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Dynamics of strongly correlated fermions: Ab initio results for two and three dimensions
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Quantum transport of strongly correlated fermions is of central interest in condensed matter physics. While
the stationary expansion dynamics have recently been measured with cold atoms in 2D optical lattices, ab initio
simulations have been limited to 1D setups so far. Here, we present the first precise fermionic quantum dynamics
simulations for 2D and 3D. The simulations are based on nonequilibrium Green functions and incorporate strong
correlations via T -matrix self-energies. The simulations predict the short-time dynamics, and we discover a
universal scaling of the expansion velocity with the particle number. Our predictions can be verified experimentally
using the recently developed fermionic atom microscopes.
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I. INTRODUCTION

Particle, momentum, and energy transport of strongly
correlated quantum systems are of growing interest in con-
densed matter [1–3], ultracold quantum gases [4–8], and dense
plasmas [9]. Direct measurements of quantum transport have
been accomplished in Hubbard-type one- and two-dimensional
(1D, 2D) optical lattices by monitoring the expansion of
ultracold atoms following a confinement quench [4,6–8], for
an illustration see Fig. 1. Also, the dynamics following a
quench in lattice depth have been measured [11–14], and
very recently, three groups reported the development of an
atomic microscope for fermions [15–17] opening the way
for experiments with unprecedented single-site resolution.
In contrast to the experiment, theoretical studies of these
transport processes for fermions face fundamental difficulties.
While, in 1D, the expansion of fermions can be accurately
simulated with time-dependent density matrix renormalization
group (DMRG) methods, e.g., Refs. [5,6], currently higher
dimensions are not accessible [18].

The authors of Ref. [4] also presented 2D numerical
results from a semiclassical Boltzmann equation (SC-BE)
model with a collision integral in the relaxation-time approx-
imation (RTA). One important feature of the experiment—
the reduction of the expansion velocity Cexp of the cen-
tral part (the “core,” defined as half width at half maxi-
mum [HWHM]) of the density with the Hubbard coupling
strength U (see Sec. II A) and, eventually, shrinkage of the
core—is qualitatively captured by RTA, see lower part of
Fig. 1. However, additional observations, such as the zero
crossing of Cexp around U = 3 are missed, the value of Cexp

at large |U | is off by several 100%s, and even the value for
the ideal case (U = 0) is not reproduced. This is, of course,
not unexpected [4] due to the known defects of the SC-BE
that include the violation of total energy conservation and
an incorrect asymptotic state [20,21]. Also, the experimental
system is well isolated so the dynamics should be unitary
(reversible), which is in contrast to the Boltzmann equation.
The RTA, in addition, assumes that the system is close to local
thermal equilibrium, which may be adequate only at a late
stage of the expansion.

It is the purpose of this paper to present a theory that
overcomes all these problems. We present the first ab initio
quantum simulations for correlated fermions that apply not
only to one-dimensional systems but also to two and three di-
mensions. We capture not only the final stage of hydrodynamic
expansion but also the early period where the system is far from
equilibrium, and correlations and entanglement emerge. The
method of choice are first-principles nonequilibrium Green
functions (NEGF) simulations—a theory long established
in quantum statistical mechanics, e.g., Refs. [21,22]—and
demonstrate that it is capable to accurately simulate correlated
fermions in Hubbard lattices, in general, and fermionic atoms
in optical lattices under realistic experimental conditions, in
particular.

A first confirmation is shown in the lower part of Fig. 1
where we report excellent quantitative agreement with the
experiment [4] for all U without any free parameters.
Furthermore, we present extensive additional predictions of
quantum dynamics not yet observed experimentally: (a) the
early stage of the evolution of the expansion velocity vexp(t),
of pair correlations and of entanglement, (b) the change
of the dynamics with the system dimensionality D, (c) the
momentum distribution of the expanding correlated fermions,
and (d) the approach of the thermodynamic limit, N → ∞.
Here, a striking universal behavior is discovered: for all
U and D, the expansion velocity decreases with system
size according to v∞

exp(N ) − Vexp ∼ N−1/2, where we denoted
the long-time asymptotics by v∞

exp ≡ vexp(t → ∞) and Vexp ≡
v∞

exp(N → ∞).
This paper is organized as follows. In Sec. II, we introduce

the D-dimensional Hubbard model and summarize the basic
formulas of the nonequilibrium Green functions approach. In
Sec. III, we present the numerical results. In Sec. IV, we
conclude with a summary and a discussion of our results.

II. THEORY

A. Hubbard model

We consider the D-dimensional Hubbard model with
Ns sites that are labeled by a D-dimensional index s =
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FIG. 1. (Top) Expansion dynamics of 74 circularly confined
fermions in a 2D 19 × 19 Hubbard lattice (1) following the removal
of the confinement at time t = 0, for U = 1(5), first (second) row.
Snapshots of the density ns for four time points during the early
stage of the expansion (t in units of the inverse hopping rate, color
code:

√
ns). (Bottom) Asymptotic core [defined as density HWHM]

expansion velocity Cexp. Plus signs: experimental results for different
lattice depths in units of the recoil energy Er [10]; gray dashed line:
RTA model [4]; red circles: present NEGF results. The black line is
a fit through the experimental points to guide the eye.

(s1, . . . ,sD) and the local spin projection is denoted by σ ∈
{↑,↓}. The Hamiltonian is, in second quantization, expressed
in terms of creation and annihilation operators ĉ

†
s,σ and ĉs,σ :

H (t) = −
∑
〈s,s′〉

∑
σ=↑,↓

ĉ†s,σ ĉs′,σ + U
∑

s

ĉ
†
s,↑ĉs,↑ĉ

†
s,↓ĉs,↓

+
∑

s

∑
σ=↑,↓

V R
s (t)ĉ†s,σ ĉs,σ , (1)

and, in the first (hopping) term, 〈s,s′〉 denotes nearest-neighbor
sites. The second term describes on-site interactions of
electrons with opposite spin, which has the strength U . In
the third term, V R(t) is a circular potential of radius R that
initially confines N fermions occupying N/2 sites in the trap
center. In the present paper, we consider the dynamics that
are initiated by a potential quench, i.e., at time t = 0, V R is
switched off what initiates a diffusion process, as, e.g., in the
experiment [4].

B. Nonequilibrium Green functions

Our goal is to study the correlated expansion dynamics of
spatially inhomogeneous finite Hubbard clusters with a single-
site resolution. We are interested in the dynamics on all time
scales while exactly fulfilling the many-particle conservation

laws of particle number, momentum, and total energy. This
can be achieved using NEGF that are defined on the Keldysh
time contour C with the contour-time-ordering operator TC as

G
σ

ss′(z,z′) = − i

�
〈TC ĉs,σ (z)ĉ†s′,σ (z′)〉. (2)

The Green functions can be understood as generalized time-
dependent single-particle density matrices on the lattice where
the presence of two time arguments allows to incorporate
spectral information, and 〈. . . 〉 denotes the ensemble average.
The equations of motion for the NEGF are the Keldysh–
Kadanoff–Baym equations (KBE) [21,22],(

i�
∂

∂z
δs,s̄ − h

σ
ss̄

)
G

σ

s̄s′(z,z′)

= δC(z − z′)δs,s′ +
∫
C
dz̄ �

σ
ss̄(z,z̄)Gσ

s̄s′(z̄,z′), (3)

and its adjoint (summation over s̄ is implied). In order to
account for correlation effects in the dynamics, the self-energy
� includes, in addition to mean-field (Hartree-Fock), also
correlation contributions. For weak to moderate coupling
(|U | � 1), the second-order Born approximation is appropriate
[23], which includes all irreducible diagrams of second order
in the interaction (second order in U ). However, for the case
of strong correlations (large |U |), the next orders (third, fourth
powers of U ) become comparable and perturbation theory
fails. Therefore one has to sum up the entire Born series,
i.e., diagrams of all orders in U . This is equivalent to the
T -matrix approximation to the correlation self-energy (TMA
[24]), which reads, for the Hubbard model [25],

�
cor,↑(↓)
ss′ (z,z′) = i� Tss′(z,z′) G

↓(↑)
s′s (z′,z) , (4)

Tss′(z,z′) = −i� U 2 G
↑
ss′(z,z′) G

↓
ss′ (z,z′)

+ i� U

∫
C
dz̄ G

↑
ss̄(z,z̄) G

↓
ss̄(z,z̄)Ts̄s′(z̄,z′). (5)

Here, T can be understood as an effective interaction obeying
the Lippmann-Schwinger equation (5), e.g., Refs. [20,22,27].
The first term in (5) alone describes the interaction of a
single fermion pair and corresponds to the second-order Born
approximation, whereas the integral term adds interaction
contributions of all orders (in U ).

We underline the conserving character of this approxima-
tion [22] and, in fact, conservation of particle number and total
energy is observed to high accuracy in all our simulations.
Further, time-reversal symmetry is guaranteed (as it should
be since the system is isolated). Also, our simulations yield
the same time-dependent densities when U is replaced by
−U confirming the dynamical symmetry demonstrated in
Refs. [4,28].

The two-time KBE have been solved for a variety of
spatially homogeneous systems, including dense plasmas and
optically excited semiconductors [29–31] or the uniform
electron gas [32]. More recently, spatially inhomogeneous
systems were studied, in particular, the ionization dynamics
of few-electron atoms [33–35] and quantum dots [2]. All
these simulations used self-energies on the level of the static
second Born approximation. Only recently the use of the
two-time TMA, under full nonequilibrium conditions, has
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become possible for the Hubbard model in Refs. [23,25,36].
However, only very small 1D systems (N � 6,U � 4) could
be simulated for rather short times. Here, we report a dramatic
extension of TMA simulations in terms of particle number,
simulation duration, and dimensionality. With this, it is
possible, for the first time, to access experimentally relevant
situations. We systematically study up to N = N↑ + N↓ =
2N↑ = 114 fermions in a broad range of coupling parameters,
0 � |U | � 8, in a one-, two-, and three-dimensional lattice.

III. RESULTS

The initial state of our simulations is a doubly occupied
spherical central region in the ground state [4] that is confined
by a properly chosen potential V R which is turned off at t = 0.
In our simulations we use a steplike potential. We show in
Sec. III E that the precise functional form has a negligible
effect on the expansion dynamics. The KBE (3) are then solved
with this initial condition for the two-time correlation function
G

σ,<

ss′ (t,t ′) (the less component of the NEGF (2)[21,37])
yielding the time dependence of all observables.

Figure 1 shows snapshots of the site-resolved particle den-
sity ns(t) = n

↑
s (t) + n

↓
s (t) with n

σ
s (t) = −iGσ,<

ss (t,t), for two
couplings, U = 1, 5. For U = 1, the density rapidly evolves
towards the square symmetry of the lattice, whereas for U = 5
the core region remains circular over the entire simulation
duration, in agreement with experimental observations [4].

A. Time evolution of the expansion velocity

The density evolution is quantified by the diameter d(t) =√
R2(t) − R2(0), corrected for its starting value R(0),

R2(t) = 1

N

Ns∑
s

ns(t) ‖s − s0‖2 , s0 = 1

N

Ns∑
s

ns(0) s ,

where the center of mass s0 is immobile in the present case.
The left part of Fig. 2 shows the dynamics of the instantaneous
expansion velocity

vexp(t) = d

dt
d(t), (6)

FIG. 2. (Left) Time evolution of the expansion velocity for N =
58 in 2D and various U . (Right) Evolution of the independent-particle
and correlation parts of the entropy and energy, for U = 4. Symbols
mark the respective inflection points. Shaded areas correspond to the
three phases of the evolution (see text).

for various U , for a typical case, N = 58 in 2D. As the system
is initially uncorrelated, the expansion starts ballistically from
the ideal value, vexp(0) = vid = √

2D = 2, and converges to a
smaller asymptotic value, v∞

exp. These asymptotics monotoni-
cally decrease with increasing coupling strength U . This trend
is well known and easily understood: the diffusion front forms
at the cluster edge since particles in the “bulk” cannot move
due to the Pauli principle, since all neighboring lattice sites
are occupied. When |U | grows, the expansion of the outermost
particles is slowed down due to the growing interaction with
the bulk particles. Here, we can quantify this trend, for the first
time, for two- and three-dimensional systems.

B. Short-time dynamics. Build-up of correlations and
entanglement

The time evolution of vexp(t) is not trivial and results from
the interplay between independent-particle and correlation
effects. To quantify this, we decompose the double occupation
[38] of each site s into a factorized part (“fac”) and a correlation
part (“corr,” the reminder)

n↑↓
s = 〈ĉ†s,↑ĉs,↑ĉ

†
s,↓ĉs,↓〉 =: n↑↓,fac

s + n↑↓,corr
s , (7)

n↑↓,fac
s = n↑

s n
↓
s . (8)

The factorized contribution is formally equivalent to the
contribution of independent particles. Note, however, that the
single-particle densities entering n

↑↓,fac
s are obtained from a

fully correlated calculation and, thus, the factorized term also
contains interaction effects.

With this, we identify the corresponding components of the
energy (Efac, Ecorr) [23] as well as the entanglement entropy
[38,39],

S = Sfac + Scorr =
∑

s

Ss, (9)

Ss = −2

(
ns

2
− n↑↓

s

)
log2

(
ns

2
− n↑↓

s

)
,

− n↑↓
s log2n

↑↓
s − (1 − ns + n↑↓

s )log2(1 − ns + n↑↓
s ).

(10)

Here, the factorized contribution, Sfac follows from the total
entropy by the replacement Eq. (8).

The dynamics of these two energy and entropy contribu-
tions are dominated by single-particle and correlation effects,
respectively, and it is well known from the dynamics of uni-
form systems [21,29,40] that they proceed on rather different
time scales: typically pair correlations relax substantially faster
than single-particle quantities. In the expansion dynamics
of the present Hubbard clusters we also observe a sequence of
time scales, however, the details are very different. We identify
three characteristic phases: during the first phase, Sfac (Efac)
is being built up (destroyed), resulting in a decrease of vexp,
see Fig. 2. Here, the increase of Sfac measures the transition
from a state of independent particles (S = 0) to an interacting
many-body state. The inflection point τfac (circles) of Sfac (and
Efac) is representative for the time scale of this phase. The
second phase is characterized by the saturation of Efac and
vexp. The simultaneous build-up of correlations partly prolongs
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N = 74

√
n

s

N = 74

√
2
·n

↑↓ s
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√
S

s
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√
15

· δ
n
↑↓ s

N = 2

√
n

s
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√
n

s
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FIG. 3. Fermion expansion dynamics in a 2D 19 × 19 Hubbard
lattice (1) at U = 4. Top three rows: square root of density ns for
N = 2, 26, and 74, respectively. Rows 4–6: square root of double
occupation, entropy density Ss, and the pair correlation function
δn↑↓

s = n↑↓
s − n↑

s n
↓
s .

the saturation and determines the final value, v∞
exp. The time

scale of these processes is the correlation time τcorr [21,40],
which is estimated by the inflection point of Scorr (and Ecorr,
diamonds). Both phases become shorter when U is increased,
i.e., correlations accelerate the early dynamics, cf. left part
of Fig. 2, It is evident that τcorr is one order of magnitude
larger than τfac—in striking contrast to homogeneous systems
as discussed above. The main difference here is the strong
inhomogeneity leading to a spatially localized formation
of correlations and entanglement [see Sec. III C] and the
formation of a diffusion front.

C. Single-site resolved expansion and correlation dynamics

Additional insight into the physics is gained from a site-
resolved analysis which is presented in Fig. 3. The top three
rows show the dynamics in 2D for a fixed U and three particle
numbers. Quantum interference effects are evident for small
N . Further, the dynamics are slowing down with increasing
N , because only fermions at the cluster edge are mobile,
in the beginning, due to the Pauli principle. The fourth row
displays the spatial distribution of the double occupation n

↑↓
s .

It originally coincides with the single-particle density (third
row) but then the two decouple. The much slower doublon
expansion is the first indication of “quantum distillation”[41]
of fermions in 2D. Finally, the emergence of entanglement and
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k
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×
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3
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N = 2
N = 42

0.15 0.20 0.25 0.30 0.35
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a
×

10
3

U = 2
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FIG. 4. Momentum distribution p(k), Eq. (11) at t = 9.5, for a
1D system of Ns = 65 for N = 2, . . . ,42. (Top) U = 3. (Bottom)
U = −3. The dashed lines denotes the uniform initial distribution
p0(k). (Insets) N -dependence of amplitude a. Symbols: data points,
lines: linear fits.

of pair correlations is shown in rows 5 and 6. Both start from
zero everywhere and emerge first at the cluster boundary from
where they propagate inward and outward. These processes
are accelerated (slowed down) with increasing U (N ), which
explains the corresponding behavior of the characteristic time
scales τfac and τcorr.

D. Hydrodynamic expansion phase. Momentum distribution

The third and final phase is the hydrodynamic expansion
where vexp, the correlations and the momentum distribution
have become stationary, see Fig. 4, whereas the independent-
particle energy and entropy continue to evolve, cf. Fig. 2.
Figure 4 shows the normalized momentum distribution,
p(k) = n(k)/N [obtained from the site occupations], of a 1D
system for U = 3 at the end of the simulation. For all N , p(k)
is oscillatory with an amplitude a that monotonically decreases
with N . For large N , it is very well described by the function

p(k) = p(k) = Ns
−1 − a cos(k) , (11)

where the value of a(U,N ) is shown in the inset of Fig. 4 for
different U . It is obvious that, for positive U , p(k) is peaked at
±π while the maximum of the occupation is around k = 0, for
negative U . We note that these results are in agreement with the
qualitative predictions in Ref. [28]. A striking observation is
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FIG. 5. (Left) Asymptotic expansion velocity vs particle number
for D = 1, . . . ,3 and U = 1, . . . ,3. Symbols correspond to data
points, errors are smaller than symbol size. Dashed lines: linear
extrapolation N → ∞ according to Eq. (13). (Right) Corresponding
slope χ vs bandwidth-normalized interaction.

the particle number dependence of the momentum distribution.
We observe that the amplitude of the oscillations scales as
a ∼ N−1/2. The origin of this scaling is presently an open
question but this behavior was observed in all cases and appears
to be universal.

To quantify the stationary hydrodynamic expansion we
extrapolate the expansion velocity to t → ∞, denoting the
result by v∞

exp. It is obtained from vexp(t) by averaging over all
times exceeding tavg where saturation is reached (cf. Fig. 2)
and which is given by∣∣∣∣ 1

vexp(t)

dvexp

dt
(t)

∣∣∣∣ < ε , (12)

for all t > tavg and a given small parameter (ε � 1). To
quantify the error of v∞

exp, we use the standard deviation σ (v∞
exp)

of the averaging process.
An interesting question is how the expansion of a group

of N fermions depends on the value of N and the system
dimensionality D. The results of the extrapolation are shown
in the left part of Fig. 5. Again, we observe a monotonic
decrease with U and, furthermore, a systematic increase of
v∞

exp with D, that is due to the enlarged number of degrees of
freedom.

E. Influence of particle number and dimensionality.
Extrapolation to the macroscopic limit

The most striking observation is the N dependence of v∞
exp

and its approach to the macroscopic limit: for any fixed U and
D and sufficiently large N , we observe the scaling

v∞
exp(U ; N ; D) − Vexp(U ; D) = χ (U ; D)N−1/2 , (13)

Vexp(U ; D) ≡ lim
N→∞

v∞
exp(U ; N ; D). (14)

Interestingly, this N dependence is the same as in the
momentum distribution (11), cf. Fig. 4 and is caused by the
latter.

For the extrapolation, Vexp and the slope χ are used as fit
parameters. Only particle numbers N larger than a cutoff value

FIG. 6. Macroscopic expansion velocity Vexp for varying U .
Comparison between Hartree-Fock (HF) and the correlated T -matrix
(TMA) results.

N
 are taken into account. The errors σ (v∞
exp) are also included

in the fit process, resulting in the final statistical uncertainty,
σ (Vexp). We note that our procedure is very similar to the one
applied for the diffusion of a Mott insulator and Néel state in
a 1D fermionic system in Ref. [42].

The right-hand part of Fig. 5 shows the dependency of
the slope χ on the bandwidth-normalized interaction strength
U/(b/2) with the effective bandwidth b = 4D. For all D and
N , χ starts from zero, at U = 0, which is a consequence
of ballistic expansion of noninteracting particles. When U is
increased further, χ reaches a maximum slightly below U =
(b/2) and then decreases again. The reason for the latter is
that fermions on doubly occupied sites are effectively frozen,
at large U , regardless of N . In-between these two limits, the
slope shows a qualitatively similar behavior for all D: a steep
rise (slow decrease) for small (large) U .

We now turn to the analysis of the macroscopic limit of
the expansion velocity, Vexp. In Fig. 6, we show Vexp as a
function of U and confirm the monotonic reduction that was
observed before for finite N , cf. Fig. 2. The error bars show
the total statistical error resulting from the time averaging
and the extrapolation with respect to N . We also show, for
comparison, the Hartree-Fock approximation, which exhibits
strong deviations, which underlines the key role of correlations
in the present quench dynamics.

Similar to our procedure of obtaining the asymptotic
expansion velocity v∞

exp and its macroscopic limit, we can
proceed with the core expansion velocity c∞

exp and its macro-
scopic limit, Cexp. The experimental results of Schneider
et al. [4] for a 2D Hubbard system and our T -matrix results
were displayed in Sec. I, in Fig. 1, We now explain how
our results were obtained. For the case D = 2, the density
distribution is averaged azimuthally for each time step. The
half width at half maximum of the resulting density profile,
RHWHM(t), is used to measure the “core” width. Adjusted for
the initial core width, R0

HWHM, c∞
exp is determined by fitting the

resulting RHWHM(t) to

RHWHM(t) =
√(

R0
HWHM

)2 + (
c∞

expt
)2

(15)

for all t > tavg with R0
HWHM and c∞

exp as free fitting parameters.
Since the core of the density distribution starts to shrink for
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FIG. 7. Dependence of the asymptotic expansion velocity on N

for confinement potentials of different curvature γk(N ). Insets show
the shape of the initial density profile.

sufficiently large interaction strength U , we apply

RHWHM(t) =
√(

R0
HWHM

)2 − (
c∞

expt
)2

(16)

instead, following Ref. [4], and consider c∞
exp the speed of

contraction of the core region.
The extrapolation of c∞

exp is done as in Eq. (13), resulting
in the macroscopic core expansion velocity Cexp, confirming
the scaling with N−1/2. This robust scaling with N allows us
to perform the thermodynamic limit, N → ∞. This yields
the results that were presented in Fig. 1, and that exhibit
excellent agreement with the experiment over the entire U

range, including the zero crossing of Cexp around U = 3.
One may wonder whether the results depend on the chosen

steep confinement, cf. Figs. 1 and 3. Here, we demonstrate that
the shape of the initial confinement has only a minor effect
on the asymptotic expansion velocity, in agreement with the
observations in Ref. [43]. To this end, we use a harmonic
confinement

V (R) = γkR
2 , (17)

with curvature γk . To achieve a similar shape for different N ,
we choose

γk(N ) = k/N , (18)

for three strengths k = 3,5,10. Together with the steplike
potential (k → ∞), the results are shown in Fig. 7. Even
though the initial density profile is affected by the curvature
(see inset), the expansion velocity is not. In particular, the
macroscopic limit, Vexp changes by less than 10%.

IV. DISCUSSION

To summarize, we have introduced T -matrix NEGF simu-
lations into the field of fermion dynamics in Hubbard lattices
providing the first accurate quantum dynamics results [24] for
two and three dimensions [44]. While the magnitude of the
error of NEGF simulations with T -matrix self-energies for the
present large systems is not exactly known, for the cases where
the exact results are available (small N , 1D) the agreement
is excellent [23,25,26]. It is expected that the accuracy will
further improve when N increases, as well as in higher
dimensions. The largest uncertainty is expected for Hubbard
clusters at half-filling and for small integrable systems. Further
tests are needed to verify and quantify this behavior.

Our results for 2D fermionic Hubbard clusters exhibit
excellent quantitative agreement with recent experiments
that investigated the final stage of the expansion dynamics
following a confinement quench [4]. They, moreover, yield
detailed information on the early stages of the dynamics of
correlated fermions, including the buildup and propagation
of correlations and entanglement and on the effect of the
system dimensionality. Furthermore, we uncovered a universal
scaling of macroscopic quantities with N . Our predictions,
including the site-resolved results for the pair correlations and
entanglement entropy, can be directly tested experimentally
using the novel quantum-gas microscopes [15–17].
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