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Excitation and dynamics in the extended Bose-Hubbard model
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The one-dimensional extended bosonic Hubbard model has been shown to exhibit a variety of phases ranging
from Mott insulator and superfluid to exotic supersolids and Haldane insulators depending on the filling and the
relative value of the contact (U ) and near neighbor (V ) interaction strengths. In this paper we use the density
matrix renormalization group and the time evolving block decimation numerical methods to study in detail the
dynamics and excitation spectra of this model in its various phases. In particular, we study in detail the behavior
of the charge and neutral gaps which characterize the Mott, charge density, and Haldane insulating phases. We
also show that in addition to the gapless modes at k = 0, the supersolid phase exhibits gapless modes at a finite
k which depends on the filling.
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I. INTRODUCTION

The bosonic Hubbard model (BHM) has continued to
attract interest since its introduction by Fisher et al. [1].
This interest stems from its use to understand many physical
phenomena, such as the effect of disorder on superfluids
and the appearance of the compressible Bose glass phase
[1], quantum phase transitions between strongly correlated
exotic phases, etc. Interest in the BHM intensified with the
experimental realization of Bose-Einstein condensates and the
ability to load them in optical lattices [2]. Under experimen-
tally realizable conditions, these systems are described by the
BHM and its extensions [3] with highly tunable parameters
and in one, two, and three dimensions which makes them ideal
for studying quantum phase transitions and exotic phases in
strongly correlated systems.

Increasingly, over the last several years, the physics of
strongly correlated quantum systems has focused on the
existence and properties of unconventional phases and phase
transitions. In addition to well studied Mott insulating behavior
caused by strong on-site repulsion at commensurate filling,
extensive quantum Monte Carlo (QMC) simulations have
shown that a strong enough near neighbor repulsion can lead to
insulating incompressible density wave order (CDW) at integer
and half-odd integer fillings. Topological phases, such as the
Haldane insulator, which is a gapped phase characterized by a
nonlocal (string) order parameter [4,5], can be also found in the
extended BHM [6–8] in one dimension (1D). Finally, doping
these phases can lead to phase separation or to supersolid (SS)
phases [9–22].

Even though the phase diagram of the extended BHM is now
well understood, the excitation spectra of the various ground
states have been less studied [23–27], essentially because
the numerical methods providing the ground state properties,
such as exact diagonalization or QMC, become limited in the
dynamical domain. More recently, for quasi-1D systems, the
extension of the density matrix renormalization group method
(DMRG) to the time domain or, equivalently, the time-evolving

block decimation method (TEBD) have proved to be extremely
successful in probing the dynamical properties of the system,
thereby providing reliable excitation spectrum [28–30]. In this
paper we extend our work in [8,9] to study the excitation
spectrum of the one-dimensional extended BHM in different
phases, namely the Mott insulating phase (MI), the Haldane
insulating phase (HI), the charge density wave phase (CDW),
and the supersolid phase (SS).

The paper is organized as follows. In Sec. II we present
the model and the various methods to compute the ground
state properties and excitation spectrum. In Sec. III we present
the dependence of the dynamical structure factor on the near
neighbor repulsion V at fixed filling n = 1 and fixed value of
the contact repulsion U and hopping t . The spectra obtained in
the insulating phases share some qualitative features with other
results obtained either in slightly different systems [23,25,26]
or with different methods, for example based on effective
theory [27]. In Sec. IV we study the dynamical structure factor
in the SS phase for different fillings and explain its main prop-
erties using a mapping of the extended BHM to the Heisenberg
model for a spin-1/2 chain in a finite magnetic field. In addi-
tion, we describe the evolution of the spectrum across the SS-
SF transition. In Sec. V we discuss the qualitative differences
found in the dynamical structure factor in the phase which is
obtained by underdoping the half-filled CDW and in the SS
phase. A summary of results and conclusions is in Sec. VI.

II. MODEL AND METHODS

A. The model Hamiltonian

The one-dimensional extended BHM we shall study is
described by the Hamiltonian

H = −t
∑

i

(a†
i ai+1 + a

†
i+1ai ) + U

2

∑
i

ni(ni − 1)

+V
∑

i

nini+1. (1)
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The sum over i extends over the L sites of the lattice, periodic
boundary conditions were used in the QMC simulations [31],
and open conditions in the DMRG and the TEBD simulations.
The spacing a is set to unity and sets the length scale. The
on-site repulsive interaction energy U is put equal to unity and
sets the energy scale. The time scale being given by �/U is
also put equal to unity. The operator ai (a†

i ) destroys (creates)
a boson on site i, ni = a

†
i ai is the number operator on site

i, t is the hopping amplitude, and V is the near neighbor
repulsive interaction parameter. Since we will typically study
the system in the canonical ensemble, we did not include a
chemical potential term in H .

The charge gap is given by

�c(n) = μ(n) − μ(n − 1) (2)

= E0(n + 1) + E0(n − 1) − 2E0(n), (3)

where the chemical potential is given by μ(n) = E0(n + 1) −
E0(n) and E0(n) is the ground state energy of the system
with n particles and is obtained both with QMC and DMRG.
The neutral gap �n is obtained using DMRG by targeting
the lowest excitation with the same number of bosons. For
the CDW and HI phases, the chemical potentials at both ends
are set to (opposite) large enough values, when using DMRG,
such that the ground state degeneracy and the low energy edge
excitations are lifted [6,8,24,32].

For a bosonic filling n̄ close to unity, the Bose-Hubbard
model can be reasonably approximated by the AF spin-1
Heisenberg model:

HS =
∑

i

J
(
Sx

i Sx
i+1 + S

y

i S
y

i+1

) + λSz
i S

z
i+1 + D

(
Sz

i

)2
, (4)

where λ is the axial anisotropy and D is the ion anisotropy.
One has the following mapping between the parameters [7]:
J = −t n̄, λ = V , and D = U/2.

B. Time evolving block decimation

As mentioned above, the excitation spectra are obtained
using the TEBD, first in imaginary time to obtain the ground
state, then in real time to compute the density-density correla-
tion function. In each case, we have used a number preserving
algorithm. We have checked that the ground state properties
(energy, site density, double occupancy, etc.) obtained with
the TEBD exactly match the properties of the ground state
obtained from the DMRG, using the ALPS library [30]. The
space and time correlation functions 〈Ai(T )Bj 〉, where 〈· · · 〉
is the ground state average and where Ai(T ) is the time
evolution of the operator Ai in the Heisenberg picture, have
been obtained by writing

〈Ai(T )Bj 〉 = eiEGST 〈GS|Aie
−iHT Bj |GS〉, (5)

where EGS is the ground state energy. Therefore, computing
the correlation function can be done as follows:

(1) From the matrix product state (MPS) representation of
the ground state |GS〉, one computes the MPS of the initial
state |�(0)〉 = Bj |GS〉.

(2) The state |�(0)〉 is evolved using the real time TEBD,
providing the MPS of |�(T )〉, and thereby allowing the
computation of the correlation function as 〈GS|Ai |�(T )〉.

In what follows, we focus on the density-density correla-
tion, i.e., Ai = Bi = ni − 〈ni〉, more precisely, the initial state
consists of creating a density excitation in the middle of the
chain: Bj |GS〉 with j = L/2. We then compute 〈Ai(T )Bj 〉
for all sites and times T up to 150, with a time step equal to
0.1 (a smaller timestep was actually used for the propagation).
Finally, the dynamical structure factor S(k,ω) is computed
from the Fourier transform of the density-density correlation
with respect to i-j and T . In order to smooth out oscillations
caused by the finite time window, we actually compute the
Fourier transform of 〈Ai(T )Bj 〉 exp (−4T 2/T 2

max).

III. MOTT-HALDANE-CDW TRANSITIONS

As explained in the Introduction, the excitation spectra
shown in this section share some qualitative features with other
results obtained either in slightly different systems [23,25,26]
or with different methods, for example based on effective
theory [27]. The qualitative description of the different phases
is based on the Heisenberg model Eq. (4). More precisely,
the phases are characterized by the values of the string order
parameters:

Oα = lim
|i−j |→∞

〈
Sα

i eiπ
∑j−1

p=i+1 Sα
p Sα

j

〉
, (6)

characterizing a loose antiferromagnetic order along the dif-
ferent axes α = x,y,z. They are associated with an underlying
nonlocal discrete Z2 ⊗ Z2 symmetry of the Heisenberg model,
Eq. (4) [33,34]. In the large-D phase (the MI state for bosons),
the Oα vanish. In the Haldane phase, the two discrete Z2

symmetries are broken, resulting in nonvanishing string order
Oα . Finally, in the Ising phase (the CDW for bosons), only
the Z2 symmetry along the z axis is broken such that only the
string order Oz is nonvanishing. Note that in that phase, the
string order and the antiferromagnetic order (the CDW order
for bosons) are equivalent [35–37].

The lowest elementary excitations from the ground state
(ka = 0, Sz = 0) are part of a triplet, one neutral ε(0)(k) (δN =
Sz = 0,) and two charge ones ε(±)(k) (δN = Sz = ±1) [23,38],
where δN corresponds to change in the total number of bosons.
In each sector, one defines a gap which corresponds to the
minimum of the elementary excitations over all k values: G(0)

and G(±).
The minima are located either at ka = 0 or ka = π . From

linear response theory, the structure factor reads

S(k,ω) ∝
∑
m

|〈k,m|δn̂|GS〉|2
ω + iη + EGS − Ek,m

, (7)

where |k,m〉 denotes the different excited states of H for a
given momentum k, and Ek,m is the corresponding energy.
For single excitations, one simply has Ek,m = ε(m)(k). Doubly
excited states for fixed k are made of two single excita-
tions: |q,m; k − q,m′〉, corresponding to an energy ε(m)(q) +
ε(m′)(k − q).

By definition, the charge gap of the system is �c =
G(+) + G(−), i.e., the minimum energy for adding a particle
plus the minimum energy for removing a particle (increasing
or decreasing Sz, in the Heisenberg model). The neutral
gap corresponds to the minimum of either the elementary
neutral excitations, i.e., G(0), or of ε(+)(k − q) + ε(−)(q), i.e.,
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FIG. 1. Mott-Haldane-CDW transitions at fixed t/U = 0.25 and
filling n = 1. The data are from Ref. [9]. For values V � 0.58U ,
the system is in the Mott phase; the Haldane phase occurs when
0.58U � V � 0.82U , whereas for 0.82U � V , the system is in the
CDW phase. Around VC ≈ 0.75U , the neutral and charge gaps start
to differ, indicating that G(0) < G(+) + G(−): the gap for the single
particle neutral excitations is smaller than the gap for the two particle
excitations. The fact that only the neutral gap vanishes at the HI-CDW
transition is a signature that the string order Oz along the z axis
remains finite, where Ox and Oy orders vanish.

a combination of two charge excitations. Since the minimum
of both the elementary charge excitation ε(±)(q) is attained
at either q = 0 or q = π , the minimum of the two-particle
excitation necessarily takes place at k = 0 and has the value
G(+) + G(−), and corresponds then to the lower bound of a
two-particle continuum. In short, the neutral gap value is given
by the minimum of G(0) and G(+) + G(−).

It is well known that in the Haldane phase, the neutral
gap changes from one type to the other [6,23,38] and is
emphasized in Fig. 1, where around VC ≈ 0.75U the neutral
and the charge gaps start having different values. For lower V

values, one has �n = �c = G(+) + G(−), whereas for larger
V values, one has G(0) = �n < �c = G(+) + G(−). This
results from the fact that, in the Haldane phase, the elementary
excitations are all gapped, with a minimum occurring at
ka = π [23,25,26,38]. For a fixed value of U , corresponding
to a fixed value of the ion anisotropy D in the corresponding
spin Hamiltonian, G(±) increases with increasing V (i.e.,
λ), whereas G(0) decreases. This can be understood by
starting at the Heisenberg point (D = 0, λ = J ), where,
due to SU(2) invariance of the spin Hamiltonian, all single
particle excitation energies are the same, so that G(0) = G(±).
Increasing the ion anisotropy D, i.e., going toward the Mott
phase (or decreasing λ), gives rise to a smaller in-plane gap
(i.e., the elementary charge gap) G(±) < G(0).

This evolution of the neutral and charge gaps can be seen in
the behavior of the structure factor S(k,ω). We emphasize
that even though the structure factor S(k,ω) is a neutral
excitation, i.e., conserves the total number of bosons, it also
couples to the two-particle continuum composed of elementary
charge excitations ε(+)(k − q) + ε(−)(q). As explained above,
in the limit k → 0, the minimum energy corresponds to
the charge gap �c = G(+) + G(−), such that even if we
expect S(k,ω) to vanish at ka = 0, the value for �c can

FIG. 2. TEBD excitation spectra. Top: V/U = 0.4, t/U = 0.25
MI phase. The gap at ka = π is much larger than the gap at ka = 0.
�c = �n = S(k → 0,ω). The white dashed line in the right panel
shows the value of the gap (small but nonvanishing). Bottom: V/U =
0.58, t/U = 0.25 at the MI-HI transition. The excitations are almost
gapless near ka = 0, whereas the excitation is clearly gapped at ka =
π . See text.

be obtained by extrapolating the behavior of S(k,ω) around
ka = 0.

In the Mott phase, top Fig. 2, one can clearly see that the gap
at ka = π is much larger than the gap at ka = 0. Note that the
gap ka = π differs from G(0), since, in the MI phase, ε(0)(k)
is minimum at ka = 0 and maximum at ka = π . The neutral
and the charge gap have the same value G(+) + G(−), which
can be obtained from S(k,ω) by extrapolating the gap value to
ka = 0. At the Mott-Haldane transition, bottom Fig. 2, S(k,ω)
exhibits (almost) gapless excitation around ka = 0, whereas
the excitation is clearly gapped at ka = π . Since the transition
corresponds to breaking both hidden Z2 symmetries, both the
neutral and the charge gaps vanish, corresponding to vanishing
elementary charge excitations gap G(±), but a finite elementary
neutral excitation gap G(0).

Inside the Haldane phase, but for a value V < Vc, top
Fig. 3, we see that the gap at ka = π , i.e., G(0), has decreased,
whereas the gap at ka = 0, i.e., �n = �c = G(+) + G(−), is
nonvanishing. At the value V ≈ Vc, middle Fig. 3, the gap at
ka = π , G(0), has almost the same value as the gap at ka = 0,
G(+) + G(−). When V > Vc, bottom Fig. 3, we see that one
is now in the opposite situation: �n = G(0) is clearly smaller
than �c = G(+) + G(−).

At the transition between the Haldane phase and the charge
density wave phase, top Fig. 4, �n = G(0) vanishes while
the charge gap at ka = 0, G(+) + G(−) remains finite. This
corresponds to the fact that across the transition, the hidden
Z2 symmetry along the z axis remains broken, whereas the
hidden Z2 symmetry along in the XY plane is restored. Since
the string order Oz is broken by charge excitations but left
invariant under neutral excitations, i.e., commutes with the Sz

i

operators, only the charge gap is protected by the finite value of
the order Oz and remains finite at the transition. On the other
hand, since the string order Ox , which is broken by neutral
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FIG. 3. TEBD excitation spectra inside the HI phase. Top:
V/U = 0.7, t/U = 0.25, the gap at ka = π , i.e., G(0), decreased
while the gap at ka = 0 is nonvanishing, �n = �c = G(+) + G(−) 
=
0. The white dashed line gives the value of the gap. Middle:
V/U = 0.75, t/U = 0.25 inside the HI phase at the symmetric point.
The gap at ka = π , G(0), has the same value as the gap at ka = 0,
G(+) + G(−), indicated by the white dashed line. Bottom: V/U =
0.79, t/U = 0.25 inside the HI phase. The gap at ka = π , �n = G(0),
is smaller than the charge gap at ka = 0, �c = G(+) + G(−). The
white dashed line in the left plot corresponds �n = G(0), whereas, in
the right plot, it corresponds to �c = G(+) + G(−).

FIG. 4. TEBD excitation spectra. Top: V/U = 0.82, t/U = 0.25
at the HI-CDW transition, At ka = π , �n = G(0) = 0, whereas �c =
G(+) + G(−) at ka = 0 remains finite and is given by the white dashed
line in the right plot. Bottom: V/U = 0.84, t/U = 0.25 in the CDW
phase, the neutral gap at ka = π is finite, but has smaller value than
the charge gap: �n = G(0) < G(+) + G(−) = �c.

−1.0 −0.5 0.0 0.5 1.0
ka/π

0.0

0.5

1.0

1.5

2.0

2.5

ω

−1.0 −0.5 0.0 0.5 1.0
ka/π

0.0

0.5

1.0

1.5

2.0

2.5

ω
FIG. 5. Excitation spectra obtained when adding a boson to the

system, i.e., corresponding to the operators Ai = bi and Bj = b
†
j in

Eq. (5). In both plots, the vertical offset corresponds to the chemical
potential μ+ for adding a boson. The parameters for the top plot are
the same as in Fig. 2 (top panels), i.e., the Mott phase. One clearly
see that the minimum of the charge excitation is obtained at ka = 0,
the value at ka = π , being much larger. The bottom plot corresponds
to bottom panels Fig. 3, i.e., the Haldane phase where the neutral
and the charge gap are different. The lowest excitation occurs at
ka = π . Around ka = 0, one has a two-particle continuum, made of
one neutral excitation and one charge excitation.

excitations (i.e., applying Sz
i ), vanishes at the transition, the

neutral gap has to close at the transition.
Finally, in the CDW phase, bottom Fig. 4, both the neutral

and the charge gap increase, but still having �n = G(0) <

G(+) + G(−) = �c.
Finally, in Fig. 5 we show the excitation spectrum when

adding a boson to the system, i.e., corresponding to the
operators Ai = bi and Bj = b

†
j in Eq. (5). In both plots, the

large vertical offset corresponds to the chemical potential for
adding a boson μ+. By definition, the value of the charge gap
is μ+ − μ−, where μ− is the chemical potential for removing a
boson. Therefore, the minimum of the excitation spectrum can
be written μ̄ + �c/2, where μ̄ = (μ+ + μ−)/2 is the average
chemical potential. The parameters for the top plot are the
same as in Fig. 2 (top panels), i.e., the Mott phase. One clearly
sees that the minimum of the charge excitation is obtained at
ka = 0, the value at ka = π being much larger. The bottom
plot corresponds to bottom panels Fig. 3, i.e., the Haldane
phase where the neutral and charge gaps are different. The
minimum of the excitation occurs at ka = π , whereas around
ka = 0 one has a two-particle continuum made of one neutral
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excitation and one charge excitation, the minimum value, at
ka = 0, being μ+ + G(0), i.e., �c/2 + G(0).

IV. SUPERSOLID PHASE

The hallmark of the supersolid phase is the presence of
both a long range diagonal (density) order and superfluidity.
A typical density profile, obtained using DMRG for U = 1,
V = 0.75, and t = 0.2, is shown in Fig. 6. The oscillations
of the density between 0.25 and 2.25, around the average
value n = 1.25, signal long range density order but which,
nonetheless, is not in the CDW phase since the average density
n = 1.25 is not commensurate.

Figures 7, 8, 9, and 10 show the the dispersion for several
values of the doping: n = 1.25, n = 1.167, n = 1.125, and
n = 1.08333, respectively. All data were obtained for L =
96 sites, U = 1, V = 0.75, t = 0.2, and the system is in the
supersolid phase.

As expected in the supersolid phase, the system exhibits
gapless excitations at k = 0 and k = π , but one clearly sees
additional gapless excitations at a momentum kSS that depends
on the density. It turns out that the value of kSS is in excellent
agreement with the value 2πδn (see below), where δn = n − 1,
i.e., ka = π/2 (ka = π/3, ka = π/4, ka = π/6) for δn = 1/4
(δn = 1/6, δn = 1/8, δn = 1/12).

A. Effective spin-1/2 Heisenberg model of the supersolid

We consider the situation where the supersolid phase has
a density n = 5/4, see Fig. 6. This occurs when one dopes
the system in the CDW phase, i.e., for V > U/2. The density
pattern, in the limit U � t , obtained from both the DMRG
and the QMC computations show that the ground state has
a (nearly) vanishing density on alternate sites and that the
other states are (almost) built on either the n = 2 or n = 3
Fock states. We, therefore, expect the low energy excitation to
be given by an effective spin-1/2 Heisenberg model, where
we map |3〉 (|2〉) to |↑〉 (|↓〉), and remove the state with
vanishing density. The new chain has therefore an effective
lattice spacing equal to 2a. The effective interaction arises from

0 20 40 60 80 100
site

0

1

2

3

4

de
ns

ity

FIG. 6. Density profile in the supersolid phase U = 1, V = 0.75
and t = 0.2, n = 1.25. The density oscillates between 0.25 and 2.25,
indicating long range density order at the incommensurate average
density n = 1.25.

FIG. 7. t = 0.2, n = 1.25. The gapless excitations at ka = 0
emphasize the superfluid nature of the phase. The lower part of
the excitation spectrum has a periodicity π/a reflecting the 2a

periodicity of the low energy effective Hamiltonian, which is an AF
spin-1/2 chain (see text). The additional gapless mode at ka = 0.5π

corresponds to the gapless mode at 2ka = π of the effective AF chain.

the virtual hopping of the bosons to the empty sites. Taking
into account the different intermediate states, one obtains the
following effective spin-1/2 Heisenberg Hamiltonian:

Heff =
∑

i

Jeff

2
(S+

i S−
i+1 + S−

i S−+i+1)

+ λeffS
z
i S

z
i+1 − BeffS

z
i , (8)

where

Jeff = −t2

(
3

4V − 2U

)
,

λeff = 2t2

(
3

4V −2U
+ 2

4V −U
− 3

5V −2U
− 2

3V −U

)
,

Beff = 2δμ + 2t2

(
3

5V − 2U
− 2

3V − U

)
, (9)

where δμ = μ − 2U . λeff is positive for a large range of
(V,U ) values, so that the preceding Hamiltonian corresponds
essentially the AF spin-1/2 Heisenberg model in a magnetic

FIG. 8. t = 0.2, n = 1.167. As in Fig. 7, the periodicity of the
lower part of the excitation spectrum can be understood from the
low energy effective Hamiltonian, which is an AF spin-1/2 chain
in a finite magnetic field. The additional gapless mode at ka = π/3
corresponds to the low energy incommensurate modes of the spin
chain at a finite magnetization.
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FIG. 9. t = 0.2, n = 1.125. As in Fig. 8, the additional gapless
mode at ka = π/4 corresponds to the low energy incommensurate
modes of a spin-1/2 chain at a finite magnetization.

field [the negative sign of Jeff can be removed through the
mapping (Sx,Sy) → −(Sx,Sy)].

Defining the ratio ρ = 2V/U , one obtains

Jeff = − t2

U

(
3

2ρ − 2

)
,

λeff = 2t2

U

(
3

2ρ − 2
+ 2

2ρ − 1
− 6

5ρ − 4
− 4

3ρ − 2

)
,

Beff = 2δμ + 4t2

(
3

5ρ − 4
− 2

3ρ − 2

)
. (10)

For Beff = 0, the system is in the AF (XY ) phase when λeff >

|Jeff| (λeff < |Jeff|) [39,40]. From the preceding expressions,
the ratio � = λeff/|Jeff| starts from the value � = 2 at ρ = 1
and then decreases. The isotropic point � = 1 is crossed
around ρ ≈ 1.15, such that for V = 0.75U , i.e., ρ = 1.5, the
system is the XY phase. The ground state has therefore a
vanishing magnetization, corresponding to an average density
n = 5/4. For t = 0, this corresponds to δμ = 0, i.e., to the
boundary between the n = 1 and n = 3/2 CDW. Then, for
any finite Beff , the average magnetization is positive (negative)
corresponding to an average density larger (less) than 5/4.
In addition, the effective spin correlations exhibit spatial
oscillations whose period depends on the magnetization,
which, in turn, leads to gapless excitations at finite momentum.

FIG. 10. t = 0.2, n = 1.08333. As in Fig. 8, the additional
gapless mode at ka = π/6 corresponds to the low energy incom-
mensurate modes of a spin-1/2 chain at a finite magnetization.

More precisely, starting from the correlation functions of the
spin-1/2 chain obtained using the bosoniszation approach [40]
and taking into account that Jeff is negative and that the lattice
spacing is 2a, one can show that both the in-plane (〈S+S−〉)
and the out-of-plane (〈SzSz〉) correlations yield oscillations
corresponding to a wave vector k0a = π (m + 1/2), where
m is the magnetization. The latter is related to the average
density n̄ of the Bose-Hubbard model m = 2n̄ − 5/2, such that
m + 1/2 = 2(n̄ − 1) = 2δn, where δn = n̄ − 1. Therefore,
the gapless excitations correspond to k0a = 2πδn, in perfect
agreement with Figs. 7–10. Similar conclusions could be
drawn by using mappings to other effective models, such as
the hardcore boson model with a staggered potential [41].
However, the present mapping does not make any assumption
on the value of V and U (provided that 2V > U ), but only
relies on a small hopping parameter, i.e., t � 2V − U . In our
case we note that t/(2V − u) = 0.4, which is borderline for
the validity of the effective model.

Finally, one can see in Figs. 7–10 that the effective
period of the lowest part of the excitation spectrum is π/2a,
corresponding the doubling of the lattice spacing. This is not
true for the higher excitations which are gapped and most
likely involving the empty sites.

B. SS-SF transition

We have also studied the evolution of the structure factor
S(k,ω) across the supersolid-superfluid transition, at fixed
density and interaction strengths, increasing the hopping
amplitude from t/U = 0.24 (SS) to t/U = 0.3 (SF).

1. TEBD results

From the density plots, see Figs. 11 (top), 12 (top), and
13 (top), we see that the SS-SF transition is driven by the
disappearance of the spatial modulation. This behavior is also
predicted by the standard mean-field theory where the ground
state of the system is assumed to be a tensor product of on-site
wave functions (see below).

The disappearance of the spatial modulation results in an
opening of the gap at ka = π , see Fig. 13 (bottom), which is
well described by the mean-field theory, since it only amounts
to a change of the spatial periodicity, i.e., from 2a to a, of the
effective Hamiltonian [42,43].

On the other hand, this simple mean field cannot capture the
long range quantum correlations that lead to the gapless modes
at ka = kSSa = 2πδn and the mapping to the spin-1/2 is no
longer valid close to the transition since one cannot neglect
previously empty sites. From that point of view, the exact fate
of these gapless mode is still lacking a physical explanation.

2. Mean-field results

As explained above, a well known mean-field method to
solve the Bose-Hubbard model is the Gutzwiller ansatz, where
the ground state wave function is assumed to be a tensor
product of on-site wave functions:

|�〉 =
⊗

i

|ψi〉, where |ψi〉 =
Nmax∑
n=0

fn,i |n,i〉. (11)
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FIG. 11. The SS phase at U = 1, V = 0.75 and t = 0.24, n =
1.25. Top: Density profile: The CDW order is still almost perfect.
Bottom: The gapless modes at ka = 0.5π are still visible, but their
contributions to S(k,ω) have a smaller weight when compared with
Fig. 7.

|n,i〉 represents the Fock state of n atoms occupying the site i,
nmax is a cutoff in the maximum number of atoms per site, and
fn,i is the probability amplitude of having the site i occupied
by n atoms.

Minimizing the mean-field energy 〈�|H |�〉 over the fn,i

allows us to determine the mean-field ground state properties as
functions of the different parameters (U,t,V ,μ). For instance,
the superfluid phase corresponds to a nonvanishing value of the
order parameter 〈�|b|�〉, whereas the Mott phase corresponds
to a vanishing order parameter and the ψi are pure Fock states.
In the CDW phase, the order parameter 〈b〉 vanishes; the
density 〈n(ka = 0)〉 and the staggered density 〈n(ka = π )〉
have the same value. The supersolid phase corresponds to
nonvanishing values for both 〈b(ka = 0)〉 and 〈b(ka = π )〉;
the density still exhibits oscillations at ka = π . The superfluid
phase corresponds to a homogeneous density and only the
ka = 0 order parameter 〈b(ka = 0)〉 has a nonvanishing value.

We present mean-field results for U = 1, V = 1.5, and μ =
1.8. Note that since the chemical potential is fixed, the density
changes as t/U is changed. Figure 14 shows the different
quantities as functions of t/U . For 0 � t � 0.25, the system is
in the CDW insulating phase: The order parameter 〈b〉 vanishes
and the density and staggered density have the same value; the
CDW corresponds to a density pattern . . . 2020202020 . . . . For
0.25 � t � 1.26 the system is in the supersolid phase: Both
〈b(k = 0)〉 and 〈b(ka = π )〉 are nonvanishing. The density still
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FIG. 12. The supersolid phase at U = 1, V = 0.75 and t =
0.26, n = 1.25. Top: The density pattern does not show a well
defined CDW. Bottom: The gapless mode at ka = 0.5π has almost
disappeared, but the system is still gapless at ka = π

presents oscillations at ka = π . For t � 1.25, the system is in
the usual superfluid phase.

The mean-field approach also allows us to compute the
excitation spectrum. Since in both the CDW and SS phases
the periodicity of the ground state is 2a, the spectrum is
defined in the reduced Brillouin zone [−π/2a,π/2a] and has
two branches. In the CDW phase, the elementary excitations
are gapped, as expected. In the SS phase, the lower branch
becomes gapless with a linear behavior around k = 0. At the
SS-SF transition, the periodicity of the ground state goes back
to a, so that the two elementary excitation branches merge at
ka = π/2.

V. UNDERDOPED HALF-FILLING CDW

In this section we compare the structure factor obtained in
the SS phase with the one for the phase between the half-filled
CDW and the superfluid phase, see Fig. 15. A typical density
profile is shown in Fig. 16; the parameters are U = 1, V =
0.75, and t = 0.1, corresponding to an average density n =
0.4375. One clearly sees that the density pattern is different
from the one in the supersolid phase: the long wavelength
modulation of the CDW is a signature of a vanishing DLRO, in
contrast to the SS phase. On the other hand, one has an overall
power-law decay of the ODLRO g(x) ∝ x−1/2K , but with a
coefficient K < 1/2 emphasizing that the SF can be localized
with a single impurity [24]. The difference with the SS phase

035108-7
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FIG. 13. The superfluid phase at U = 1, V = 0.75 and t = 0.3,
n = 1.25. Top: The density profile no longer shows CDW pattern.
Bottom: The only gapless mode is at ka = 0, as expected in the SF
phase; at ka = π , the system is now gapped.

also appears in the structure factor, Fig. 17: One has only two
gapless modes, one at ka = 0 and one at ka ≈ 0.8π , but the
excitations at k = π are gapped. Therefore, the periodicity of

0 0.5 1 1.5
t/U

0

0.5

1

1.5

2

density
staggered density
<b>
staggered <b>

CDW
SS SF

FIG. 14. Mean-field phase diagram for U = 1, V = 1.5, and μ =
1.8 as a function of t . For 0 � t � 0.25, the system is in a CDW
insulating phase: the order parameter 〈b〉 vanishes and the density
and staggered density have the same value. The CDW corresponds
to a density pattern . . . 2020202020 . . . . For 0.25 � t � 1.26 the
system is in the supersolid phase: both 〈b(k = 0)〉 and 〈b(ka = π )〉
are nonvanishing. The density still presents oscillations at ka = π .
For t � 1.25, the system is superfluid.

0 0.1 0.2 0.3 0.4
t/U

0

1

2

μ/
U

n=1/2 CDW

LL

LL
K=1/2

K=1

n=1 CDW

SS

L=64, V/U=0.75SS

FIG. 15. Detail of the n = 1/2 lobe (from QMC) where we also
determined the constant K lines for K = 1, 1/2. The data are taken
from Ref. [9].

the lower part of the spectrum is just 2π/a and not π/a as in
the SS phase.

Since, at very low values of t , the density pattern for
the half-filled CDW phase is . . . 01010101 . . . , there is a
natural mapping onto a spin-1/2 AF Heisenberg model with a
vanishing total magnetization: |0〉→|↓〉 and |1〉 → | ↑〉. The
underdoped CDW phase corresponds then to a nonvanishing
total magnetization Sz ≈ n − 1/2. However, contrary to the
SS phase, there is no simple way to get the effective J and
λ coefficients: the initial state . . . 01000101 . . . and a state
after one hopping . . . 01001001 . . . are actually degenerate
in the limit t → 0, thereby preventing a proper expansion of
the Bose-Hubbard Hamiltonian. Nevertheless, one can still
argue that the gapless mode at ka ≈ 0.8π corresponds to
the incommensurate gapless mode appearing in the spin-spin
correlation function for the spin-1/2 AF Heisenberg model in
a finite magnetic field. In particular the value k0a = 0.8π is
compatible with the bosonization prediction 2πn [40].
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1

de
ns

ity

FIG. 16. Density profile in the underdoped 1/2 CDW phase U =
1, V = 0.75 and t = 0.1, n = 0.4375. The overall modulation of the
density emphasizes the difference with the SS phase.
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FIG. 17. Structure factor in the underdoped CDW: U = 1, V =
0.75, t = 0.2, the density is n = 0.40625. The gapless mode at ka = 0
indicates the ODLRO. The gapless mode at ka ≈ 0.8π is compatible
with the bosonization prediction 2πn for an AF spin-1/2 chain in a
finite magnetic field.

VI. CONCLUSIONS

In summary, we have studied the excitation spectra of
the extended Bose-Hubbard model. Along the MI-HI-CDW
transition the dynamical structure factor exhibits behavior

similar to the spin-spin correlation for the S = 1 Heisenberg
model. For instance, it shows a difference between the neutral
and charge gaps in the HI phase.

In the SS phase we have shown that the system has
additional gapless modes at a k value that depends on the
average density of the system. They can be mapped to the
incommensurate gapless modes of an AF spin-1/2 chain at
finite magnetization. They are a signature of the DLRO present
in the SS phase. These modes fade away when moving towards
the SF phase, and, in addition, a gapped mode appears at
ka = π , marking the disappearance of the DLRO.

Finally, we have shown that underdoping the CDW at half-
filling, the excitation spectrum differs from the one in the
SS phase, emphasizing that even though the system exhibits
superfluidity and oscillations in the density, there is no DLRO.
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