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Gate-induced gap in bilayer graphene suppressed by Coulomb repulsion

Jin-Rong Xu,1,2 Ze-Yi Song,1 Hai-Qing Lin,3 and Yu-Zhong Zhang1,3,*

1Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering,
Tongji University, Shanghai 200092, People’s Republic of China

2School of Mathematics and Physics, Anhui Jianzhu University, Hefei, Anhui 230601, People’s Republic of China
3Beijing Computational Science Research Center, Beijing 100084, People’s Republic of China

(Received 28 July 2015; revised manuscript received 23 December 2015; published 11 January 2016)

We investigate the effect of on-site Coulomb repulsion U on the band gap of the electrically gated bilayer
graphene by employing coherent potential approximation in the paramagnetic state, based on an ionic two-layer
Hubbard model. We find that, while either the on-site Coulomb repulsion U or the external perpendicular electric
field E alone will favor a gapped state in the bilayer graphene, competition between them will surprisingly lead
to a suppression of the gap amplitude. Our results can be applied to understand the discrepancies of gap size
reported from optical and transport measurements, as well as the puzzling features observed in angular resolved
photoemission spectroscopic study.
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I. INTRODUCTION

Bilayer graphene shares many of the interesting properties
of monolayer graphene [1,2], but provides even richer physics
due to the presence of massive chiral quasiparticles [3] and has
even wider applications due to the possibility of controlling an
infrared gap through doping and gating [4–8]. Although the
band gap has now been observed in a number of different
experiments [4–6,9–12], opening a possible way towards
realizing graphene-based nanoelectronic and nanophotonic
devices [13], the long-standing puzzle regarding the gap
amplitude has not been solved between optical and transport
measurements, i.e., while the gap observed in optics is up to
250 meV [10,11], that derived from transport measurements
is down to below 10 meV [5,12] upon applied electric field
perpendicular to the graphene plane.

Therefore, tremendous effort has been made in understand-
ing the discrepancy. Possible existences of midgap electronic
states generated by material imperfections, such as vacancy
[14], disorder [15,16] or structural distortions [17–19], edge
states [20,21], were extensively discussed. These hypotheses
are mainly based on a consensus that the low-energy behavior
of electrons in bilayer graphene is well described by the
tight-binding model without electronic interaction [2].

But in fact, bilayer graphene has already been predicted
to be unstable to the electronic interaction at half filling due
to a nonvanishing density of state present at the Fermi level
[1]. And the importance of electronic interaction has also
been widely noticed experimentally in the bilayer graphene
even in the absence of electric field [22–25]. Though a
number of theoretical studies have been made in searching the
ground state with various symmetry breakings [26–31], to our
knowledge, there is still a lack of a theoretical study concerning
the intrinsic and unavoidable correlation effects induced by
electronic interaction [32,33] on the gate-induced gap.

Since the inconsistency of gap size between optical and
transport measurements occurs irrespective of whether there
is interaction-driven symmetry breaking, in this paper, we
will investigate the effects of many-body correlation on the
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band gap by means of coherent potential approximation (CPA)
[34,35] in the paramagnetic state of gated Bernal stacked
bilayer graphene which can be qualitatively described by an
ionic two-layer Hubbard model. We will first present a phase
diagram of the model where an interaction-driven metallic state
appears between band and Mott insulating states. Then we find
that the gated bilayer graphene is located in the vicinity of the
phase boundary between the band insulator and the correlated
metal. The inconsistency of the gap size between optical and
transport measurements [2,5,10–12,36] can be resolved after
many-body correlation is taken into account. Furthermore,
our calculated spectrum reveals that exotic spectra observed
in angular resolved photoemission spectroscopic study [4,18]
can also be simply attributed to the many-body effect without
the need to assume lattice imperfection. Our study strongly
suggests that many-body correlation should not be neglected
in graphene-based systems.

Our paper is organized as follows. In Sec. II, we describe
the ionic two-layer Hubbard model and CPA method. In
Sec. III, we present our results, including phase diagram,
density of states, self-energies, optical conductivities, and
spectral functions. The relevance of our findings to various
experimental observations is also discussed in this section.
Finally, we do a summary in Sec. IV.

II. METHOD AND MODEL

The ionic two-layer Hubbard model used to describe the
gated bilayer graphene is given by H = H0 + Hint + Hext,

where

H0 = −γ0

∑
〈i,j〉m,σ

(a†
m,i,σ bm,j,σ + H.c.)

− γ1

∑
〈i,j〉σ

(a†
1,i,σ b2,j,σ + H.c.)

− γ3

∑
〈〈i,j〉〉σ

(a†
2,i,σ b1,j,σ + H.c.) (1)

denotes the free tight-binding model containing both intralayer
nearest-neighbor hopping γ0 as well as interlayer nearest
(next-nearest)-neighbor hopping γ1 (γ3) [1], as illustrated in
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FIG. 1. Phase diagram in the U/t − E plane. γ0 = t = 2.7 eV,
γ1 = 0.4 eV, and γ3 = 0.3 eV are fixed. An interaction-driven metallic
state is sandwiched between two gapped states. Inset (a) is the cartoon
for side view of bilayer graphene while inset (b) is the top view. The
hoppings, interaction, and gate field are also illustrated in inset (a).

Fig. 1(a). Here, am,i,σ (bm,i,σ ) is the annihilation operator
of an electron with spin σ at site i in sublattice A (B) of
layer m, and 〈i,j 〉 (〈〈i,j 〉〉) means the summation over nearest
(next-nearest)-neighbor sites.

Hint = U
∑
m,i

(nm,i,↑ − 1/2)(nm,i,↓ − 1/2) (2)

describes the local repulsive Coulomb interaction with
nm,i,σ = a

†
m,i,σ am,i,σ or b

†
m,i,σ bm,i,σ , depending on which

sublattice site i belongs to [37]. The effect of the applied
perpendicular electric field is parametrized by the potential
difference � between two layers, given by

Hext =
∑
m,i,σ

Vmnm,i,σ (3)

with Vm = −(−1)m�/2. Here, � = eEd where e is the charge
of an electron, d = 0.34 nm is the distance between two
layers, and E = Eext − 4πe

∑
i,σ (〈n2,i,σ 〉 − 〈n1,i,σ 〉)/S is the

screened electric field with Eext the external electric field,
S the area of each layer, and 〈nl,i,σ 〉 the average value of
operator nl,i,σ . Throughout the paper, γ0 = t = 2.7 eV is
chosen as the unit of energy, while γ1 and γ3 is fixed at 0.4
and 0.3 eV, respectively [1]. We are only interested in the
half-filled case which is corresponding to the charge neutral
point in experiments. The Hamiltonian without the Hubbard
term expressed in momentum space is given in Appendix A.

By applying the alloy analogy approach [38], the system
can be viewed as a disordered alloy where an electron
with spin σ moving on a given layer encounters either a
potential of U/2 at a site with a spin −σ present or −U/2
without, in addition to the external potential induced by
the electric field. Then, the model Hamiltonian is replaced
by a one-particle Hamiltonian with disorder potential which
is of the form H = H0 + Hext + ∑

m,i,σ Em,i,σ nm,i,σ where
Em,i,σ = U/2 with probability 〈nm,i,−σ 〉 or Em,i,σ = −U/2
with probability 1 − 〈nm,i,−σ 〉. The Green’s function corre-
sponding to the one-particle Hamiltonian has to be averaged
over all possible disorder configurations. The averaging cannot
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FIG. 2. (a) Total density of states (DOS) for three different values
of U/t at a fixed value of electric field E = 3.0 V/nm. The DOS at
U/t = 0 and E = 3.0 V/nm is shown in dotted line. It is found
that while the system is insulating at small or large value of U/t ,
it is metallic at intermediate value of U/t . The inset is a blowup
of DOS around the Fermi level (ω = 0). (b) Imaginary parts of
total self-energy for two different values of U/t at E = 3.0 V/nm
corresponding to �/t = 0.378.

be performed exactly. To solve the alloy problem, the CPA is
used [34,35]. The details of the CPA method applied to the
ionic two-layer Hubbard model are given in Appendix B.
Here, we should stress that, although the above treatment
itself has a few shortcomings [39], it remains valuable as
a computationally simple theory capable of capturing the
Mott metal-insulator transition of many-body systems. For
example, it successfully reproduces the phase diagram of an
ionic Hubbard model at half filling [40].

III. RESULTS AND DISCUSSION

Now, we will show that the Coulomb repulsion does not
always enhance the localization of electrons. On the contrary,
it may surprisingly delocalize the electrons in the presence of
gate field. Figure 1 presents the phase diagram in the U/t-E
plane. In the absence of electric field, on-site Coulomb re-
pulsion will enhance the localization of electrons as generally
expected [41] and at a critical value of U/t = 3.5, a single
metal-to-insulator transition occurs. If without interaction, any
finite gate field will impose asymmetry between layers which
also leads to a gapped state [1,2]. However, at a fixed value of
gate voltage, tuning on the on-site Coulomb repulsion will first
suppress, rather than enhance, the gapped state. As a result,
an intermediate interaction-induced metallic state appears
sandwiched between two insulating states. The consecutive
phase transitions from insulator to metal and then again to
insulator are evident by the evolution of density of state (DOS)
as a function of U/t . Figure 2(a) shows the DOS at a fixed value
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of gate field E = 3 V/nm, corresponding to �/t = 0.378,
for three different values of U/t = 0.5 (insulator), U/t = 3.5
(metal), and U/t = 5.0 (insulator).

The nature of the two insulating states can be identified
by analyzing the charge occupation number on each layer
(not shown) and the total self-energy, defined as �(ω) =∑

m,i �m,i(ω) where �m,i(ω) denotes the self-energy of site i

of layer m, in these two phases. It is found from Fig. 2(b) that,
while the imaginary part of the self-energy is negligibly small
at a small value of U/t = 0.5, it becomes significantly large at
a large value of U/t = 5.0 and exhibits a divergent behavior
at ω � ±�/2 where the two layers of bilayer graphene are
located. The divergence points to the fact that the scattering
rate or the effective mass of quasiparticles on each layer
becomes infinite due to the strong electronic correlation. As
the difference of charge occupation number between the two
layers almost vanishes at U/t = 5.0, the insulating state should
be dominated by the Mott physics. On the contrary, the charge
disproportionation between the layers at U/t = 0.5 remains
finite, while the imaginary part of the self-energy is negligibly
small, the insulator is a band insulator.

The interaction-driven metallic state at half filling can be
understood from the atomic limit. For U < eEd, the ground
state has two electrons on each site of layer 2 and none on
layer 1 due to the energy minimization, resulting in a band
insulator induced by the asymmetry of charge distribution
between layers. The band gap is of eEd − U . In the opposite
condition where U > eEd, each site on each layer is occupied
by one electron and a Mott insulator is formed with a gap
U − eEd. Therefore, in the atomic limit, we clearly see that
the interaction U suppresses the gap of the band insulator down
to zero, but only at a single point, U = eEd. This metallic
point obtained in the atomic limit will be broadened into a
metallic phase when hoppings are nonzero, as shown in our
phase diagram.

Next, we will show that the long-standing experimen-
tal discrepancy regarding the gap size [2,5,10–12,36] can
be resolved after the many-body correlation is involved.
Figure 3(a) exhibits the optical conductivities (see the defini-
tion in Appendix C) at a fixed electric field of E = 3.0 V/nm
for several values of U/t . Compared to the experimental results
at E = 3.0 V/nm [11], the calculated optical conductivity at
U/t = 1.1 shows a broad peak below 300 meV, as observed
in the experiment. However, due to the involvement of many-
body correlation, the peak position is not corresponding to the
band gap. The gap is only around 16 meV, corresponding
to the edge of the optical conductivity, which is much
smaller than the results derived from optical measurements
(∼250 meV) where the peak position is improperly taken as
the band gap [9–11] based on an assumption that electronic
correlation can be completely ignored. In fact, our result
is fairly consistent with the value obtained from transport
measurements (∼10 meV) [5,12] and magnetotransport study
[42], indicating that the discrepancy can be naturally ascribed
to the incorrect interpretations of optical data by the free
tight-binding model. Compared to the previous proposals
[14,15,17–21] where midgap states induced by the lattice
imperfection which were not detected in optical conductivity
have to be assumed, our explanation only requires proper
treatment of the inevitable correlation effect [32,33].
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FIG. 3. (a) Optical conductivities at a fixed value of E =
3.0 V/nm for a series of U/t . (b) Optical conductivities at a fixed
value of U/t = 1.1 for different perpendicular electric fields E.
(c) Peak position and the gap amplitudes in the optical conduc-
tivity as a function of electric field E at four different values of
U/t = 0.5,0.9,1.0,1.1.

In Fig. 3(b), we fixed the strength of on-site Coulomb
repulsion at U/t = 1.1 and tuned the perpendicular gate field
[43]. We find that the peak position also shows monotonous
gate tunability as observed in optical measurements [11]. But
the gap does not monotonously decrease with reduction of
gate field. From E = 3.0 to 1.4 V/nm at U/t = 1.1, the
gap is enhanced, while starting from E = 1.4 V/nm, the gap
shrinks as the gate field is reduced. As E is smaller than
around 0.5 V/nm, the system becomes metallic with a Drude
peak present at ω = 0. The metallic state may be detected
in gated bilayer graphene at the finite temperature region
where symmetry breakings are absent. A similar situation
also happens at different values of U/t as shown in Fig. 3(c)
where peak positions and gaps exhibit different behaviors as a
function of gate field.

Recently, an angular resolved photoemission spectroscopic
study pointed out that the observed spectrum may indicate a
coexistence of massive and massless Dirac fermions induced
by a possible imperfection of bilayer graphene [18], such
as a twist of the layers relative to each other which leads
to a coexistence of the Bernal stacked bilayer graphene and
the AA-stacking bilayer graphene where the two layers are
exactly aligned [19]. Here, we would like to demonstrate that
the puzzling features in the spectrum can be well understood
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FIG. 4. Spectral function along kx direction around K point in
momentum space. The Lorentzian broadening factor of 40 meV
is used in order to simulate the energy resolution in the angular
resolved photoemission spectroscopic study. The dotted and dashed
lines are the band dispersions of Bernal stacked and AA-stacking
bilayer graphene, respectively, at E = 1.6 V/nm and U/t = 0.

without assuming the lattice imperfection if the on-site
Coulomb repulsion is included. Figure 4 shows the spectral
function along kx direction around K point. Again, U/t = 1.1
is used. The electric field is set to be 1.6 V/nm according to the
experiment where the electric field is estimated from the gap
at valley K point [18]. We set a Lorentzian broadening factor
of 40 meV to simulate the energy resolution in the experiment
[18]. It is clear from Fig. 4 that the spectral function looks
like a superposition of the band structures coming from both
the Bernal stacked and the AA-stacking bilayer graphene.
Most importantly, prominent kinks observed experimentally
which appear below and above the Fermi level (or in other
words, the neutrality point [4,18]) are also present in the
calculated spectrum due to the finite scattering rate induced
by many-body correlation, without the need to assume equal
population of the AA-stacking and the Bernal stacked bilayer
graphene. Such a feature is distinct from the band structure of
a pure gated Bernal stacked bilayer graphene in the absence
of electronic correlations (see the dotted line in Fig. 4). The
vague AA-like bands between gaps, derived experimentally
[18], may be due to the finite experimental energy resolution
as well as the ignorance of suppression of gaps by the Coulomb
repulsion in experimental analysis.

Finally, we would like to mention that the suppression of
gate-induced band gaps by on-site Coulomb repulsion should
always happen even in the presence of symmetry breaking.
This can be first confirmed by a mean-field calculation within
the Hartree-Fock approximation. Moreover, based on results
of a similar model, called the ionic Hubbard model, given
by quantum Monte Carlo simulations [44], we argue that the
interaction-driven metallic state most probably persists even
in the presence of magnetism.

IV. SUMMARY

In conclusion, we use an ionic two-layer Hubbard model
to study the many-body effect on the gated Bernal stacked

bilayer graphene. We find that the on-site Coulomb repulsion
will suppress, rather than enhance, the gate-induced gap in
the bilayer graphene. By considering the on-site Coulomb
repulsion, the fundamental discrepancy of gap size between
transport and optical measurements is resolved and the
puzzling features observed in angular resolved photoemission
spectroscopic studies can be well understood, without the
assumption of lattice imperfection. However, in order to quan-
titatively describe all the experimental results, other effects like
nonlocal electronic correlations, electron-phonon couplings,
and disorders have to be involved. Our study indicates that
the intrinsic and unavoidable many-body correlation should
be seriously taken into account in graphene-based devices.
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APPENDIX A: HAMILTONIAN WITHOUT THE HUBBARD
TERM IN MOMENTUM SPACE

By applying the Fourier transformation

cm,i,σ = 1√
N

∑
k

eik·Ricm,k,σ , (A1)

the Hamiltonian without the Hubbard term in momentum space
reads

H0 + Hext =
∑
k,σ

�
†
k,σ Ĥσ (k)�k,σ , (A2)

where

Ĥσ (k) =

⎡
⎢⎣

�/2 −t0f (k) −γ1 0
−t0f

∗(k) �/2 0 −γ3f (k)
−γ1 0 −�/2 −t0f

∗(k)
0 −γ3f

∗(k) −t0f (k) −�/2

⎤
⎥⎦,

(A3)

and �
†
k,σ = (a†

1,k,σ ,b
†
1,k,σ ,b

†
2,k,σ ,a

†
2,k,σ ) with

f (k) =
3∑

j=1

e−ik·δj .

Here, δ1 = a/2(1,
√

3), δ2 = a/2(1, − √
3), δ3 = a(−1,0),

and a is the length of the C-C bond.

APPENDIX B: APPLICATION OF COHERENT
POTENTIAL APPROXIMATION TO IONIC

TWO-LAYER HUBBARD MODEL

Hubbard [38] viewed the electron correlation problem as a
disordered alloy where an electron with spin σ moving on a
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given layer encounters either a potential of U/2 at a site with a
spin −σ present or −U/2 without, in addition to the external
potential induced by the electric field.

So we can approximate the many-body Hamiltonian by the
one-electron Hamiltonian

H = H0 + Hext +
∑
m,i,σ

Em,i,σ nm,i,σ , (B1)

where the disorder potential is obtained by

Em,i,σ =
{
U/2 with probability 〈nm,i,−σ 〉
−U/2 with probability 1 − 〈nm,i,−σ 〉 . (B2)

Here 〈nm,i,σ 〉 is the average electron occupancy per site for
sublattice i with spin σ in layer m. The Green’s function cor-

responding to the one-particle Hamiltonian has to be averaged
over all possible disorder configurations. The averaging cannot
be performed exactly. To solve the alloy problem, the coherent
potential approximation (CPA) is used [34,35,45,46], where
the disorder potential Em,i,σ is replaced by a local complex
and energy-dependent self-energy.

Then, the Hamiltonian within CPA becomes

HCPA = H0 + Hext +
∑
m,i,σ

�m,i,σ nm,i,σ , (B3)

and the corresponding CPA Hamiltonian in momentum space
reads

HCPA =
∑
k,σ

�
†
k,σ ĤCPA

σ (k)�k,σ , (B4)

where

ĤCPA
σ (k) =

⎡
⎢⎢⎣

�
2 + �1Aσ −t0f (k) −γ1 0
−t0f

∗(k) �
2 + �1Bσ 0 −γ3f (k)

−γ1 0 −�
2 + �2Bσ −t0f

∗(k)
0 −γ3f

∗(k) −t0f (k) −�
2 + �2Aσ

⎤
⎥⎥⎦. (B5)

The CPA average Green’s function can be written in matrix form,

Ḡ(k,ω) =

⎡
⎢⎢⎣

ω − �
2 − �1A t0f (k) γ1 0

t0f
∗(k) ω − �

2 − �1B 0 γ3f (k)
γ1 0 ω + �

2 − �2B t0f
∗(k)

0 γ3f
∗(k) t0f (k) ω + �

2 − �2A

⎤
⎥⎥⎦

−1

, (B6)

where all spin indices have been omitted as we are interested
in the paramagnetic phase. In real space, we have

Ḡmi,mi(ω) = 1


BZ

∫

BZ

dkḠmi,mi(k,ω), (B7)

where the integral is over the first Brillouin zone of the
sublattice. Then a cavity Green’s function Gmi(ω) can be
obtained through the Dyson equation

G−1
mi (ω) = Ḡ−1

mi,mi(ω) + �mi(ω) (B8)

for sublattice (i = A,B) in each layer (m = 1,2), which
describes a medium with self-energy at a chosen site removed.
The cavity can now be filled by a real “impurity” with disorder
potential, resulting in an impurity Green’s function

G
γ

mi(ω) = [
G−1

mi (ω) − E
γ

m,i

]−1
(B9)

with impurity configurations of E
γ

m,i = {U/2 γ = +
−U/2 γ = − as defined

by Eq. (B2). The CPA requires〈
G

γ

mi(ω)
〉 = Ḡmi,mi(ω), (B10)

where the average is taken over the impurity configuration
probabilities defined by Eq. (B2).

Equations (B7) and (B10) need to be solved self-
consistently. Since electrons of bilayer graphene under the
electric field prefer to be on layer 2 for � > 0 and the condition
that

∑
m,i〈nm,i〉 = 4 at half filling must be satisfied, where

〈nm,i〉 = − 1

π

∫ 0

−∞
ImḠm,idω, (B11)

the resulting integrated DOS for each site should be consistent
with the average occupation number probabilities used in
Eq. (B10), so an extra loop of self-consistency should be added.

APPENDIX C: CALCULATION
OF OPTICAL CONDUCTIVITY

The optical conductivity is defined as [47,48]

σ (ω) = 2e2t2a2

v�2

∫ +∞

−∞
dεD(ε)

∫ +∞

−∞

dω
′

2π
ρ(ε,ω

′
)ρ(ε,ω

′ + ω)

× f (ω
′
) − f (ω

′ + ω)

ω
, (C1)

where e is the electron charge, a is the lattice constant, v is the
volume of the primitive cell, t is the nearest-neighbor hopping
energy, D(ε) is the free particle density of state, and

ρ(ε,ω) = − 1

π
ImG(ε,ω) = − 1

π
Im

1

ω + iη + μ − ε − �(ω)
,

(C2)

f (ω) = 1

eβω + 1
, (C3)

with β = 1
kT

. For T = 0 K, the optical conductivity can be
abbreviated as

σ (ω) = 2e2t2a2

v�2

∫ +∞

−∞
dεD(ε)

∫ 0

−ω

dω
′

2πω
ρ(ε,ω

′
)ρ(ε,ω

′ + ω).

(C4)
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M. I. Katsnelson, and S. Blügel, Phys. Rev. Lett. 106, 236805
(2011).

[33] M. Schüler, M. Rösner, T. O. Wehling, A. I. Lichtenstein, and
M. I. Katsnelson, Phys. Rev. Lett. 111, 036601 (2013).

[34] R. J. Elliot, J. A. Krumhansk, and P. L. Leath, Rev. Mod. Phys.
46, 465 (1974).

[35] M. Jarrell and H. R. Krishnamurthy, Phys. Rev. B 63, 125102
(2001).

[36] S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A.
Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate,
S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani,
M. Grioni, P. D. C. King, and P. Hofmann, Phys. Rev. Lett. 112,
257401 (2014).

[37] Please note that U denotes the strength of the on-site Coulomb
interaction between electrons. While it is insusceptible to the
gated electric field, the relative strength of U with respect to
hoppings can be tuned by stretching bilayer graphene within
a-b plane.

[38] J. Hubbard, Proc. R. Soc. London A 276, 238 (1963).
[39] F. Gebhard, The Mott Metal-Insulator Transition: Models and

Methods (Springer, New York, 1997).
[40] A. T. Hoang, J. Phys.: Condens. Matter 22, 095602

(2010).
[41] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039

(1998).
[42] A. Varlet, D. Bischoff, P. Simonet, K. Watanabe, T. Taniguchi,

Th. Ihn, K. Ensslin, M. Mucha-Kruczyński, and V. I. Falko,
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