linearized Dirac Hamiltonian

As a warmup, we discuss the Nernst response of a single
Dirac cone, with linear dispersion εk = ±�vF k, where k =√

k2
x + k2

y + k2
z . The density of states for a single Dirac/Weyl

node with unbounded linear dispersion (taking into account
spin degeneracy) is given by

ρ(E) = 1

π2

E2

(�vF )3
. (32)

The density of states vanishes at the Dirac node, which gives
rise to many unusual properties. Equation (28) for the longitu-
dinal conductivity, without the Berry curvature term, reduces
to Eq. (13), which can be employed to analytically deduce the
zero-temperature conductivity for a Dirac Hamiltonian to be

σxx = e2

6π2

τμ2

�3vF

, (33)

where we have assumed the scattering time τ to be a
phenomenological parameter independent of energy or mo-
mentum. For transverse magnetoconductivity, for a weak
magnetic field B = Bẑ, we derive the Hall conductivity σxy

for a linearized Dirac Hamiltonian using Eq. (30) to be

σxy = e3Bτ 2

6π2

vF μ

�4
. (34)

We note that (σxy/σxx) = ωτ = eBτ/m, where m is the band
mass near the Fermi surface given by m = �μ/v2

F . At low
temperatures, the thermoelectric tensor αab is related to the
derivative of σab via the Mott relation [73]

αab = −π2

3

k2
BT

e

∂σab

∂μ
. (35)

Combining the Mott relation with Eq. (2), the Nenrst coeffi-
cient becomes (when σxx 
 σxy)

ϑ = −π2

3

k2
BT

e

∂�H

∂μ
= −π2k2

BT
Bτv2

F

3�μ2
, (36)

where �H = σxy/σxx is the Hall angle. However Eq. (36) is
valid only when μ �= 0, and ϑ does not diverge for μ = 0 as
we shall see shortly.

The scattering time in Boltzmann conductivity is sensitive
to the type of impurities in the system. For neutral short-range

or pointlike impurities, the scattering time τs is given by [87]

1

τs

= nsV
2

0 k2
F

3π�2vF

, (37)

where ns is the density of the impurities, V0 is the strength
of the impurity potential, and kF is the Fermi wave vector.
Considering Thomas-Fermi (TF) screening, the scattering time
for long-range ionic impurities at zero temperature is given
by [87]

1

τc

= 4πα2nc

vF

k2
F

It (q0). (38)

In the above expression, nc is the density of charged impurities,
α = e2/κ�vF is the fine-structure constant, q0 = qTF/2kF ,
where qTF is the Thomas-Fermi wave vector, and It (x) =
(x2 + 1/2)ln(1 + 1/x2) − 1. The total scattering time is given
by Matthiesen’s rule,

1

τ
= 1

τs

+ 1

τc

. (39)

For a linear Dirac Hamiltonian, kF = μ/�vF , therefore the
scattering time expression takes the following form:

1

τc

= nc4πα2v3
F �It (q0)

μ2
, (40)

1

τs

= nsV
2

0 μ2

3π�3vF

. (41)

From Matthiesen’s rule, it is evident that the shorter time
scattering process (τs or τc) will dominate the carrier transport,
therefore near μ = 0, the scattering from ionic impurities
will primarily determine the conductivity, and for μ 
 0,
it is scattering from the neutral pointlike impurities that
govern charge transport. For an arbitrary value of μ, the
following expression for scattering time τ can be written, using
expressions in Eqs. (39)–(41):

1

τ
= 1

τ0

(
1

μ2
(1 + xμ4)

)
, (42)

where τ0 and x are constants depending on the coefficients of
μ2 and 1/μ2 in Eqs. (40) and (41), whose exact form is lengthy
and not illuminating for our discussion. Using this expression
for the total scattering time τ in Eq. (33), we obtain

σxx = e

6π2

τ0μ
4

vF �3(1 + xμ4)
. (43)

Similarly, from Eq. (34), we have

σxy = e2

6π2

eBvF τ 2
0 μ5

�4(1 + xμ4)2
. (44)

The Hall angle near μ = 0 reduces to

�H = eBμv2
F τ0/�, (45)

and thus from Eq. (36), the Nernst coefficient ϑ0 at μ = 0 is
given by

ϑ0 = −π2

3

k2
BT

e

eBv2
F τ0

�
. (46)
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FIG. 2. Left: Plot of the Nernst coefficient ϑ as a function of
μ/t for a single linearized Dirac node whose spectrum is bounded at
± 3.5t . The energy parameter t is chosen to be t = 0.1 eV. Here ϑ0

indicates the value of the Nernst coefficient at μ = 0. Right: Chosen
scattering time for the calculation in ps as given by Eq. (42).

Alternatively, the same conclusion can be reached by using the
equation for the Nernst coefficient, i.e., Eq. (2), and Eqs. (35),
(43), and (44), by substituting the exact expressions instead
of using the Mott relation. Far away from the Dirac point at
μ = 0, the charge conductivities are

σxx ∼ e2

6π2

τ0

vF �3
x

(
1 − 1

xμ4

)
, (47)

σxy ∼ e2

6π2

eBvF τ 2
0

�4x2μ3
. (48)

The Hall angle in this case no longer varies linearly with the
Fermi energy (as in the case near μ = 0), but is instead given
by �H = eBv2

F τ0/�x2μ3. The Nernst coefficient for μ 
 0
becomes

ϑ ∼ π2k2
BT

e

eBv2
F τ0

�x2μ4
, (49)

which approaches zero as μ is increased asymptotically, as ex-
pected from Fermi-liquid theory, where the Nernst coefficient
vanishes because of the Sondheimer cancellation [88].

The sign of the Nernst coefficient ϑ does not change with
the sign of μ and is thus an even function of μ. This is because
both σxyαxx and σxxαxy , which appear in the numerator of
the expression for ϑ in Eq. (2), do not depend on sgn(μ).
The plot in Fig. 2 displays the Nernst coefficient for a linear
Dirac node obtained using Eqs. (2), (13), (30), and (35). We
have provided a physical ultraviolet cutoff to the low-energy
spectrum at ε = ±3.5t with t = 0.1 eV, vF ∼ 105 m/s, T =
40 K, and B = 1 T. The chosen scattering time τ used for this
calculation, and its scaling with μ, is also shown in Fig. 2.
A regularized lattice model will however smoothly bound the
dispersion in the Brillouin zone. Section IV will be devoted to
evaluating the Nernst response of a WSM Hamiltonian defined
on a lattice.

B. Nernst effect for a pair of linearized Weyl fermions

A single Dirac node can be visualized as two Weyl nodes,
which are topologically protected by the chirality quantum
number of opposite sign, coinciding with each other in
energy-momentum space. Therefore the net flux of the Berry
curvature, and henceforth the net chirality, vanishes for a
single Dirac node, resulting in a zero anomalous response
for both the charge and thermoelectric conductivity. As a

FIG. 3. Plot of Berry curvature of a Weyl semimetal in the kz = 0
plane, where the node separation is k0 = (0.5,0.5,0). At the origin is
a Weyl node of positive chirality, which acts as a source of Berry flux
indicated by outgoing arrows, which flow towards k0, which acts as
a sink of Berry flux indicated by incoming arrows.

result, no anomalous Nernst response is also expected in a
linear Dirac Hamiltonian. Using an external perturbation, a
single band-touching point in a Dirac cone can be shifted into
a pair of isolated Weyl points possessing opposite chirality
quantum numbers. The external perturbation must break either
time-reversal symmetry or inversion symmetry, and also lifts
up the degeneracy of the Dirac spinor. Our discussion will
be centered upon the assumption that time-reversal symmetry
is violated, which can be achieved using magnetic field as a
perturbation. Also the Weyl points are assumed to occur at
the same energy, thus there is no chiral chemical potential.
One can also construct inversion asymmetric and TR invariant
models of a WSM, but they are not of interest to us here
because the anomalous Hall and Nernst response vanishes
as the vector sum k0 of the node separation becomes zero.
Figure 3 shows the Berry curvature plot of a Weyl semimetal
in the kz = 0 plane, where we assumed the node separation is
k0 = (0.5,0.5,0). At the origin is a Weyl node with chirality
quantum number +1 which acts as a source of Berry flux. At
k0 we have another node with chirality quantum number −1
which acts as a sink of Berry flux.

Let us first concern ourselves with the normal contribution
to the Nernst effect, i.e., due to an external magnetic field.
As we pointed out earlier, this contribution is further modified
due to effects of the Berry curvature, which are encoded in
the factors cx , cy , and D(B,�k), expressed in Eqs. (26)–(29).
Adding up the contribution from both the Weyl nodes and
keeping terms only up to linear order in the magnetic field
B = Bẑ (which is justified in the limit ωτ � 1), the zero-
temperature longitudinal electrical conductivity for the Weyl
system becomes

σxx = 2e2
∫

[dk]
v2

xτ

1 − (eB�z/�)2
δ(εk − μ)

= e2τμ6

4π2�3vF

∫ π

0

sin3 θdθ

μ4 − �2e2v4
F B2 cos2 θ

. (50)

For B ∼ 1 T, vF ∼ 105 m/s (which is the typical value for
vF in a WSM [11]), the factor �

2e2v4
F B2 ∼ 10−10. Thus away

from μ = 0, the expression reduces to Eq. (33) for a Dirac
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node, except up to an overall multiplicative factor of 2 (for
two nodes). At μ = 0, where the Fermi surface just reduces to
a pair of Weyl points, σxx = 0. From Eq. (29), we can calculate
the charge Hall conductivity σxy for a WSM (again up to linear
order in B):

σyx = 2e2
∫

[dk]
v2

yωτ 2[1 + (eB�z/�)2]

[1 − (eB�z/�)2]2
δ(εk − μ)

= e2ωτ 2

4π2�3vF

∫ π

0

sin3 θμ6
(
μ4 + �

2e2v4
F B2 cos2 θ

)
(
μ4 − �2e2v4

F B2 cos2 θ
)2 dθ.

(51)

Further away from μ = 0, the above expression also reduces
to Eq. (34) for the Dirac node, after making the substitution
for the cyclotron frequency ω = ev2

F B/�μ. At μ = 0, again
σxy = 0. We can therefore conclude that away from the band
touching point (which line up with the fine tuning of the
chemical potential μ = 0), and for typical values of the Fermi
velocity and weak magnetic field (such that the semiclassical
Boltzmann approach is still valid) the deviation of the normal
Nernst response due to the Berry curvature is negligible. In this
limit the normal contribution to the Nernst response roughly
reduces to the sum of individual contributions from the two
Dirac nodes. We have also verified this conclusion through
explicit numerical integration, even at finite temperatures,
using Eqs. (26)–(29).

A Weyl system also exhibits an anomalous Nernst response
even at zero field and thus the total Nernst signal must arise
from both contributions. The anomalous Hall conductivity σA

xy

for a time-reversal broken Weyl semimetal is nonzero and
varies linearly with the node separation k0 [13], which can be
obtained by integrating Eq. (29) with the correct regularization
that is consistent with the broken symmetries in the presence
of k0 [44],

σA
xy = −e2

�

k0

2π2
. (52)

The result in Eq. (52) suggests that the σA
xy remains unaltered

with temperature or for a finite μ. This result is strictly valid
only for an unbounded linear dispersion of Dirac fermions. The
Mott formula [Eq. (35)] then suggests that αA

xy = 0. If an upper
physical cutoff on the energy of a Dirac node is imposed then
αA

xy is nonzero, because the contributions from the partially
filled states generically will remain finite. Figure 4 shows the
plot for σA

xy as a function of node separation k0 for a linear
WSM with an upper energy cutoff, and also the plot for αA

xy

as a function of upper energy cutoff, obtained using Eqs. (27)
and (29). Lowering the cutoff results in a finite nonzero αxy ,
thus the anomalous Nernst response is also expected to be
nonzero.

It is not entirely evident from Eq. (2) that the anomalous
Nernst response will vanish for a linearized Weyl Hamiltonian
with an unbounded dispersion when αA

xy = 0, because of the
nonzero factor αxxσ

A
xy in the numerator of Eq. (2). However,

using the results from the previous subsection we have from
Eq. (43) that near μ → 0, σxx = σ 0

xxμ
4, and from the Mott

relation αxx = α0
xxμ

3, thus in the vicinity of the Dirac point,

FIG. 4. Left: Plot of anomalous αxy (in the units of μkBe/�) for
a bounded linear WSM with two bounded linear Dirac nodes vs the
upper energy cutoff EC (in units of 10 meV), for μ = −0.7t and
k0 = 0.25. As the upper energy cutoff for each bounded Dirac node
increases, αxy decreases eventually becoming close to zero. Right:
Anomalous Hall conductivity σxy as a function of the node separation
k0 for a bounded linear WSM, where σ 0

xy is the Hall conductivity when
k0 = 0.15.

the anomalous Nernst coefficient becomes

ϑ = σA
xyα

0
xxμ

3(
σ 0

xxμ
4
)2 + (

σA
xy

)2 . (53)

Two points can be noted from the above equation: the
anomalous Nernst coefficient vanishes at the Dirac point when
μ = 0, and the Nernst coefficient is an odd function of μ. The
evaluation of total Nernst signal will have contributions from
both normal and anomalous Hall conductivities, and therefore
an asymmetric behavior of the total Nernst coefficient about
μ = 0 is expected.

IV. NERNST EFFECT IN A LATTICE WEYL
HAMILTONIAN

The semimetallic state with Weyl-like fermionic excitations
has been recently realized in a series of experiments. In the in-
version asymmetric crystalline compound TaAs, experiments
have claimed to host topologically nontrivial Fermi arcs and
Weyl cones [23–25]. Another pathway of observing Weyl
fermions in condensed matter is to break TR symmetry by
applying a magnetic field in a 3D Dirac semimetal and split
each Dirac cone into a pair of Weyl nodes. 3D materials Na3Bi,
Cd3As2, and Bi1−xSbx with x ∼ 3–4% were recently proposed
[27,28,38–40], and also realized experimentally to be Dirac
semimetals [29–37,41]. This has paved the way to realizing a
TR broken WSM phase, which has been so far verified by a
few experimental signatures [24,37,41,64].

One can construct an effective Hamiltonian HD(k) describ-
ing electron dynamics near the symmetry points in momentum
space of a 3D Dirac semimetal,

HD(k) = vF (k · σ )τz + m(k)τx, (54)

where σ and τ are the vectors of Pauli spin matrices acting
on the spin and pseudospin degrees of freedom respectively.
The mass term m(k) can be tuned to vanish at isolated points
in the Brillouin zone by choosing a specific form of m(k) as
a function of crystal momentum k. The mass term m(k) can
be chosen to be m(k) = m + ρ cos(k), for |k| � 1, which can
be realized physically. For instance, at x ∼ 3–4% in Bi1−xSbx

the mass term can be tuned to zero at particular K values.
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This yields a degenerate linearly dispersing four-component
Dirac fermion described by Eq. (54) with m(K) = 0. A
perturbative Zeeman field coupled with the spin degree of
freedom described by HZ = gBzσz can now lift the degeneracy
of the Dirac fermion, with the energy spectrum given by [48]

E(k) = ±
√

v2
F

(
k2
x + k2

y

) + (gBz ± vF kz)2, (55)

where the band-touching point is shifted from the � point at
K = (0,0,0) to ±K0 = ±(0,0,gB/vF ), where g is the Landé g

factor. The direction along which the two nodes appear is along
the direction of the applied magnetic field. The separation k0

between the two Weyl nodes is magnetic field dependent and
is given by k0 = 2gB/vF . Now the Hamiltonian around each
K0 is that of a linearized Weyl fermion.

To discuss the Nernst response in a physical Weyl system,
it is advantageous to consider a lattice model of Weyl
fermions with the lattice regularization providing a physical
ultraviolet smooth cutoff to the low-energy Dirac spectrum,
because the linearized continuum theory for calculating the
anomalous Hall current at a finite density turns out to be
insufficient. For simplicity, instead of considering the band
Hamiltonian for Bi1−xSbx , we consider a prototype lattice
Hamiltonian for Weyl fermions described by Hlatt(k) in
Eq. (56), because it serves our purpose of discussing the Nernst
effect:

Hlatt(k) = t[sin(kxa)σx + sin(kyb)σy + cos(kzc)σz]

+ m[2 − cos(kxa) − cos(kyb)]σz ≡ Nk · σ ; (56)

Hlatt(k) supports a pair of Weyl fermions located at (0,0,

± π/2c), thus k0 = (0,0,π/c) when m > t/2. This lattice
model of Weyl fermions described in Eq. (56) can mimic the
experimentally relevant TR breaking WSM model described
in Eq. (54) and the paragraph below it, when we consider
an external magnetic field B = (0,0,πvF /g), as the node
separation is fixed from Eq. (56). This is however sufficient
to discuss Nernst effect in the lattice WSM. The energy-band
spectrum is shown in Fig. 1, obtained from diagonalizing the
Hamiltonian in Eq. (56). The anomalous Hall conductivity
σA

xy for this Hamiltonian is given by Eq. (15) at finite
temperature and chemical potential, which is plotted in Fig. 5.
At zero temperature and at μ = 0, σA

xy = e2/h. The ith
component of Berry curvature vector �k, for Hlatt(k) is
given by

�k,n,i = (−1)nεij l

Nk · [
∂Nk
∂kj

× ∂Nk
∂kl

]
4|Nk|3 . (57)

In Eq. (57), n stands for the band index. The anomalous
Peltier coefficient αA

xy , can be calculated using Eq. (16) and
is nonzero, as shown in Fig. 5, because αA

xy is no longer a
constant function of μ. Figure 5 also shows αA

xy calculated
using the Mott relation. This feature of nonzero αA

xy was
absent in the linearized model of a WSM. Figure 5 shows
the total Nernst response ϑ obtained by numerical calculation
using Eqs. (2) and (26)–(29) for this lattice model. We observe
that the normal Nernst coefficient is nonzero around μ = 0,
and is an even function of μ, which is consistent with the
findings of Sec. III. In Sec. III, we also pointed out that the
anomalous Nernst coefficient vanishes at μ = 0 and is an odd

FIG. 5. Results for the lattice WSM described by Eq. (56). Top
panel (left): In red is the anomalous contribution to αxy/α

m
xy obtained

using Eq. (16), and in blue is the anomalous contribution to αxy using
Mott relation [Eq. (35)] displaying a reasonable agreement; αm

x is the
value at μ = t . Top panel (right): Anomalous Hall conductivity as
a function of μ/t [again σ 0

xy is the value at μ = 0)] obtained using
Eq. (15). Middle panel (left): Normal Nernst response ϑN/ϑ0 as a
function of μ, where ϑ0 is the Nernst coefficient at μ = 0. Middle
panel (right): Anomalous Nernst response ϑA/ϑm as a function of μ,
where ϑm is the anomalous Nernst coefficient at μ = 0.3t . Bottom
panel (left): Total Nernst coefficient ϑT /ϑm including both normal
and anomalous response as a function of μ/t , where ϑm is the Nernst
coefficient at μ = 0.1t . A slight asymmetry for the total Nernst signal
about μ = 0 can be noted. Bottom panel (right): Chosen scattering
time in ps as a function of μ, as given by Eq. (42). The chosen
parameter values for this calculation are T = 20 K, t = 0.1 eV,
m = 0.6t .

function of μ, and thus the total Nernst response is expected to
show an asymmetric behavior about μ = 0. These conclusions
do no change for a lattice model, and a slight asymmetry
can be observed in the plot of the Nernst coefficient in
Fig. 5.

V. MAGNETOTHERMAL CONDUCTIVITY
FOR A WEYL SEMIMETAL

When a temperature gradient ∇T is applied across a sample,
a charge current J is developed. In the absence of a charge
current, from Eq. (1), we must have E = σ̂−1α̂∇T . Using this
expression for E in the formula for the thermal current Q
given in Eq. (1), we can write the following linear response

035116-9



GARGEE SHARMA, PALLAB GOSWAMI, AND SUMANTA TEWARI PHYSICAL REVIEW B 93, 035116 (2016)

relation:

Q = (T α̂σ̂−1α̂ − l̂)∇T = κ̂(−∇T ). (58)

κ̂ is the thermal conductivity tensor whose longitudinal and
Hall components can be written explicitly as

κxx = lxx − σxx

(
α2

xx − α2
xy

) + 2σxyαxxαxy

σ 2
xx − σ 2

xy

, (59)

κxy = lxy − σxy

(
α2

xy − α2
xx

) + 2σxxαxxαxy

σ 2
xx − σ 2

xy

. (60)

Usually l̂ is identified with κ̂ , however the second term in
Eqs. (59) and (60) is still nonzero, though small compared to
l̂. The Wiedemann-Franz law states that the ratio of thermal
conductivity κ and electrical conductivity σ for a metallic state
is proportional to temperature. The law holds for a generic
system as long as it can be termed as Landau Fermi liquid
where the quasiparticle description of electronic states remains
valid,

κij

σij

= L0T . (61)

Equation (61) states the Wiedemann-Franz law, where L0 is
the Lorenz number (L0 = π2k2

B/3e2).
In the absence of a magnetic field, the B-dependent

contribution to σxy is zero, and κxx = lxx − α2
xx/σxx will be

given by the standard expression of the longitudinal thermal
conductivity:

lxx =
∫

[dk]v2
x

[
τ

(ε − μ)2

T

(
−∂feq

∂ε

)]
. (62)

To discuss magnetothermal conductivity, we first examine the
case which is also relevant to the Nernst experimental setup
discussed in Secs. II– IV, i.e., ∇T = (∂T /∂x)x̂ and B = Bẑ.
The expressions for charge and thermoelectric conductivities
σ̂ and α̂ have been already obtained in Eqs. (26)–(29).
From Eqs. (9) and (1), we can read the conductivity tensor
l̂ as

lxx =
∫

[dk]v2
x

[
τ

(ε − μ)2

T

(
−∂feq

∂ε

)
(cx − D)

]
, (63)

lyx =
∫

[dk]
[
v2

ycy + vxvy(cx − D)
][

τ
(ε − μ)2

T

(
−∂feq

∂ε

)]

+ kB∇T

β�
×

∫
[dk]�k

(
π2

3
feq + β2(ε − μ)2feq

)

− kB∇T

β�
×

∫
[dk]�k[ln(1 + e−β(εk−μ))2

+ 2Li2(1 − feq)] (64)

The B-dependent longitudinal magnetothermal conductivity
lxx is further modified from Eq. (62) by the factor of (cx − D)
which is a function of the Berry curvature. The first term of
the transverse magnetothermal conductivity lyx in Eq. (64) is

FIG. 6. Top panel (left): Longitudinal magnetothermal conduc-
tivity κxx for the WSM lattice model as a function of μ/t , where
κm

xx is the value at μ = t . Top panel (right): Normal B-dependent
contribution to κN

xy , where κm
xy is the value at μ = t . Bottom panel

(left): Anomalous zero magnetic field contribution to κA
xy , where κ0

xy

is the value at μ = 0. In all the three figures, we have plotted in
red the thermal conductivity obtained using Eqs. (63) and (64), and
in blue using Wiedemann-Franz law, Eq. (61) (all three plots are
for transverse setup, i.e., ∇T ⊥ B). Bottom panel (right): Plot of
�L(B)/L0 = [L(B)/L0 − 1] as a function of applied magnetic field
B (here B0 = vF k0/2g) when ∇T ‖ B showing an additional B2

dependence of the Lorenz number arising from the chiral anomaly
term (� · v).

the standard B-dependent contribution. The second and the
third terms give the zero magnetic field anomalous thermal
conductivity. The Wiedemann-Franz law given in Eq. (61)
remains valid for κxx and κxy as shown in Fig. 6.

A more interesting scenario occurs when ∇T = (∂T /∂z)ẑ,
E = 0, B = Bẑ, i.e., when the applied temperature gradient is
parallel to the magnetic field.

Using Eqs. (4) and (5), the steady-state Boltzmann equation
[Eq. (6)] becomes[

ε − μ

T
∇zT

(
−∂feq

∂ε

)](
vz + e

�
(v · �k)

)

+ eB

�2

(
vy

∂

∂kx

− vx

∂

∂ky

)
fk = −fk − feq

Dτ
. (65)

The following ansatz is chosen for the distribution function
fk, which is a solution of Eq. (6),

fk − feq = − Dτ
ε − μ

T
∇zT

(
−∂feq

∂ε

)(
vz + e

�
B(v · �k)

)

+
(

−∂feq

∂ε

)
v · �. (66)

The correction factor � in the ansatz for fk is introduced to
account for a perturbative magnetic field B. Substituting for
fk given in Eq. (66) into the Boltzmann equation [Eq. (65)],
and imposing the condition that the equation should remain
valid for all values of v, we find that �z = 0. Introducing

035116-10



NERNST AND MAGNETOTHERMAL CONDUCTIVITY IN A . . . PHYSICAL REVIEW B 93, 035116 (2016)

V = vx + ivy and � = �x − i�y , the Boltzmann equation
can be rewritten in the following form:

Re

[
−iV

eBDτ (ε − μ)∇zT

T �2

(
− �

mxz

− er

)]

+ Re

[
V

eBDτ (ε − μ)∇zT

T �2

(
�

myz

+ es

)]

= −Re

(−ieBV �

mxx�
− eBV ∗�

�myx

+ V �

Dτ

)
, (67)

where

r = �x

mxx

+ �y

mxy

+ �z

mxz

, (68)

s = �x

mxy

+ �y

myy

+ �z

myz

. (69)

The factors �x and �y can be straightforwardly evaluated
from the real and imaginary parts of the complex vector � =
�x + i�y , which is a solution of Eq. (67). Now substituting
for the distribution function fk in Eq. (25), it is then possible
to deduce the conductivity tensor α̂ and l̂. The longitudinal
conductivities are obtained to be [45,46]

αzz = e2

T

∫
D[dk]

(
vz + eB

�
� · v

)2

τ (ε − μ)

(
−∂feq

∂ε

)
,

(70)

lzz =
∫

D[dk]

(
vz + eB

�
� · v

)2

τ

(
(ε − μ)2

T

)(
−∂feq

∂ε

)
.

(71)

In a similar fashion one can also calculate the charge
conductivity σzz,

σzz = e2
∫

D[dk]

(
vz + eB

�
� · v

)2

τ

(
−∂feq

∂ε

)
. (72)

The results in Eqs. (70)–(72) are of interest because of the B2

dependence arising from the chiral-anomaly term � · v. Note
that this term does not arise in the transverse setup, i.e., when
∇T and B are orthogonal to each other, and is thus linked to
the topological E · B term arising in axion electrodynamics of
WSMs. We can write the following simple relations for σzz

and κzz:

σzz = σ0 + αB2, (73)

κzz = κ0 + βB2, (74)

where σ0 and κ0 are the longitudinal conductivities for B = 0.
The coefficients α and β (not to be confused with β = 1/kBT )
account for the B2 dependence of σzz and κzz respectively.
They depend on the band structure of the Hamiltonain and
can be obtained by the k-space integrals defined in Eqs. (71)
and (72). The Lorenz number L in the Wiedemann-Franz
law given in Eq. (61) will be B dependent, and can be
written as

L(B) = κzz

T σzz

= L0 + �L(B) = κ0 + βB2

T (σ0 + αB2)
, (75)

�L(B) ≈ (βσ0 − ακ0)B2

T σ 2
0

= (βσ0 − αL0T σ0)B2

T σ 2
0

. (76)

�L(B) gives the B2 enhancement of the Lorenz number
from its standard value L0. Figure 6 displays the quadratic
behavior of the Lorenz number L(B) with the magnetic field
in the parallel setup for the lattice WSM Hamiltonian given in
Eq. (56), thus showing a violation of the Wiedemann-Franz
law. It is also worthwhile to point out the sign of �L in
Eq. (76), which will depend on the details of the band structure
of the Hamiltonian. The Lorenz number, which is the ratio
of thermal to electrical conductivity, will increase (decrease)
from its standard value if the B2 coefficient in the expression
for thermal conductivity is greater (lesser) than electrical
conductivity. In the present case, the sign of �L was found
to be positive. Similar conclusions on the sign of �L were
obtained in previous work [47].

VI. CONCLUSIONS

In this work we have studied the Nernst response of a
time-reversal broken Weyl semimetal. As a consequence of
nonzero anomalous Hall response in a Weyl system with
broken time-reversal symmetry, it is generally expected that
an anomalous Nernst conductivity is also observed. This is
because generally the Peltier coefficient which is related to the
first derivative of the charge conductivity with respect to the
chemical potential should not vanish. However, a linearized
Weyl fermionic system was found to have its anomalous
Hall conductivity independent of chemical potential and
temperature. Previous studies [45] have therefore argued
that the anomalous Peltier coefficient and the anomalous
Nernst response for a system of Weyl fermions should be
zero. We show this by considering a physical description
of a WSM which is cut off at higher energies by either
considering a bounded linearized Weyl Hamiltonian or a lattice
regularization providing a smooth physical ultraviolet cutoff
in a lattice model of Weyl fermions. This produces a nonzero
Peltier coefficient and thus a nonvanishing Nernst response
measurable experimentally.

Starting with the semiclassical Boltzmann approach to
linear transport in a system, we first derived the expressions
for charge and thermal conductivities in the presence of
a perturbative magnetic field and a temperature gradient
orthogonal to each other, for a generic band Hamiltonian which
has a nontrivial Berry curvature. The longitudinal conductivity
is modified from its standard expression because of Berry cur-
vature effects. The B-dependent transverse conductivity also
is modified by Berry curvature. Additionally, the transverse
conductivity also comprises a purely anomalous contribution
even at zero B field due to the Berry curvature. Thus the
total contribution to the Nernst signal comprises two parts:
a B-dependent response, and a purely anomalous response.
We derived analytic expressions for the Nernst coefficient
in a linearized Dirac and Weyl Hamiltonian, and have also
computed the total Nernst response for a lattice model of Weyl
fermions numerically. We also pointed out that B-dependent
normal Nernst signal is an even function of the chemical
potential, but the anomalous Nernst coefficient is an odd
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function. As a result one would expect a slight asymmetry
in the total Nernst response μ = 0, which is evident from our
numerical studies.

Additionally, we also examined the magnetothermal con-
ductivity of a WSM, and find that for the orthogonal
experimental setup, similar to the Nernst experiment, the
Wiedemann-Franz law holds for both longitudinal and Hall
conductivities (normal and anomalous). For the parallel setup
we find an additional B2 dependence of the Lorenz number
arising from the chiral anomaly term v · �. In a previous theo-
retical work [47], both of these conclusions have been reported
for a linearized WSM, and the violation of Wiedemann-Franz

law in the parallel setup has been ascribed to the role of
axion-electrodynamics because of the topological E · B term.
We verify this violation of Wiedemann-Franz law in a lattice
Hamiltonian, and it only depends on the presence of Berry
curvature in a system, and therefore it is not an artifact of a
linearized theory.
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