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Accurate tight-binding Hamiltonian matrices from ab initio calculations: Minimal basis sets
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Projection of Bloch states obtained from quantum-mechanical calculations onto atomic orbitals is the fastest
scheme to construct ab initio tight-binding Hamiltonian matrices. However, the presence of spurious states and
unphysical hybridizations of the tight-binding eigenstates has hindered the applicability of this construction.
Here we demonstrate that those spurious effects are due to the inclusion of Bloch states with low projectability.
The mechanism for the formation of those effects is derived analytically. We present an improved scheme for
the removal of the spurious states which results in an efficient scheme for the construction of highly accurate
ab initio tight-binding Hamiltonians.
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I. INTRODUCTION

The tight-binding method, even in its simplest implemen-
tation, is a useful tool in the study of the electronic structure
of molecules and solids [1,2]. The advantage of the method is
the tractable and intuitive understanding it affords by distilling
the electronic structure of complex systems into physically
transparent Hamiltonian matrices expressed on a minimal basis
set of atomic orbitals (AOs). For realistic materials, the tight-
binding (TB) matrix elements have been typically calculated
by fitting to experiments or higher levels of theory. The result-
ing models were successfully applied in a panoply of complex
materials with large supercells [3–5] and for problems where
localized basis sets are essential [6]. A major shortcoming of
the tight-binding approach is the demanding fitting procedure
that limits the application of the approach to well-known
materials and hinders the transferability of the parameters to
bonding environments outside the assumed training set.

In recent years, the accuracy and reliability of the TB
models have been largely improved with the introduction of
ab initio tight-binding Hamiltonians. Here, the Hamiltonian
resulting from a fully self-consistent quantum-mechanical
calculation, either within density functional theory (DFT) or
other first-principles approaches, gets mapped into a much
smaller space spanned by a set of atomic or atomiclike (i.e.,
Wannier functions) orbitals.

The representation of the electronic structure of the materi-
als on a minimal TB basis set has been obtained with two main
approaches: (i) the “downfolding” of the ab initio electronic
structure (solved in the large basis) into a model containing
only a few bands of interest which are disentangled from
the rest; (ii) the explicit calculation of the matrix elements
H̄αβ = 〈φα|Ĥ |φβ〉 using predetermined and fixed localized
functions, typically AOs.

In the first approach, one proceeds by selecting a subspace
B (spanned by N Bloch states |ψn〉 of interest) of the
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K-dimensional space of the solutions of the original quantum-
mechanical problem. The latter is found by representing and
diagonalizing the Hamiltonian Ĥ of the system using a very
high-quality basis set of size K , e.g., plane waves with a large
cutoff, a dense spatial grid, a large number of atomic-orbital-
like Gaussian functions, etc. The subspace B is then projected
onto a space A generated by the atomiclike orbital functions,
|φα〉 where α = 1, . . . ,M . Typically, the dimension of the B
subspace N is much smaller than K , while the number of
atomic orbitals is M � N and is defined by the choice of
the localized basis set in A. Typically, in order to obtain
a faithful representation of the electronic properties of the
system in the smaller basis, the basis functions need to be
iteratively optimized, thus adding a substantial computational
effort. Implementations of this approach include muffin-tin
orbitals of arbitrary order (NMTO) [7], maximally localized
Wannier functions (MLWFs) [8], quasiminimal basis orbitals
(QUAMBOs) [9], etc. While the optimized functions can
be used to compute the TB matrix elements, their primary
advantage is exploiting the information they contain to study
the physics of the handpicked bands. For example, they can be
used in mapping correlated bands into Hubbard models [10].
Implementations of the second approach [11,12] have used the
non-self-consistent Harris-Foulkes [13,14] functional for Ĥ

and a fixed input charge density, which could be taken from the
converged large-basis ab initio calculation. The computational
bottleneck in this approach is the calculation of multicenter
integrals (three-center and up) for the functional. This ap-
proach can be readily extended to find the charge density
self-consistently [15], thus allowing efficient implementations
of order-N ab initio DFT codes [16].

In this work we follow the principles outlined above but
without resorting to an explicit basis set optimization. Having
the eigenstates |ψn〉 of Ĥ with n = 1, . . . ,N , one can use their
projections onto atomic orbitals [17,18] and write

H̄αβ = 〈φα|Ĥ |φβ〉 ≈
N∑

n=1

〈φα|ψn〉En〈ψn|φβ〉.
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FIG. 1. Projector matrix |PB | of benzene on a minimal AO
basis set for the 23 molecular orbitals of lowest energy. The
diagonal elements are the projectability numbers pn. The presence
of nonzero off-diagonal elements 〈Bm|Bn〉 (m �= n) reflects the
nonorthonormality of the vectors |Bn〉.

Here the ≈ sign is introduced because we restrict the
sum to N elements (the subspace B) instead of K (the
“complete” basis within the limits of convergence). Defining
the matrix of overlaps Bαn = 〈φα|ψn〉 and the diagonal matrix
E = diag(E1,E2, . . . ,EN ), the TB Hamiltonian matrix H̄ is
expressed as

H̄ = BEB†, (1)

where B is a rectangular M × N matrix. In this way, the
computation of the TB matrix reduces to a straightforward
matrix operation which does not require any special iterative
procedure as needed by some of the methods discussed above
in (i). This construction takes advantage of the full knowledge
of the eigenenergies and eigenfunctions obtained in the large-
basis calculation, in contrast to using the charge density only
as in (ii). This scheme, also known as direct projection, has
been tried in the past but was considered unreliable: even
though it yielded an overall resemblance to the large-basis band
structure, it introduces spurious states “randomly” scattered
across the energy spectrum and unphysical hybridizations. See
for instance the band structures in Fig. 5(b) as well as Ref. [8]
(Figs. 5 and 7, see also Ref. [19]), Ref. [20], and Figs. 1, 2,
and 4 in Ref. [21].

We have previously shown that accurate TB Hamiltonians
can be straightforwardly obtained from Eq. (1) if only Bloch
states |ψn〉 that project well on the selected AO basis set (high
projectability >95%) are included in the subspace B, i.e.,
filtering. This process introduces a null space, which is shifted
outside the energy window of interest [21]. In this work we
present a generalized scheme for the construction of TB Hamil-
tonians in a minimal basis set, suitable for cases when states
with moderately high projectability (�85%) are needed to be
included. The new scheme further enhances the accuracy of the
TB Hamiltonian and has the added advantage of making the TB
eigenvalues insensitive to the shifting operation. Furthermore,
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FIG. 2. (a) Evolution of the tight-binding eigenvalues with
increasing number of low-projectability Bloch states. N is the number
of states used in the construction of the TB matrix, where the
first 17 states are those of high projectability. In all cases, the
null states (not seen) are shifted by κ = 8 eV. (b) Zoom-in around
the low-projectability TB eigenvalues. The red dots mark the TB
eigenenergy corresponding to the 18th Bloch state. (c) Energy
variation of each TB state n against increasing N . The reference
energy Ē∗

n corresponds to the Hamiltonian without low-projectability
states (N = 17).

we use perturbation theory to analytically demonstrate that
the spurious states and unphysical hybridizations previously
observed in the direct projection scheme are due to the presence
of low projectability states.

II. METHODOLOGY

In our work we use plane waves (PWs) as the large basis
for the ab initio calculation of the Bloch states |ψn〉. The wave
vector k index is suppressed so the analysis for a periodic
system can be understood to be at a particular k point. We
choose dim(A) = M atomiclike localized orbitals |φα〉 [with
M � N = dim(B)] which we assume to be an orthonormal
set 〈φα|φβ〉 = δαβ . These could be Wannier functions or, more
pragmatically, Löwdin orbitals. The restriction to this subspace
is obtained through the projector operator P̂ = ∑

α |φα〉〈φα|
that is Hermitian and idempotent.

Let us consider a set of column vectors {|Bn〉} obtained
from direct projection of each Bloch wave |ψn〉 of the
B subspace onto the chosen orthonormal atomic orbitals,
P̂ |ψn〉 = ∑

α Bαn|φα〉. The elements of the vector |Bn〉 are the
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projection coefficients Bαn = 〈φα|ψn〉. The explicit expression
for the computation of these coefficients is given in Eq. (A8).

The projector P̂ is represented as PB = B†B, a N × N

matrix with entries

(B†B)nm = 〈ψn|P̂ |ψm〉.
The diagonal elements are the “projectabilities,” defined as

pn ≡ (B†B)nn = 〈Bn|Bn〉 = 〈ψn|P̂ |ψn〉,
that measure to what extent the eigenstate ψn is well described
in the space A specified by the projector P̂ .

While by construction tr(P̂ ) = M , the trace of the matrix
PB in B becomes

tr(PB) =
N∑

n=1

〈ψn|P̂ |ψn〉 � N � M.

If A is complete, all ψn states project perfectly (pn = 1) and
the trace equals N , the size of B. The deviation from N is a
criteria to assess the accuracy of the TB representation in A
with respect to the electronic structure in the B subspace.

High projectabilities are expected for the states in the lowest
bands and poor projectabilities at higher energies. One would
expect to obtain accurate TB eigenvalues and eigenvectors
for the states with the largest pn ≈ 1, however, as proved in
Sec. III states with low projectability, when folded in the TB
Hamiltonian, hinder the accuracy of the results.

In order to represent well the electronic structure of the
system one needs to exclude from B the “bad” states with
low projectability by choosing N accordingly (pn larger than
a chosen threshold for each n = 1, . . . ,N). The procedure
involves the construction of the tight-binding Hamiltonian
following Eq. (1) with a normalized set of column vectors
|An〉 = |Bn〉/√pn such that 〈An|An〉 = 1.

These states are used to build the initial TB Hamiltonian:

H̄ = AEA† , (2)

where the N columns of the matrix A are the vectors |An〉. This
product is an M × M matrix constructed using only N states.
Because of this construction, H̄ is singular with an unphysical
null space N of size M − N that compromises the accuracy
of the eigenvalues (see Sec. III). In order to remove the effect
of the null space we perform an orthogonal projection (see
Ref. [22]) using the set of vectors {|An〉},

QN = IM − A(A†A)−1A†, (3)

where IM is the M × M identity matrix. Reconstructing the
TB Hamiltonian as

H̄κ = H̄ + κQN , (4)

it is possible to shift the eigenenergies corresponding to the
null space elements to an arbitrary energy κ , away from
the band with good projectability. In practice, if only very
high-projectability states are considered, A†A is close to
the identity, and the shifting matrix can be approximated
by QN ≈ IM − AA†, avoiding the matrix inversion. This
approximation introduces a small κ dependence into the states
of the TB subspace. This dependence can be safely neglected
when using a very high-projectability filtering criteria (e.g.,
pn > 0.95 in Ref. [21]) or applying only small values of κ ,

otherwise the exact expression in Eq. (3) is required for a
faithful description of the energy bands.

III. EFFECT OF LOW PROJECTABILITY STATES IN THE
TB HAMILTONIAN

Minimal basis set have proved satisfactory to achieve
accurate TB matrices for periodic systems using the filtering
procedure. However, if more unoccupied bands of high
projectability are needed for a particular application, one can
achieve that by progressively increasing the size of the AO
basis set, e.g., from single ζ (SZ) (minimal) to double ζ (DZ),
etc., effectively increasing the size of H̄κ . In this way, the
richness of the PAO basis can be systematically increased
beyond this minimal dimension by including more radial
functions and angular momentum projectors to improve the
representability of the DFT bands [23]. Nonetheless, for most
cases it is more advantageous to trade off some accuracy away
from the Fermi energy for the convenience of still dealing with
TB matrices of smaller sizes, i.e., to keep the basis minimal,
especially in the study of systems with a large number of atoms.
This can be achieved by including bands with moderately
high projectability (pn � 0.85) in the construction of the TB
matrix. However, as we discussed in Sec. II, bands with low
projectability affect the accuracy of the TB representation inA.

To learn about the eigenvalues of H̄κ , we start by applying
it to A. One gets

H̄κA = H̄A + κQNA = H̄A = AEP,

where P = A†A. To find an analytical expression for the
eigenvalues of H̄κ , we assume the number of states ψn to be
equal to the number of AOs (N = M), so that A is square and
invertible [24]. Then, the expression above, H̄κA = A(EP ),
has a M × M square matrix EP which is the representation
of H̄ in some linearly independent basis (columns of A) and
its eigenvalues are also those of H̄k (and H̄ ) that we call Ē.

EP , with the diagonal pulled out as a perturbation, is then

EP = diag(P11E1, . . . ,PMMEM )

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 P12E1 P13E1 . . .

P21E2 0 P23E2 . . .

P31E3 P32E3 0 . . .

...
...

... PM−1,MEM−1

PM,M−1EM 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

First of all, if any pn = 1, then that column and row of the
perturbation are zero. The diagonal element is decoupled from
the rest of the matrix so one eigenvalue will be exactly Ēn =
En. In other words, a perfect representation of the exact wave
function means the basis is complete for that state and that the
action of Ĥ in that basis will be perfectly described.

Second, if one ignores the off diagonal entries, it can be
seen that the eigenvalues of H̄κ would be scaled versions of
Ĥ where each eigenvalue is being scaled by its projectability
so the energies of H̄κ would be Ēn ≈ PnnEn. Therefore, bad
projectability will incorrectly deliver a TB eigenvalue close to
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zero. This has been the source of much trouble in previous TB
methods without filtering.

Third, the off-diagonal elements of the perturbation matrix
lead to hybridization. Namely, the lack of perfect projectability
leads to level repulsion and further changes of the TB
eigenvalues, beyond the scaling by Pnn mentioned above. The
perturbation matrix is small, since (i) the off-diagonal elements
of P are negligible for all states with high projectability, and
(ii) they are still considerably small for the states with lower
projectability (see Appendix C). Second-order perturbation
theory on the off-diagonal elements gives the analytical
expression for the nth eigenvalue of H̄ , which is called Ēn,
changing from PnnEn to

Ēn = PnnEn +
∑
j �=n

|Pjn|2EnEj

PnnEn − PjjEj

+ O(P 3). (5)

In addition to showing that the hybridization changes the ener-
gies, the formula shows that the changes due to hybridization
can be much larger than one would naively expect based only
on looking at the small Pjn entries: first the numerator has an
additional Ej energy factor, and second, the energy difference
in the denominator is based on the scaled energies which
means the energy difference can be smaller than between
the actual eigenvalues (especially when both Pnn and Pjj are
significantly smaller than one) thus enhancing the contribution
of the hybridization.

IV. RESULTS AND DISCUSSION

Here we illustrate the effects of low-projectability bands
on the accuracy of the TB matrices derived for a molecular
system, benzene, and a crystal, cobalt antimonide. The ab initio
calculations were performed with plane-wave DFT codes:
VASP [25] and/or QUANTUM ESPRESSO [26].

A. Benzene

In the case of benzene we computed the electronic struc-
ture using VASP within the projector-augmented-wave (PAW)
method [27] and the Perdew-Burke-Ernzerhof (PBE) [28]
functional. We determined the molecular wave functions ψn

(molecular orbitals) of an isolated benzene molecule in a large
cube cell of side 15 Å using the 	 point to sample the reciprocal
space and a kinetic-energy cutoff of 29.4 Ry.

The detailed procedure to compute the projection coeffi-
cients, Bαn, is discussed in Appendix A. The states ψn are
projected onto a minimal basis set of M = 30 AOs (C: 2s,2p;
H: 1s) taken from public repositories [29].

The diagonal elements of the projector matrix PB = B†B
shown Fig. 1 are the projectability numbers pn for each Bloch
state ψn. In the chosen AO basis set, the 17 Bloch states of
lowest energy have high projectability (pn > 0.88) whereas
states 18 � n � 20 have low projectability (0.20 < pn <

0.32). Moreover, higher-energy states (21 � n � 23) are not
projectable in this particular AO set (pn = 0.1, 0.005, 0.076,
respectively).

As discussed above, an accurate TB Hamiltonian matrix
can be constructed by filtering out states with low projectabil-
ity. Therefore, considering only the lowest N = 17 states
(pn > 0.88) yields TB eigenenergies that are in excellent

agreement with the DFT values. The black dots in Fig. 2(a) for
N = 17 show a maximum deviation from the DFT energies
(gray lines) of only 5 meV.

In order to study the effect of states with lower projectability
on the accuracy of the TB eigenenergies, we intentionally relax
the filtering criterion to progressively include some states with
lower projectability (N > 17) in the B subspace. The vectors
|An〉 corresponding to the low-projectability states are left
unnormalized, i.e.,

|An〉 =
{|Bn〉/√pn, if pn � 0.85

|Bn〉 otherwise,
(6)

The normalization of the high-projectability vectors |An〉 arti-
ficially makes the corresponding diagonal elements (PB)nn =
pn (≈1) equal to 1, but this small change does not alter the
analysis that follows.

Expectedly, the TB eigenenergies Ēn corresponding to low-
projectability states largely underestimate the DFT values En.
Those TB energies are seen in the zoom-in box in Figs. 2(a)
and 2(b).

The inclusion of the lower projectability state n = 18, for
instance, yields the “bad” TB eigenvalue Ē18 = 0.9732 eV.
The large underestimation with respect to E18, seen in Fig. 2,
is accounted for by directly scaling the DFT values by the
projectability, i.e., P18,18E18 = 0.9903 eV, as discussed before.
The evolution of Ē18 with increasing N is shown in Fig. 2(b)
using red dots for visual aid.

Including the degenerate states n = 19,20 also yields
strongly underestimated values Ē19 = Ē20 = 0.7621 eV and
in agreement with P19,19E19 = 0.7877 eV.

Moreover, including the states 21 � n � 23, which have
even smaller projectabilities, yields TB eigenvalues close to
zero: 0.0, 0.0, 0.2949 eV, respectively. Except for Ē21, these
values compare well to PnnEn = 0.3984, 0.0218, 0.3117 eV,
respectively. The departure of Ē21 from P21,21E21 is due to
hybridization effects discussed later in the text.

As hinted by Eq. (5), a state |An〉 hybridizes with another
state |Aj 〉 via a nonzero off-diagonal element of Pnj =
〈An|Aj 〉. The two diagonal blocks, of size 17 × 17 and 6 × 6,
seen in Fig. 1, correspond to high and low projectability
states. The 17 × 6 and 6 × 17 off-diagonal blocks allow
hybridizations between both types of states. Since all elements
in the off-diagonal blocks are small (�0.0729 eV), the low-
projectability states are expected to have only a small impact
on the high projectability ones. This is confirmed by inspecting
the variations of the “good” TB eigenenergies (Ēn, n = 1–17)
while increasing the size N of the subspace B. The variations
are small and not noticeable in Fig. 2(a). Instead, we plot
the TB energies relative to reference values Ē∗

n in Fig. 2(c).
Ē∗

n are the TB eigenenergies when N = 17, that is, the high-
projectability case. The maximum variation found is 21.8 meV
and happens for Ē11 in the fifth panel (once state n = 22 is
included). This is consistent with the maximum element of
the off-diagonal block happening at |P11,22| = 0.0714. We
find that P11,22 is the only nonzero off-diagonal element in
the 11th row (and column) of the projector matrix, the energy
variation can be directly attributed to the overlap between |A11〉
and |A22〉 following the hybridization mechanism depicted by
the yellow circles and arrows in Fig. 1. The variation is well
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estimated by the second-order perturbation model, Eq. (5),
which reduces to


Ē11 ≈ |P11,22|2E11E22

P11,11E11 − P22,22E22
= 21.7 meV .

All hybridizations due to the off-diagonal elements in
Fig. 1 (or similarly, of the matrix P ) translate into peaks
in Fig. 2(c). The number of peaks in each panel increase
as more low-projectability states are progressively included.
Every new peak n that appears in a particular panel N reflects
the hybridization between a low-projectability state—the one
newly introduced in panel N—and the “good” TB eigenstate n.
Each new peak can be directly traced to a nonzero off-diagonal
element in Fig. 1. For instance, the peaks at n = 1,6 in
panel N = 18 are due to P1,18,P6,18; peaks n = 3,10 in panel
N = 19 to P3,19,P10,19, etc.

The elements of the off-diagonal blocks yield only small
fluctuations; however, the overall maximum off-diagonal
element |P18,21| = 0.1757 is inside the smaller 6 × 6 diagonal
block. This indicates that hybridizations between the low-
projectability states |A18〉 and |A21〉 are stronger. Hybridization
causes the level repulsion of Ē18 (red dot) along the upward
arrow observed in Fig. 2(b) at the introduction of n = 21. The
repulsion shifts up the level by 0.3953 eV from P18,18E18,
which is the value expected in the absence of hybridization,
marked by the red cross. The leading hybridization mechanism
is depicted using green circles and lines in Fig. 1. The
perturbative estimate of the level repulsion is


Ē18 ≈ |P18,21|2E18E21

P18,18E18 − P21,21E21
= 0.6656 eV .

Ē21 has the opposite level repulsion 
Ē21 = −
Ē18 (down-
ward arrow), which explains the discrepancy between the value
in the absence of hybridization P21,21E21 = 0.3984 eV (black
cross) and the actual TB energy Ē21 ≈ 0 eV discussed earlier.

The construction in Eq. (2) introduces a null space N
containing (M − N ) degenerate eigenenergies ĒN = 0 eV.
The matrix QN = IM − A(A†A)−1A† is used to selectively
move the null subspace upwards in energy by the control
parameter κ , without affecting the remaining TB energies.
With the exact QN the TB values do not acquire a dependence
on κ . The evolution of the TB eigenvalues with κ in Fig. 3(a)
readily shows that only the degenerate null eigenenergies
have a dependence on κ (marked with solid black lines). The
low-projectability TB states (dots about 0.85 eV in panels
N = 18 and N = 19) do not belong to the null space and
therefore are also independent of κ . As argued in Sec. II,
the shifting matrix can be approximated by QN ≈ IM − AA†,
which avoids a matrix inversion, but at the cost of introducing a
small κ dependence to the good TB values. The approximation
is safe when using a high-projectability filtering criterion
(N = 17). In this case both the exact [first panel in Fig. 3(a)]
and the approximated QN [first panel in Fig. 3(b)] yield the
same TB eigenvalues. Nonetheless, the energy deviation due
to the κ dependence introduced by the approximated QN can
become significant when low-projectability Bloch states are
introduced; for instance, compare the second (and third) panels
in Figs. 3(a) and 3(b). With the exact QN [Fig. 3(a)] the
low-projectability TB eigenvalues around 0.85 eV remain flat
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FIG. 3. Behavior of the null and low-projectability TB eigen-
states under the shifting operation using (a) the exact QN = IM −
A(A†A)−1A† or (b) the approximated QN ≈ IM − AA† shifting
matrix.

whereas they acquire a chiefly linear κ dependence (marked
with blue lines) when using the approximated QN [Fig. 3(b)].

B. CoSb3

We analyze CoSb3 as an example of a periodic solid.
CoSb3 is a typical binary skutterudite compound with cubic
structure and space group 204. Skutterudites are among the
most promising thermoelectric materials [30].

We use the QUANTUM ESPRESSO suite of ab initio codes to
obtain the Bloch wave functions and the matrix B of projection
coefficients. The wave functions are obtained using the PBE
functional with an energy cutoff of 50 Ry and the PAW data
set from the PSlibrary 1.0.0 [23]. We choose a minimal basis
set to project onto composed of M = 84 AOs [Co: 4s,4p,3d;
Sb: 5s,5p (taken from the PAW data set)].

The projectability of all occupied DFT bands (n � 48)
is very high pn > 0.97 and progressively decreases for the
unoccupied bands at higher energies [see Fig. 4(a)]. The basis
set supports nine unoccupied bands with high projectability
of pn > 0.87 (49 � n � 57) before declining to poor values
of pn < 0.15 for n � 58. An accurate TB Hamiltonian is
obtained when considering only Bloch states of high pro-
jectability (N = 57) as confirmed by the excellent match
between the TB (black and red dots) and the DFT bands (gray
lines) seen in Fig. 5(a). The band n = 55 is shown in red.
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FIG. 4. (a) Minimum projectability pn per band n over all k
points for CoSb3 on the chosen minimal basis set. A sharp decline of
the projectability (pn < 0.2) is seen for states n � 58. (b) Projector
matrix |PB | at k0 = (0.4, − 0.4,0.5), in reciprocal coordinates. Only
the matrix elements from 44 � n � 58 are shown.

To illustrate the effect of hybridization on the accuracy
of the TB Hamiltonian, we include one Bloch state n = 58
of low projectability (p58 = 0.15) in the construction of the
Hamiltonian. The corresponding TB band [not present in panel
(a)] is shown in Fig. 5(b) in blue.

First, it is seen that the TB band n = 58 [blue dots
in Fig. 5(b)] does not reproduce the reference DFT band,
especially in regions of reciprocal space with the lowest
projectability (around H) where the TB eigenvalues strongly
underestimate the DFT values and are consistent with being
scaled by their projectabilities, i.e., PnnEn ∼ 0.4 eV.

Second, the fidelity of the band n = 55 (red dots) is
noticeably reduced around H, with respect to Fig. 5(a), due
to hybridization with the low-projectability band n = 58 (blue
dots), which leads to level repulsions. The inset in Fig. 5(b)
shows the repulsion of the eigenstates at k0 = (0.4, − 0.4,0.5),
in reciprocal coordinates. The crosses mark the values of Ē55

(red) and Ē58 (blue) expected in the absence of hybridization
(≈PnnEn). The level repulsion due to hybridization is shown
along the arrows. As seen in Fig. 4(b), the predominant nonzero
off-diagonal element at k0 is P55,58, which indicates that
the hybridization primarily involves only |A55〉 and |A58〉 as
depicted by the green circles and lines in Fig. 4. Therefore,
the repulsion of Ē55—the magnitude of which is given by the
size of the arrows in the inset—can be analytically estimated
by the perturbation formula as


Ē55 = −
Ē58 ≈ |P55,58|2E55E58

P55,55E55 − P58,58E58
= 0.1928 eV,

which in agreement to the actual value of 0.1381 eV.
All the eigenenergies seen in both Figs. 5(a) and 5(b), i.e.,

the TB subspace, are insensitive to any chosen value of κ

since the exact shifting matrix QN is used. The null subspace
(eigenvalues not seen) have been rigidly shifted by κ = 2 eV
outside the region of interest. In panel (c) we recompute the
TB Hamiltonian from (b) but using the approximated shifting
matrix (QN ≈ IM − AA†) and κ = 1.0 eV. Different shifting
patterns are observed: (i) The eigenvalues of the null subspace
shift rigidly with the value of κ and, thus, are pinned along the
horizontal line at 1.0 eV. (ii) The “unhybridized” bands of the
TB subspace (black dots) show no noticeable difference with
respect to Fig. 5(b). This confirms that while they formally
acquire a κ dependence, introduced by the approximated QN ,
the effect is negligible for bands with high projectability.
(iii) The high-projectability band n = 55 (red dots) should

Γ H N Γ P H
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

E
ne
rg
y
-E
F
(e
V
)

(a)

Γ H N Γ P H

)c()b(

Γ H N Γ P H

k0

ΔĒ58

FIG. 5. Tight-binding eigenenergies for CoSb3. (a) Accurate TB bands are obtained when adopting a high-projectability filtering criterion
(pn > 0.87) in the TB Hamiltonian. The band n = 55 is shown in red. (b) The inclusion of a low-projectability band (p58 = 0.1474) introduces
the eigenenergies seen in blue, which induces unphysical hybridizations with the band n = 55. The arrows in the inset, whose size is |
Ē58|,
illustrate the level repulsion at k0 = (0.4, − 0.4,0.5), in reciprocal coordinates, due to hybridization. (c) The TB Hamiltonian is built with the
approximated shifting matrix QN and κ = 1.0 eV to show the distinct dependencies on κ of the eigenstates. The reference DFT bands are
shown with gray lines. Brillouin-zone integration follows the AFLOW standard as discussed in Ref. [31].
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also be insensitive to κ; nonetheless, it acquires a more
noticeable dependence indirectly via its hybridization to the
κ-dependent low-projectability band n = 58. Consequently,
the most noticeable changes of this band with respect to (b) [32]
happen around H where the hybridization is stronger. (iv) The
low-projectability band n = 58 (blue dots) shows a noticeable
dependence on κ , especially around the lowest-projectability
k points. For instance, the value of κ = 1.0 eV effectively
shifts the states around H by ∼0.9 eV, i.e. from ∼0.4 eV [as
in Fig. 5(b) [32] to ∼1.3 eV.

V. CONCLUSIONS

In this paper we have outlined a noniterative scheme to
derive highly accurate ab initio TB Hamiltonian matrices in a
minimal basis set representation.

Minimal basis sets may be insufficient to converge self-
consistent quantum-mechanical calculations with linear com-
bination of atomic orbitals, however, they are adequate for
the purpose of projecting wave functions obtained with fully
converged basis and building the reduced TB matrices.

Low-projectability Bloch states have spurious effects when
included in the construction of the TB matrix. We have
unambiguously shown the underlying mechanism for the
formation of the spurious states. The removal of those states,
via the application of a shifting matrix, delivers accurate TB
matrices.

We have introduced an expression for the shifting matrix of
a nonorthogonal set of vectors. This expression improves the
quality of the TB Hamiltonian by removing any unwanted
dependence that the shifting procedure had on the TB
eigenstates of interest.
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APPENDIX A: PROJECTION OF BLOCH STATES ON
PSEUDOATOMIC ORBITALS

The pseudo-wave-function Bloch state |ψ̃nk〉 is expanded
in plane-wave basis |k + G〉 as

|ψ̃nk〉 =
∑

G

CGnk|k + G〉. (A1)

The plane-wave basis

〈r|k + G〉 = 1√
�0

ei(k+G)·r (A2)

is defined to be normalized to 1 over the volume of the
primitive unit cell �0. The orthonormality of the basis
〈k + G|k + G′〉 = δGG′ allows the expansion coefficients to
be defined by the projection

CGnk = 〈k + G|ψ̃nk〉. (A3)

In the US/PAW pseudopotential formalisms, the projection
of the all-electron (AE) wave functions ψnk onto an atomic
orbital φk

μ is computed in terms of their corresponding
pseudized quantities ψ̃nk and φ̃k

μ, and the overlap operator Ŝ =
1̂ + ∑

I ij |βk
I i〉QI

ij 〈βk
Ij |. The pseudoatomic orbitals (PAO) and

β projectors are defined as

φ̃μ(r) = Rφ
μ(r)Ym

l (̂r), (A4)

where μ ≡ {I lm} is a composite index of the ion center I and
quantum numbers {lm} of the PAO. The real-space β projectors
are analogously defined [33], with i ≡ {lm}, as

βIi(r) = R
β

Ii(r)Ym
l (̂r). (A5)

The localized basis |φ̃k
μ〉 for periodic calculations is con-

structed from Bloch sums of the PAOs,〈
r
∣∣φ̃k

μ

〉 = 1

N

∑
R

eik·Rφ̃μ(r − τμ − R), (A6)

where N is the number of lattice vectors R. The Bloch sum for
the AO basis |φk

μ〉 follows the same definition. Notice that the
factor 1

N
implies normalization of |φ̃k

μ〉 to 1 over the primitive
unit cell, which is consistent with the normalization of the
plane-wave basis in Eq. (A2).

Then, the projection coefficients are calculated in term of
the pseudized quantities:

Bk
μn = 〈

φk
μ

∣∣ψnk
〉 = 〈

φ̃k
μ

∣∣Ŝ|ψ̃nk〉
= 〈

φ̃k
μ

∣∣ψ̃nk
〉 + ∑

GG′
I ij

〈
φ̃k

μ

∣∣βk
I i

〉
QI

ij

〈
βk

Ij

∣∣ψ̃nk
〉
. (A7)

The integrals are more efficiently computed in the |G〉 basis.
Using the identity 1̂ = ∑

G |G〉〈G| = ∑
G |k + G〉〈k + G|

one has

Bk
μn =

∑
GG′

〈
φ̃k

μ

∣∣k + G
〉〈k + G|ψ̃nk〉

+
∑
GG′
I ij

〈
φ̃k

μ

∣∣k + G
〉〈

k + G
∣∣βk

I i

〉
QI

ij

× 〈
βk

Ij

∣∣k + G′〉〈k + G′∣∣ψ̃nk
〉
.

Using the definition in Eq. (A3) for the expansion coeffi-
cients,

Bk
μn =〈

φk
μ

∣∣ψnk
〉 =

∑
G

〈
φ̃k

μ

∣∣k + G
〉
CGnk

+
∑
GG′
I ij

〈
φ̃k

μ

∣∣k + G
〉〈

k + G
∣∣βk

I i

〉
QI

ij

〈
βk

Ij

∣∣k + G′〉CG′nk,

where the objects in brackets are given in Eqs. (B6) and (B7).
The coefficients Bk

μn expand the Bloch state on a PAO basis
{φμ}. Furthermore, the coefficients on a Löwdin orthonormal
basis {φ̄μ} are readily obtained by

B̄k
μn =

∑
i

(Sk−(1/2))iμBk
μn, (A8)

where the upper bar symbol is used to indicate orthonormality
and Sk

μν = 〈φk
μ|φk

μ〉 is the matrix of overlaps between PAOs.
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Löwdin coefficients and orbitals are assumed throughout
the main text where we drop the upper bar and k superscript
in the notation of B̄k.

APPENDIX B: PROJECTION OF THE PLANE-WAVES
BASIS ON PSEUDOATOMIC ORBITALS

Using the relation 1̂ = ∫ |r〉〈r|dr and Eqs. (A2) and (A6)
to evaluate the projection 〈φ̃k

μ|k + G〉 one has

〈
φ̃k

μ

∣∣k + G
〉 =

∫
dr

〈
φ̃k

μ

∣∣r〉〈r|k + G〉 (B1)

= 1

N
√

�0

∑
R

e−ik·R
∫

drei(k+G)·rφ̃∗
μ(r − τμ − R) (B2)

= ei(k+G)·τμ

N
√

�0

∑
R

eiG·R
∫

drei(k+G)·rφ̃∗
μ(r) (B3)

= ei(k+G)·τμ

√
�0

∫
drei(k+G)·rφ̃∗

μ(r). (B4)

Using the plane-wave expansion ei(k+G)·r =∑
l′m′ 4πil

′
jl′(|k + G|r)Ym′∗

l′ (̂k + G)Ym′
l′ (̂r), where the

hat notation indicates the directional angles of the vector
under it, Eq. (A4), and dr = r2 sin θdrdθdϕ, the last
expression reduces to

〈
φ̃k

μ

∣∣k + G
〉 =4πei(k+G)·τμ

√
�0

∑
l′m′

il
′
Ym′∗

l′ (̂k + G)

×
∫

r2Rφ
μ(r)jl′(|k + G|r)dr

×
∫

Ym∗
l (̂r)Ym′

l′ (̂r) sin θdθdϕ. (B5)

With the the normalization identity
∫

Ym∗
l (θ,φ)Ym′

l′ (θ,φ)
sin θdθdϕ = δll′δmm′ , we arrive at the final expression:〈

φ̃k
μ

∣∣k + G
〉 = fGμkY

m∗
l (̂k + G)

∫
r2Rφ

μ(r)jl(|k + G|r)dr,

(B6)

with fGμk = 4πil�0
−1/2ei(k+G)·τμ .

Analogously for the projection on the β functions:

〈
βk

I i

∣∣k + G
〉 = fGμkY

m∗
l (̂k + G)

∫
r2R

β

Ii(r)jl(|k + G|r)dr.

(B7)

APPENDIX C: OFF-DIAGONAL ELEMENTS OF THE
PROJECTOR MATRIX

Given the projector matrix

Pnm = (B†B)nm = 〈ψn|P̂ |ψm〉,
since ψn forms a complete Hilbert space, the matrix P will
also be a projection operator by closure. Namely,

Pnm = (P 2)nm =
∑

j

PnjPjm,

so there is a constraint for the important diagonal elements
(and using the Hermitian nature of the matrix P ):

pn = p2
n +

∑
m�=n

|Pnm|2.

This expression puts an upper bound of 1 on the diagonal
elements. One can also define an upper bound on any off-
diagonal element via

|Pnm| � min

(√
pn − p2

n,

√
pm − p2

m

)
.

Notice that if pn = 1 (or ≈1) which means perfect projec-
tion, then Pnm = Pmn = 0 (or ≈0) ∀m �= n so the entire nth
column and row of P is zero (excluding the diagonal which
is 1).

For cases of smaller projectability pn < 1, each off diagonal
entry will still be much smaller than pn since there are many
of them in the sum rule; but the sum of their squares must add
up to pn − p2

n.
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