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Self-consistent perturbation expansion up to the second order in the interaction strength is used to study
a single-level quantum dot with local Coulomb repulsion attached asymmetrically to two generally different
superconducting leads. At zero temperature and a wide range of other parameters, the spin-symmetric version of
the expansion yields excellent results for the position of the 0-7 impurity quantum phase transition boundary and
Josephson current together with the energy of Andreev bound states in the 0 phase as confirmed by numerical
calculations using the numerical renormalization group method. We analytically prove that the method is charge
conserving as well as thermodynamically consistent. Explicit formulas for the position of the 0-7 phase boundary
are presented for the Hartree-Fock approximation as well as for its variant called generalized atomic limit. It is
shown that the generalized atomic limit can be used as a quick estimate for the position of the phase boundary at
half-filling in a broad range of parameters. We apply our second-order perturbation method to the interpretation
of the existing experimental data on the phase boundary with very satisfactory outcome, suggesting that the so-far
employed heavy numerical tools such as numerical renormalization group and/or quantum Monte Carlo are not

necessary in a class of generic situations and can be safely replaced by a perturbative approach.
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I. INTRODUCTION

In the last decade, advances in the fabrication of nanode-
vices enabled to connect quantum dots with superconducting
(SC) leads forming superconducting quantum dot nanostruc-
tures generalizing the conventional Josephson junctions [1].
Many experimental realizations of this concept using various
BCS materials for the superconducting leads (Al, Pb, or Nb)
and a great variety of quantum dots formed in semiconducting
nanowires [2,3] or dots [4], carbon nanotubes [5-23], or even
single Cgp molecules [24] demonstrate the versatility of such
setups. A major advantage of the superconducting quantum
dots over conventional microscopic Josephson junctions lies
in the possibility of a detailed control of their microscopic
parameters, e.g., by tuning the onsite energy by a gate voltage.
Such a high tunability is promising for potential applications
of these hybrids in the nanoelectronics (e.g., as a super-
conducting single-electron transistor) or quantum computing
as well as for detailed studies of their nontrivial physical
properties.

These include Josephson supercurrent, Andreev subgap
transport, and the way they are influenced by the zero-
dimensional nature of the superconducting quantum dots with
finite-size quantized levels and potentially strong effects of
the local Coulomb interaction leading to strongly correlated
phenomena such as the Kondo effect [25]. In many cases,
the system can be very well described by a simplest single-
impurity Anderson model (SIAM) coupled to BCS leads
[26], which, depending on particular parameters, may exhibit
so-called 0-7 transition signaled by the sign reversal of the
supercurrent [2,10,11,16,20,23]. The 0-7 transition is induced
by the underlying impurity quantum phase transition (QPT)
related to the crossing of the lowest many-body eigenstates
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of the system from a spin-singlet ground state with positive
supercurrent (0 phase) to a spin-doublet state with negative
supercurrent (m phase) [26-36]. In single-particle spectral
properties, this transition is associated with crossing of the
Andreev bound states (ABS) at the Fermi energy as has also
been observed experimentally [3,18,21].

A number of theoretical techniques have been used to
address the O-m transition and related properties of super-
conducting quantum dots. A very good quantitative agreement
with the experiments [21,23,26] can be obtained in a wide
range of parameters using heavy numerics such as numerical
renormalization group (NRG) [21,30,32,37-42] and quantum
Monte Carlo (QMC) [23,26,31,43]. However, both NRG
and QMC are time and computational resources consuming.
Alternative (semi)analytical methods based on various, often
quite sophisticated, perturbation approaches either around
noninteracting limit (U = 0) such as the mean-field theory
[29,30,41,44], slave particles [33,45], and functional renor-
malization group (fRG) [35,46] or around the atomic limit
(I' > 0or A — 00) [36,47,48] have been used for qualitative
and in some limits even a quantitative description of the super-
conducting quantum dot properties. Yet, none of the mentioned
methods with the exception of the mean-field/Hatree-Fock
(HF) approximation are sufficiently simple and at the same
time versatile to serve as a generic (semi)analytical solver. HF
approximation has the attributes of the generic method [41],
yet, it suffers from fundamental conceptual problems, namely,
it identifies the 0-7 transition with the point of breaking of
the spin-symmetric solution and attributes the m phase to
the magnetic solution of the self-consistent HF equations.
This unphysical breaking of the spin symmetry together
with the ensuing discontinuities of various physical quantities
even at nonzero temperatures contradicting the experimental
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observations disqualify the unrestricted HF approach as a
reliable solver for the superconducting SIAM.

Surprisingly, with the exception of a few fragmented
precursors [44,49], it has not been noticed until very recently
[50,51] that the resummed perturbation theory incorporating
second-order dynamical corrections to the spin-symmetric HF
solution yields at zero temperature a nearly perfect description
of the 0 phase for symmetric leads in a wide range of
parameters. The aim of this work is to demonstrate that
second-order perturbation theory is an efficient and reliable
method not only for the symmetric leads, but also for a more
general and realistic case of asymmetric tunnel coupling to
different leads (i.e., with various values of superconducting
gaps). This method is numerically much less expensive than
NRG or QMC. Note that in the general case one has to deal with
the two-channel Anderson model, therefore, the introduced
second-order perturbation theory can be 10 or even 100 times
faster (depending on parameters and used CPU cores) than
the fully convergent NRG calculations. Simultaneously, this
method gives nearly perfect results for the physical quantities
in the O phase at zero temperature in a wide range of parameters
corresponding to weakly and intermediately correlated regime,
where the conventional deployment of NRG is unnecessary.
As known from previous studies [30,37], the ground state
in this regime is the BCS singlet in contrast to the strongly
correlated regime where the ground state is the Kondo singlet.
We illustrate this in Fig. 1 which depicts the ground-state phase
diagram in the U-A plane for quantum dots with symmetric
leads at half-filling. The crossover region between the BCS and
Kondo singlets is approximately plotted as a gray stripe. The
BCS singlet regime covers a broad range of parameters (note
the logarithmic scale on the vertical axis) where second-order
perturbation theory is in a nearly perfect agreement with NRG.
Thus, we advocate this method to be the generic first-choice
solver for the properties of the O phase.

In order to support this standpoint, we carefully examined
formal properties of the approximation such as charge con-
servation, gauge invariance, and thermodynamic consistency
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FIG. 1. Sketch of the phase diagram in the U-A plane of the
superconducting single-impurity Anderson model with symmetric
leads at half-filling. Full red line separates the singlet and doublet
ground states and the shade region signals the crossover between
the two kinds of singlet ground states. The perturbative approach
presented in this paper works well in the whole BCS singlet regime
as demonstrated in detail in Figs. 6 and 7.
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and showed that it preserves all these important requirements.'
Then, we systematically studied the zero-temperature O-phase
quantities in a wide parameter range, paying a special attention
to the position of the phase boundary between the O and
7 phases. We identified the limits of applicability of our
method by direct comparison with NRG data obtained via
the NRG LJUBLJANA open source code [52,53]. At small
enough temperatures, the boundary depends only weakly
on temperature [35,43] and, therefore, our zero-temperature
results are directly applicable to the existing experimental data.
We finally compared our predictions with two experiments
with excellent agreement, further justifying our claims.

The outline of the paper is as follows. In Sec. II, we
introduce the superconducting SIAM, the Matsubara Green
function methodology of the perturbation theory together with
the Josephson current, and ABS formulas in the first subsec-
tion, while in the second part we study charge conservation,
gauge invariance, and thermodynamic consistency conditions
to be obeyed by approximations. In Sec. III, we introduce and
analyze properties of the Hartree-Fock approximation and its
dynamical corrections. In the following Sec. IV, after a brief
summary of technical issues concerning the evaluation of the
approximative equations, we present results for the position of
the 0- boundary first for the case of identical leads (equal SC
gaps) and then for different leads with unequal gaps. Finally,
in the last subsection we discuss in details the applicability
and limitations of our method as demonstrated on various
single-particle quantities in the 0 phase, such as ABS energies
and/or induced SC gap. In Sec. V, we present comparison of
quantitative results of our theory with two existing experiments
on the position of the 0-7 boundary. We conclude our work
in the last Sec. VI. Supporting technical calculations for the
HF boundary and charge conservation in the second-order
perturbation theory are deferred to Appendixes A and B.

II. THEORY AND METHODS

A. Model and observables

We use a single-impurity Anderson model [21,26,31,32] as
a model of the quantum dot with well-separated energy levels
connected to two asymmetric superconducting leads [38]. The
Hamiltonian of the system is given by

H=Ha+ Y (Hiwa+H5). (1a)
a=R,L

The first term represents a single impurity with the level energy
¢ and the local Coulomb repulsion U':

Mo =¢ »  did, + Udldydd,. (1b)
o=t.4

where dl (d,) creates (annihilates) an electron with the spin
o on the impurity. The second term of Eq. (la) is the BCS

Tts simplified version (DC) used for most of our numerical
calculations strictly satisfies the charge conservation only for equal
SC gaps and marginally breaks it for the general case (for details see
Sec. IV C and Appendix B).
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Hamiltonian of the leads

Hﬁ:ad = Z €q (k)clko’ Cako —

Ay Z(eiq)”chTcl _—y + H.c.),
ko k

(o)

with ¢ = L,R denoting the left and right leads and caka
(cako) creating (annihilating) conduction electrons. Finally,
the hybridization term between the impurity and the contacts
is given by

Hy = —~ta Y (Clyydo +Hee).

ko

(1d)

All the studied quantities can be expressed with the help of
the impurity one-electron (imaginary time/Matsubara) Green
function (GF), which is a 2 x 2 matrix in the Nambu spinor
formalism:

= N o GO'(T - 'L'/), g,(;(f - T/)
Calr —7) = (Q_a(r -1, G_,(t— r/)>
(T @@, (Tlde(D)d—o ()
(Tld', (0)di (), (Tld',(t)d_o(z)])

\ ; 2)
/ —

where the bar denotes the hole function. Since we only consider
spin-symmetric solutions throughout the whole paper, we
skip the spin index and we also set e = A =1 from now
on. The exact form of the unperturbed (U = 0) impurity
GF can be written as a function of Matsubara frequencies

J

a(l a)n) = -

D(iwy)

The existence and the position of the ABS are determined by
zeros of the negative determinant of the inverse Green function
(i.e., poles of the Green function)

D(iw,) = —det[G ' (iwy)] = w2[1 + s(iw,)]?
+le + Z(iw)* + [Ag(iw,) — Sliw,)*
= D(—iw,) = D*(iw,) > 0. ()

The determinant analytically continued from Matsubara
to the real frequency axis is real within the gap and can
go through zero D(wp) = 0 determining the (real) in-gap
energies twy of the ABS symmetrically placed around the
Fermi energy lying in the middle of the gap. ABS are crucial
for transport of the Cooper pairs through the quantum dot
because they usually provide the dominant contribution to
the dissipationless Josephson current through the impurity.
Furthermore, their crossing at the Fermi energy determines
the phase boundary between O and 7 phases as their zero
energy is equivalent to the degeneracy of the two lowest-energy
many-body eigenstates of the system, which is the point of the
impurity QPT [21].

L fiw,[1+s@iw)] + &+ Z*(iwy),
—AL(w,) + S*(iwy),
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= (2n + )7 /B (see Appendix A of Ref. [34]):

~ o fiw[1sion)] - Agliwy) :
GO(“"")—< A (iwn), iwn[l—l—s(ia)n)]—}—e) ’
(3a)

where
s(iwy) = Z (3b)

a= LRVA2+w2

is the hybridization self-energy due to the coupling of the
impurity to the superconducting leads. We have denoted by
I'tr= mz gPL.r the normal-state tunnel-coupling magni-
tude (with ,bL, g being the normal-state density of states of
the respective lead electrons at the Fermi energy) and

A (lwn) - i<I> . (30)
’ aXL:R Vv AZ + a)Z

The impact of the Coulomb repulsion U > 0 on the

Green function is included in the interaction self-energy

matrix S(iw,) = (E%; ‘;(('lzg) so that the full propaga-

tor in the spin-symmetric 51tuat10n is determined by the
Dyson equation G~ !(iw,) = G "(iwp) — E(iw,). Symmetry
relations for the spin- symmetrlc version of the Green func-
tion [Eq. (2)] reformulated in the Matsubara representation
[46, Sec. 9.3.3] are G(iw,) = —G*(iw,) = —G(—iw,) and
Gliw,) = G*(iw,) = G*(—iw,). The same applies to the self-
energies, i.e., L(iw,) = —X*(w,) = —X(—iw,), Sliw,) =
S*(iw,) = S*(—iw,). Here, the asterisk stands for time inver-
sion being complex conjugation in the Matsubara formalism.
Consequently, the interacting Green function explicitly reads
as

iwp[1+s(iwy)] — e —Z(iw,) )’

(

The Josephson current out of the dot into the respec-
tive reservoir J, is defined from the Heisenberg equation
of motion for the particle number in the reservoir J, =

d{d clkacakg)/dt =—i{[> clkacakg ,H1) and can be eval-
uated as a Matsubara sum of the anomalous Green function

2 Z |
= “Im e
B oI VAL o
0 —Aé
x Tr|:<A e P 0

[Gliwy)e™

D\ o
)G(i wn)}

wz,, \/AZ— P — Gliwy)e' ]

= m[G(iw,)e ], (6)
where o = L, R as before. For any approximative treatment
such as our perturbation expansion in U there always arises an
important question of charge conservation, i.e., whether J;, =
—Jg and thermodynamic consistency, i.e., whether Josephson
current calculated by different approaches, e.g., directly from
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Eq. (6) or as a phase derivative of the associated free energy,
gives the same. We devote the following subsection to these
nontrivial fundamental questions.

B. Charge conservation, thermodynamic consistency,
and gauge invariance

Any consistent approximation must respect charge conser-
vation, i.e., the Josephson currents through the left and right
interfaces sum up to zero (due to the above convention for
the definition of the Josephson current as flowing into the
respective lead). The condition J;, + Jg = 0 can be rewritten
with the help of the second line of Eq. (6) as

[Gliwy)e™ P — G*(iwy)e'*]

= —1 Z /Az—
= —ImZ[A (i0)G(iwy) — Aoliwn)G"(iwy)]

Wy

2
= 51Im YIS (oGl = Siong (o)

Wy

= %Im Z S*(iwn)Giwy), (7

Wn

where we used Ag(iw,) = D(iw,)G(iw,)+ S(iw,) from
Eq. (4) and reality of D(iw,) from Eq. (5). For symmetric leads
one can choose real A (i w,) and, consequently, the anomalous
self-energy and Green function fulfill S*(iw,) = S(—iw,) and
G*(iw,) = G(—iw,). The charge-conservation condition (7) is

J

QIG, 3]

Wy

PHYSICAL REVIEW B 93, 024523 (2016)

then satisfied automatically as can be seen by the change of the
summation variable w, — —w,. Since for asymmetric leads
one cannot guarantee the reality of A (iw,) for all frequencies
and thus S*(iw,) # S(—iw,) approximations must be checked
for fulfilling charge conservation (7) by explicit verification.

Apart from a direct approach to charge conservation via
the explicit formula for the Josephson current [Eq. (6)], we
may also employ an indirect one starting with the phase-
dependent grand potential (“free energy”) of the system. The
dissipationless Josephson current can also be determined as
the phase derivative of the thermodynamic potential. Approx-
imate calculations of a thermodynamic quantity (such as the
Josephson current here) lead to the same result when different
equivalent representations are used only in thermodynamically
consistent approaches in the Baym sense [54,55].

A thermodynamically consistent approximation can be gen-
erated from a Luttinger-Ward functional ¢ [G] Itis represented
in terms of the full one-electron Green function G [Eq. (4)],
from which the self-energy is determined via a functional
derivative. In our case, with asymmetric leads we have to treat
both electron and hole variables as independent parameters.
Hence, the functional derivates determining the self-energies
read as X(iw,) = ,38¢[G]/8G (—iw,) for the normal part
and S(iw,) = ﬂSd)[G /8G*(—iw,) for the anomalous one and
analogously for the self-energies X*(iw,) and S*(iw,). The
grand potential then contains both electron and hole variables,
where the hole variables are decorated with asterisks that have
the meaning of complex conjugation (only) in equilibrium.
The grand potential can be represented with the aid of the
Luttinger-Ward functional as follows:

= ¢[G] - %Z O Gliwn) D (—iwn) + G (—iwn)D(iwn) + Gli0)S™ (=iw,) + G (—iw,)S(iwy)

+ ln[{la)n[l + S(lwn)] —&— E(lwn)}{la)n[l + S(i(,()n)] + &+ E*(la)n)}

—[Ag(iwy) — S(iw)[AG(w,) — S*(iw,)]]}.

Complex variables G(iw,),G*(iw,), Z(iw,), X*((w,) as
well as G(iw,),G*(iw,), S(iw,),S*(iw,) are variational pa-
rameters the physical values of which are determined from
the stationarity of the grand potential Q[G E] Due to the
electron-hole symmetry, the electron and hole contributions to
the thermodynamic potential are identical, hence, the factor 2
on the left-hand side. An approximation is thermodynamically
consistent and conserving if we are able to determine explicitly
the Luttinger-Ward functional ¢[G] Such approximations are
called ¢ derivable.

Reliable and physically acceptable approximations should
not only be thermodynamically consistent but must be gauge
invariant. Observables in Josephson junction setups depend on
the phase difference between the leads but they cannot depend
on the absolute values of the two phases. In other words,
the physics must be invariant with respect to a global phase
shift &, g > &1 g + AP, which is a manifestation of gauge
invariance. Obviously, the building elements of the theory, the
Green functions (3a) and (4), are not invariant and we must
always check that they enter the measurable quantities, such as

®)

(

the supercurrent (6), in a way that preserves gauge invariance.
The resulting self-energy X (iw,) and consequently G(la),,)
transform equally as G()(la),,) [Eq. (3a)] under the gauge trans-
formation in thermodynamically consistent approximations.
That s, only the off-diagonal elements pick up the global phase
shift (with the respective sign) from which we can immediately
see that the Josephson current (6) is indeed gauge invariant as
it should be.

We can also use the functional of the grand potential
Q[G,X] to prove gauge invariance of a ¢-derivable approxi-
mation. In gauge-invariant theories, thermodynamic potentials
depend only on the phase difference, i.e., Q[G E](@ L, Pr) =

Q[G Z](CD 1 — ®g). Consequently, charge conservation J; =
IQUG. (@ —Pp) _ _ IQUC.EUPL—Pr) _

ab, = EEY =
lows.

—Jr immediately fol-

III. APPROXIMATION SCHEMES

Since the exact expression for the self-energy of the
superconducting Anderson impurity model is unknown, we
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have applied the standard Matsubara resummed perturbation
theory in the interaction strength U to summing up one-
particle-irreducible diagrams for the self-energy in terms
of the dressed one-particle Green function. To avoid the
unphysical spin polarization of the impurity, which can be
easily obtained within the resummed (dressed) approach from
the self-consistent solution of a nonlinear equation for the
single-particle Green function, we restrict the solution to the
spin-symmetric case. This results in the situation when for cer-
tain parameters at zero temperature there exists no solution for
the Green function. The breakdown of the solution coincides
with the crossing of ABS energies at the Fermi energy, i.e.,
with the 0- quantum phase transition. Thus, while the 0 phase,
which can be smoothly connected with the noninteracting
case U = 0, can be captured by the perturbative approach,

J

U .
EHF — E Z GHF(iwn)elw,lO+ —

(27

and

S = 2 300" ) = ,

where the HF Green function reads as

GMiw,) =

" DH(iw,) —Ak(iw,) + ST,

D™ (iw,) = @[1 + s(io))* + e + > + |Ag(iw,) — ST

The hole (asterisks) functions are obtained from complex
conjugation of the equations for the electron functions.
Obviously, the frequency-independent self-energy of the HF
approximation neglects any dynamical correlations caused by
particle interaction. Nevertheless, it is still capable to describe
qualitatively the 0-7 quantum phase transition even without
the necessity of the common, yet questionable [29,41,44],
breaking of spin-reflection symmetry [50,51]. Therefore, it
is a useful demonstration tool of the basic ideas concerning
the model as well as a worthy etalon of more elaborate
methods. The explicit formula for the HF phase boundary
for the completely symmetric case A;, = Ag, I'y = 'g was
derived in our previous work [50]; here we provide a general
solution.

Before that, though, we discuss charge-conservation and
gauge-invariance properties of the HF approximation. If we
insert Eq. (9b) into the last line of Eq. (7), we see that it is
satisfied. Thus, the HF self-energy yields a charge-conserving
approximation. Similarly, the HF self-energy transforms under
the gauge transformation identically to the (dressed) Green
function as it should. Furthermore, HF self-energy can be
derived from a manifestly gauge-invariant Luttinger-Ward

1 (MALHO%H+8+E“,
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the w phase with doubly degenerate ground state is beyond
the reach of this simple perturbation theory. We explicitly
demonstrate this concept for the Hartree-Fock solution, where
all quantities at QPT can be addressed analytically, but the
same scheme carries over to higher orders of the perturbation
theory, in particular to second order, being the main focus
of our study. The very possibility of a description of the
m phase within a (suitably modified) perturbative approach
remains an open question as we discuss in more detail later in
Sec. IVC.

A. Spin-symmetric (restricted) Hartree-Fock approximation

Mathematical expressions for first-order perturbation ex-
pansion in U, Hartree-Fock (HF) contributions, read as

(9a)
(9b)
—Aq;(iwn)+SHF . .
iwn[1 + s(iwy)] — & — THF ) with the determinant (9¢c)
(9d)
[
functional
~ U A .
PGl = —= > (e Gliw,) G (ien)
Wy Wi

= + (9e)

Consequently, HF approximation is both charge conserving as
well as thermodynamically consistent.

Now, we turn to the calculation of the HF phase boundary.
The self-consistent HF equations read as

st = U5 oo fonll F 8, )] + SHF |,
ﬂ , DHF(ia)n) ’
n (10)
SHF = v SHF — Ag(iwy)
A D (i)

Wy
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Further manipulations of the above equations stated in Ap-
pendix A lead to the following set of equations at zero temper-
ature (since we are interested in the phase boundary) for the
auxiliary quantities E; = M + cands = )", _, Tqe'® —
SHE: ’
E + U U f *® dw Ed

= & —_— —
d 2 . 27 D¥¥(iw)

s = Z [,e'®e
o
Ay

D,
U/OO do® T 2T (4/_Ag+w2

o 27 DHE(j )

Close to the QPT, the inverse denominator 1/DMF(iw)
is dominated by its zeros at the ABS energies +wy [i.e.,
D (+w) = 0] which become zero at the QPT. Therefore,
we may use the expansion of the determinant to the lowest
(second) order in  reading’ as DW(iw) ~ E3 + || —
1+, T‘O[/Am]z(ia))2 which gives us for the ABS energies
close to the QPT wy ~ vV E3 + 8> /(1 + Y, Tu/Ay). Obvi-
ously, the position of QPT coincides with the situation where
E; = 5 = 0. Close to the transition, the integrals are strongly

_1)

D

PHYSICAL REVIEW B 93, 024523 (2016)

all other terms are at least of order wg and, thus, irrelevant at

the transition) as follows:
/‘ *® dw 1
oo T (0} +0?)

/°° do 1 - 1

27 DHF(Gi o) 2

o 2 DH(iw)  2(14Y, Ty/Ay)
1

= , (12a)
200(1 4+ Y, Ta/Ay)’ )

®do f@) _ [Tdo f@)
/,oo 27 D¥F(iw) /0 7 DY Gw)|, _p s (120)

for a smooth function f(x) vanishing at zero, i.e., f(x — 0) =
0. Using these approximations, we finally arrive at

U U
E;| 1+ =+ —,
2/ E24+ 18P (145, Ta/Ad) | 2
U -
s| 14 =) T.e®+UB,
2 EZ+1812(14 Y, Ta/Ay) | «

dominated by the poles at +wy and we can approximately (13)
evaluate the first two leading contributions in inverse ABS
energy (first of the order 1/wy while the second of the order 1; with B representing the band contribution
|
idy (1 _ Ay
* do Xl (1 - )
B= - 5 5 14)
0 .
2 Lo i P, Be
o [1 Y Ang} + 'za Fye (M 1)

In Appendix A, we discuss the formula (14) in more detail in
the symmetric case A; = Ag = A.

To obtain the phase boundary, we sum up squares of the
two equations (13):

U

2 EF 4+ 18171+ X, Tu/Ad)
2
+ Y 2 +
6 —
2

) s)
which yields at the phase boundary EZ + |§|> = 0 an implicit
equation for the borderline

+ A +
2

€

Omitting the band contribution B from Eq. (16) one gets a
very simple approximation of the boundary called generalized

(E3+181%)| 1+

Z I,e'® +UB

a=L,R

U? 2

4143, To/A)

Z [Le'® +UB

a=L,R

(16)

2See Appendix A for a more detailed discussion.

[

atomic limit (GAL) [50]:
U2

4143, Ta/As)?

2
= (a—l—%) +T2 472420 Tgcos(®r—Dg). (17)
Interestingly, as we show later on, at half-filling (¢ = —U/2)
the simple GAL boundary lies typically very close to the results
obtained via the NRG method and/or the second-order pertur-
bation expansion. This is not surprising since at half-filling the
HF approximation reproduces the atomic limit exactly. Hence,
one can expect that GAL, being a generalization of the atomic
limit to noninteger occupation of the dot, delivers quite reliable
results near the charge-symmetric state.

Furthermore, we may use Eq. (15) for finding v E3 + ||
close to the phase boundary. Using the implicit-function
theorem, we see that a solution with v E3 + |§|*> > 0 exists
on one side of the boundary (moreover, the side containing
the noninteracting U — 0 limit, i.e., corresponding to the 0
phase) while v E(? + 18> < 0 on the other side. There, we
must conclude, no solution to the restricted HF equations (13)
exists, only when one allows for breaking of the spin symmetry
(i.e., finite magnetization), which is however unphysical for a
zero-dimensional impurity system, the appropriately extended
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HF equations (10) do have a solution [41,44]. Since we do
not want to resort to an unphysical symmetry breaking to
obtain the m phase, we must conclude that the perturbative
spin-symmetric solution breaks down at the phase boundary as
expected from a general conceptual viewpoint [56]. Although
these findings have been explicitly demonstrated on the level
of the HF approximation, they are actually fully general
and apply to any order of perturbation theory, in particular
also to the second order which we are going to address
now.

U2
2 iw,) = 5 D Gliw, + ivp)x (i)

Vm

and
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B. Second order: Dynamical corrections

It was shown in previous studies [50,51] that inclusion
of dynamical corrections beyond the static HF into the self-
energy can dramatically improve the quantitative predictions
for both the position of the phase boundary and the physical
quantities in the O phase. Already, first corrections from
second order of the perturbation expansion were sufficient to
reproduce fairly well the results of NRG in the case of identical
leads. Second-order contributions to the self-energy read as

(18a)

2
S@)(iwn)—%Zg(iwn+ivm)x<wm>—§ + M (18b)

1
X(vm) = 2 3 IGG@0G (—iv = i) + Gli0G" (—ivm = i)

where

Wi

1
=3 Z[G(ia)k)G(iVm +iwg) + Glivm +iw)G (o)) = x(—ivm) = x*({vm)

Wi

(18¢)

is the two-particle bubble consisting of the normal and anomalous parts and v,, = 2w m/ S is the mth bosonic Matsubara frequency.
Analogously to the HF case before we can explicitly verify the charge-conservation condition (7); calculations are more tedious
this time and we present them in Appendix B.

The Luttinger-Ward functional of this second-order correction to the Hartree-Fock approximation reads as

U2

Qra — 2
#71G) =~

Wn , Wk Vi

Z (GG (—iw)Giwy + iv) G (—iwg — ivm) + 2G (i) G (—iw,)

Xg(iwn + ivm)g*(_ia)k - ivm) + g(lwk)g*(_lwn)g(lwn + ivm)g*(_iwk - ivm)]

It is manifestly gauge invariant. These first two orders of
the perturbation expansion are well controllable on the
one-particle level. The higher contributions to the self-energy
become more complex and their classification demands
to introduce two-particle vertices as discussed in detail in
Ref. [57]. Therefore, we resort just to the second order of
the perturbation theory, which proves to be fully sufficient in
the BCS-singlet regime for weak and intermediate coupling.
The second-order self-energy corrections (together with the
first-order HF counterparts) are inserted into Eq. (4) to obtain
a self-consistent nonlinear functional equation for the Green
function as a function of frequency. Unlike the HF case, the

+ 2 +

(18d)

(

resulting equations for the Green function components defy
analytical treatment and must be solved numerically. In the
following, we refer to this approach as the full self-consistent
dynamical correction (FDC) approximation.

As discussed previously for the symmetric leads [50],
nearly identical results can be obtained in the weak coupling
regime by evaluating the dynamical self-energies (18) using
just the fully converged self-consistent HF solution as the input
into the Green function (DC approximation). The DC approach
can be represented by the following algorithm:

(1) Compute the HF Green function as described in
Sec. IITA.
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(2) Compute the second-order contributions to self-energy
Y (iw,) and S? (i w,) using formulas (18) with G'¥ (i w, ) and
G (iw,) instead of G(iw,) and G(iw,). These second-order
contributions stay fixed throughout further calculations.

(3) Compute the DC self-energies ZPC(iw,) = =1 +
2®(iw,) and SPC(iw,) = SV + SP(iw,) with =V = £HF
and SV = SHF in the first iteration. _

(4) Compute the DC Green function G “(iw,) using
definitions (4) and (5) with £(iw,) = ZP%(iw,) and S(iw,) =
SPCiw,).

(5) Compute the first-order contributions to self-energies:
M = %Zw G C(iw,)e'®"" and SV = %Zw GPC(iwy).

(6) Repeat steps 3 to 5 until the convergence criterion of
the self-consistency is achieved.

The algorithm implies that the convolutions in the second-
order self-energies are evaluated just at the beginning of the
procedure. The fixed dynamical self-energies are then used to
calculate self-consistently the first-order contributions to the
self-energies.

Note that the DC approximation is numerically more stable
close to the phase transition than the FDC approximation (see
Fig. 2). In addition, it allows us to study the intermediate

NRG o
DC — o
FDC == .

®/A

!

02 04 06 08 1
Tp/A

!

12 14 16 18 2

FIG. 2. Andreev bound-state energies dependence on the phase
difference ® for the symmetric coupling ', = 'y (a) and on the
coupling I'g for asymmetric coupling I'y = 1.44T"; at ® =0 (b).
The solid lines were calculated via the DC approximation, the dashed
lines via the FDC approximation, and the bullets were obtained using
NRG with A = 4. The point where bound and antibonding states
merge/cross at the Fermi level (zero energy) is identified with the 0-
quantum phase transition.
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coupling regimes, where full self-consistent approaches often
fail to give physically correct solution. It is fairly well known
that the fully self-consistent second-order approximation as
well as its extensions via sums of ladders and chains fail for in-
termediate coupling of impurity models. They not only smear
the Hubbard satellite bands [58], they also miss the Kondo
physics [59]. That is why simplified self-consistencies often
provide better approximations than the fully self-consistent
ones [60].

IV. RESULTS AND DISCUSSION

We provide a comparison of the ground-state, i.e., zero-
temperature, results obtained via the perturbative method
discussed above with those obtained using the NRG approach
which is a reliable nonperturbative numerical method for the
ground-state properties [61]. For NRG calculations we used
the NRG LJUBLJANA open source code [52,53] mostly with the
logarithmic discretization parameter A set to the value of 4 as
is common for double-channel problems. We also tested and
used other values of A [see Fig. 4(a)] and found out that for
most of the studied cases, the phase boundary is not sensitive
to A. This is in compliance with the findings discussed in
Ref. [38].

Various theoretical studies showed that the O-m phase
transition, where the supercurrent changes its sign, is accom-
panied by a smooth crossing of the Andreev bound states
[21,32,40,43,45] which is in agreement with the experiments
[3,18,21]. Although the perturbation approach without spin-
symmetry breaking can not be easily extended into the r phase
and, therefore, does not show the actual crossing of the ABS
[50], the ABS smoothly reach the Fermi energy at the border
of the 0 phase [50,51]. In Fig. 2 we plot examples of the
ABS dependencies on the phase difference @ for symmetric
coupling I'y = 'k [Fig. 2(a)] as well as on the right coupling
I'r for asymmetric coupling I'; = 1.44T"x [Fig. 2(b)]. We
identify the point where both (bound and antibonding) ABS
reach the Fermi energy with the boundary of the O phase, i.e.,
with the point of the quantum phase transition. This is fully
supported by the NRG data. It can be seen in Fig. 2 that the
crossing of the ABS obtained by the NRG (bullets) coincides
with the merger of the ABS obtained via the DC approximation
(solid red lines). The dashed blue lines in Fig. 2 were obtained
via the FDC approximation. One can see that the FDC and DC
results practically coincide in both presented cases apart from
the very close neighborhood of the phase transition, where the
FDC becomes numerically unstable.

It should be stressed that analytic continuation of the
Matsubara formalism to the real frequencies is necessary for
the study of ABS. This usually leads to quite complicated
formulas for the Green functions [51], however, sometimes
this approach is numerically more stable than the Matsubara
formalism. Nevertheless, the continuation to the real axis can
be avoided if one is interested only in the phase boundaries.
The determinant D(iw,) yields zero at the phase transition
point exactly for iw, = 0. Therefore, one can use the smooth
dependency of D(0) on different model parameters for the
direct estimation of the phase boundary.
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A. Phase diagrams for A} = A

Setups where A; = Ag = A in practice mean that both
leads are made of the same material. Since this is acommon sit-
uation in the experiment, this case has been intensively studied
[25]. We start our discussion with three phase diagrams known
from the literature [38]. The main reason for this is to show
that the simple second-order expansion theory is sufficient for
a broad range of parameters and even in the regimes where
usually much more elaborated techniques are used. Simulta-
neously, we compare the results of the three approximations,
namely, HF, DC, and GAL and discuss their limitations.

In Fig. 3(a), we plot the ground-state phase diagrams in
the I'g-U plane for ® = 0 and = at half-filling (¢ = —U/2).
The left-right lead asymmetry is fixed by the coupling ratio
'y = 1.44T k. The first thing that should be noticed is that
the HF approximation without broken spin symmetry yields a
qualitatively correct description of the phase boundary at half-
filling. However, its phase-boundary curve is close to the NRG
border only for small Coulomb interaction (U < 2A). A much
better result is obtained by using its simplification, namely, the
GAL approximation, which neglects the band contribution.
This implies that the HF approximation overestimates the
contribution from the bands. Considering its simplicity, the
GAL method provides a very good and fast approximation
of the phase boundary at half-filling even for U > A.
Nevertheless, regarding the accuracy it is overperformed by the
DC approximation. One can see that the DC border reproduces
the NRG data (for A = 4) almost perfectly. This shows that the
perturbation theory with the simplest dynamical corrections
can lead to a correct estimation of the quantum phase boundary
for the studied system. This statement is true not only for the
symmetric-leads case studied in Ref. [50], but also for the
experimentally more relevant setups.

A similar agreement between the DC and NRG phase
boundaries can be seen in Fig. 3(b), where the phase diagrams
are plotted away from half-filling at ¢ = —2.5A. On the other
hand, the bias of the level energy ¢ strongly influences both
the HF and GAL curves. The GAL border approaches the
NRG data only around U = 5A, i.e., just near the half-filling
occupation. The HF border is way off in the whole plotted
range. In addition, both HF and GAL results drift away from
the DC and NRG border with the increasing U. Because of the
structure of Eq. (16), the GAL and HF borders approach each
other for U — 0, where the term U B vanishes, as well as for
le + U/2| > A where the first term dominates the right-hand
side of Eq. (16). The latter one can be seen in Fig. 3(c). Here,
we plot the phase diagram in the I'g-¢ plane for moderately
large Coulomb interaction U = 5A and two values of ®. The
HF and GAL borders coincide far away from half-filling for
both values of ®. As before, despite its simplicity, both these
approximations yield a fair qualitative agreement with the
NRG data. However, with the exception of the GAL curve near
the half-filling, both approximations fail to reproduce the NRG
data quantitatively. In contrast, the DC border matches the
NRG in a broad region around ¢ = —U/2 and even outside
this region the difference between NRG data and DC curve is
much smaller than A. This shows that the proper treatment of
the frequency dependence of the correlation effects is crucial
for the quantitative description of the 0-r transition.
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FIG. 3. Phase diagrams in the ['g-U plane at the half-filling (a),
and for ¢ = —2.5A (b) and in the I'-¢ plane for U = SA (c). We
compare the phase boundaries calculated by NRG with the spin-
symmetric HF, the second-order PT/dynamical corrections (DC), and
generalized atomic limit approximation (GAL).

The most evident (qualitative) discrepancy of the DC curve
from the NRG are the “humps” at the bottom of the phase
diagrams Figs. 3(c) and 4(a). This is not surprising as here
U > T and therefore we are on the edge of the usability of
the perturbation expansion in U (see Fig. 1). On the other
hand, these humps resemble a formation of the islandlike
phase diagram known from the previous NRG study by Oguri
et al. [40]. They showed that in case of strongly asymmetric
gaps Ap > Ay and decreasing U, a reentrant doublet region
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FIG. 4. Phase diagrams in the I'k-¢ plane for different values
of U, ® = m and asymmetric leads I';, = 2T"y (fixed ratio) (a) and
I'r = A (varying ratio I'g/ 'y which induces the m-phase island
structure) (b).

appears as an island in the I'g-¢ plane (see Fig. 12 in Ref. [40]).
However, this is not the case in Fig. 4(a). For the fixed ratio
I't/Tr and Ap = Apg, the humps are only a consequence
of the perturbative treatment. Unlike in Ref. [40] they are
obviously disappearing with the decreasing U [Fig. 4(a)] and
no island structure appears even for U = A /2. Nevertheless,
the situation is different if one varies the ratio 'y /T'z. In
Fig. 4(b), we show that the condition A > Ag used by Oguri
et al. is not necessary for obtaining the island structures of the
7 phase. All three approximations show these structures when
the ratio I', / ['g is varied. Nevertheless, as before, only the DC
approximation matches quantitatively with the NRG outside
the half-filling for plotted values of U.

Because we have observed this behavior also for other val-
ues of Iy / A [for another example, see the reentrant behavior at
Agr/Ap = 1for U = Ay lines in Fig. 5(a)], we conclude that
the island structures are primarily a function of the difference
between the hybridizations I'; and I'k. In general, the &
phase is destabilized by the increasing differences between the
couplings. As this can be in principle tuned in the experiment
[1], one can expect that the island structures can be verified
experimentally. Regarding the U dependence, one can see that

PHYSICAL REVIEW B 93, 024523 (2016)
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FIG. 5. (a) Critical tunnel-coupling ratio I'g/ I";. as a function of
SC-gapratio Ag /A forT';, = A /2, ® = 7 athalf-filling. (b) Phase
diagrams in the 'k / I'; -¢ plane with asymmetric lead SC gaps Ag =
Ay /4 calculated via NRG and DC approximation for U/A, = 1,2,4
and compared for U = 4A, with HF and GAL approximations.

the increasing Coulomb interaction inflates the w-phase area
in both panels of Fig. 4.

We use Fig. 4(a) to demonstrate two technicalities. First,
it is an illustrative way to show that all three approximations
converge to each other with decreasing U as it should be.
All borders practically coincide for the lowest U = A/2.
Second, we present a test of the NRG for the largest value
of Coulomb interaction U = 6A corresponding to the most
correlated case. There is only a very weak dependence of the
NRG phase boundary on the parameter A which makes the
generic calculations at A = 4 highly reliable.

B. Phase diagrams for A} # A

Significantly less attention has been paid, both experimen-
tally and theoretically, to the general case A; # Ag thanto the
identical leads A; = Ag. This can change in the near future
as a recent experiment on a carbon nanotube quantum dot
coupled to Nb fork and Al tunnel probe [22] not only showed
that such a setup is technically possible, but in addition it
revealed a nontrivial formation of ABS. Theoretical efforts so
far have been, however, mainly focused on the A; = Ay case
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despite the fact that previous theoretical studies dealing with
some special cases of nonidentical leads showed that the lead
difference can strongly affect the quantum phase transition
[38,40].

We demonstrate this for a wide range of ratios Ag/Aj
in Fig. 5(a). Here, the phase boundary obtained via the DC
approximation and NRG is plotted in the I'g/ ' -Ag/AL
plane for various values of U at half-filling. We have set
the coupling to the left lead to I'y = A, /2 and the phase
difference to ® = m. One can see that the DC curves are
in excellent agreement with the NRG results in the plotted
range of Ag/A; which spans two orders of magnitude (note
the logarithmic horizontal scale). This once again proves the
reliability of the DC approximation also for unequal gaps in
the leads.

We can observe two different kinds of phase diagrams in
Fig. 5(a). Two phase boundaries separating the 0 and 7 phases
are present for U = Ay (solid curves), but only a single phase
boundary is realized in the plotted region for U > 2A [ (dashed
curves). This is in compliance with the study of Ag > A} case
in Ref. [40] as well as with the opening of island structures as
a consequence of increasing U observed in the phase diagrams
plotted in Figs. 4(b) and 5(b).

Oguri et al. [40] showed that in the limit Ay — oo the
model (1a) can be mapped onto a single-channel model where
the right lead is replaced by an onsite superconducting gap at
the impurity, i.e., the standard superconducting atomic limit
[35,37] performed for the right lead only. Our observation that
the critical I'g depends only weakly on the ratio Ag /A for the
large right gap and weak Coulomb interaction [see U = A,
boundaries in Fig. 5(a)] justifies applicability of this simplified
model.

The GAL and HF phase boundaries are in a fair qualitative
agreement with DC and NRG even for A; # Ay case. Never-
theless, both these simple approximations fail quantitatively in
positioning the critical curves in the phase diagram. This can
be seen in Fig. 5(b) where the 0-phase boundaries are plotted
in the 'z /' -¢ plane for Ag = Ay /4 and Tg =T /2. On
the other hand, the DC approximation largely coincides with
NRG even for U = 4A; and fully reproduces the m-phase
island structure obtained with NRG for U = A;.

C. Applicability and limitations of the method

Despite its reliability in a wide range of the input pa-
rameters, the present method has natural application limits.
We can roughly divide them into two classes. The first one
is related to the very conceptual foundation of the method
in the (resummed) perturbation theory which implies its
breakdown at the quantum phase transition and impossibility
to reach the 7 phase with the doubly degenerate ground state.
Any quantities in the 7 phase are presently inaccessible by
our approach. The impossibility to take into account the
phase has a serious consequence in that the method cannot
address nonzero temperatures. At nonzero temperatures, both
the 0 and m phases coexist and this coexistence results in
a temperature-smoothened behavior of all quantities around
the transition. This is, however, completely neglected in the
present perturbative treatment that is built upon only the singlet
equilibrium state, 0 phase, even if it becomes metastable
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(at nonzero temperature) and should actually be replaced by
the spin doublet, = phase. Mixing of the singlet and doublet
states is relevant only in a close vicinity of the phase transition
since far away from it the physics is still described well by
either of the states. Yet, this conceptual limitation is serious,
especially since there is no clear way how to circumvent it.
There is, however, a perturbative expansion for elementary
excitations and Green functions in systems with a degenerate
equilibrium state [62].

The second class of limitations concerns the standard fact
that perturbation methods have limited range of applicability
given by the level of sophistication of the included perturbation
contributions. Such theories typically do not explicitly break
down but they become quantitatively highly imprecise and
eventually useless. Our approach is conceptually meaningful
in the O phase and can be used not only for determination of
the position of 0-7 phase boundaries, but also for calculation
of various (single-particle) quantities such as the Josephson
current, QD occupation, proximity-induced local gap, energies
of ABS, etc. [50,51]. Since it is a perturbation expansion in the
Coulomb interaction truncated at the lowest-order diagrams, it
is clear that it ceases to be reliable for large enough U. This can
happen in various ways depending on the values of the other
model parameters A, I', and €. We have already encountered
such a situation in Figs. 3(c) and 4(a) where there was an
obvious discrepancy (although not too severe) for small I" close
to charge-degeneracy points. Small I" effectively increases the
importance of the Coulomb interaction via the increased ratio
U/ T, pushing the system close to the atomic limit, where the
complementary perturbation expansion in I is a more suitable
choice [28,34].

For decreasing I" and fixed A, the perturbation expansion
around the atomic limit works fine, but if one allows also
the SC gap A to decrease comparably to the (normal-state)

Kondo temperature Tx ~ @ exp [ %(l + %)], the system
enters into a strongly correlated Kondo state where any
simple perturbation theory inevitably fails. We demonstrate
this crossover from the conventional BCS singlet to the Kondo
singlet [37] and gradual failure of the DC approximation in
Figs. 6 and 7 for symmetric leads at half-filling. In Fig. 6, we
present the phase diagram in the A-U plane studied previously
in the literature using different methods including the NRG
[37] and the expansion around the atomic limit (for A much
larger than the characteristic energies of the dot) based on the
self-consistent description of the Andreev bound states (SC
ABS) [36]. We compare the phase boundaries obtained via
these methods with the DC and GAL boundaries in Fig. 6.
Note, that the DC approximation is so good that we had to
use the logarithmic scale for the A axis to visualize deviations
of the DC boundary from the NRG data. The DC boundary
departs from the NRG points for A /7" < 0.03, nevertheless,
even in this parameter range the DC boundary is still much
closer to the NRG boundary than the SC ABS curve, which
can be attributed to the violation of the large-A assumption
inherent to the SC ABS approach. However, the GAL branches
off from NRG points significantly with decreasing A.

The horizontal arrows in Fig. 6 correspond to the values
of the gap for which the one-particle quantities are plotted in
Figs. 7(a) (ABS energies wp) and 7(b) (proximity-induced local
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FIG. 6. Phase diagram in the A-U plane for ¢ = 0. NRG solution
(black bullets connected by dashed lines) is compared with the DC
approximation (red full line), GAL (blue dotted line), and the SC
ABS method taken graphically from Fig. 3 in Ref. [36] (green dotted-
dashed line). Notice the logarithmic scale on the vertical A axis, where
the arrows point out the values of the gap used for curves plotted in
Fig. 7. The gray stripe marks the region where DC results start to
depart from the NRG in Fig. 7, i.e., the position of the crossover from
the BCS to the Kondo singlet ground state.

gap Ag = U{dyd,); the curve A = 0.04I" is not displayed
just for clarity). There is almost a perfect agreement between
DC and NRG curves for A/I" > 0.1 in the entire O phase.
For smaller values of A and sufficiently large U, both ABS
energies and A, obtained using the DC approximation depart
from the NRG points with increasing ratio U/ I" and can even
become numerically unstable (dashed lines). We estimated the
region where the DC curves start to deviate significantly from
the NRG by the gray stripe in Fig. 6. We consider this to be the
crossover region between the BCS and Kondo singlet ground
states and, therefore, also the edge of applicability of the DC
approximation. As we will show in the next section, this edge
still leaves plenty of space for the second-order expansion in U
to be the method of choice for the description of real systems.

In Appendix B, we have proven that the FDC approximation
is charge conserving in the general case and that DC approx-
imation is charge conserving for the experimentally generic
case of equivalent gaps. The charge conservation for the DC
unfortunately does not extend to the general case, giving it
the same status as the conventional implementation of fRG
[46]. In Fig. 8, we compare the numerical results obtained by
these two methods with the NRG. The supercurrents at the
left/right junctions are plotted as functions of ¢ for U = Ay,
® =7/2,') =2I'r = Ap/2and three valuesof Ag/A. We
used the FDC approximation to calculate the supercurrent for
e+ U/2 < 0 and the DC approximation for ¢ + U/2 > 0. It
can be seen that both approaches are in excellent agreement
with the NRG. However, only the FDC approximation fully
conserves the current in the general case A; # Apg. This is
shown in the insets of Fig. 8 where the details of the current are
plotted close to half-filling. The DC approximation conserves
current for A; = Ag but not for Ay # Ay as illustrated
in the right inset. The difference between J; and —Jp is
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FIG. 7. Limitations of the DC approximation: comparison of
the NRG (bullets) and DC approximation (solid lines) results for
symmetric setups at half-filling. Interaction strength U dependence
of the ABS energies (a) and scaled proximity-induced gap A, =
U(d;d,) (b) for the four values of the gap A shown by arrows in
Fig. 6 and taken from Ref. [37] (the curve for A = 0.04I" was omitted
in the lower panel just for its readability). The breakdown of the DC
method can be seen for large interaction U/ I" and small SC gap A
as indicated in Fig. 6. The dashed part of the A = 0.016I" lines is
numerically unstable.

nevertheless very small, below 1% for the used parameters
(see the vertical J-axis scale in the inset), which justifies the
widespread usage of the DC approximation in this work as
a faster and numerically more stable (especially around the
phase boundary) alternative to the FDC approximation, which
still gives trustworthy results even for Ay # Ag.

Finally, we mention yet another aspect of the DC method,
which is its ability to calculate also spectral functions. This
is possible by making use of analytic continuation of the
Matsubara formalism to the real frequencies as shown in
Refs. [50,51,57]. Here, we just plot the typical normal and
anomalous spectral densities for the asymmetric coupling to
the leads calculated using the DC approximation (solid red
line), FDC approximation (dashed-dotted blue line), and NRG
(dashed black line) in Fig. 9. Discretization parameter A = 4
and the logarithmic-exponential broadening of the data with
the broadening parameter b = 0.15 together with the z trick
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FIG. 8. Supercurrent through the left/right junctions as a function
of ¢ for U=A;, =m/2, 'y =2I'r = AL/2, and Ag/AL =
1,%,%. The current was calculated using the FDC approximation
for e + U/2 < 0 and DC approximation for ¢ + U/2 > 0. The insets
show details close to the half-filling.
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FIG. 9. Normal —ImG/7n (a) and anomalous —ImG/z (b)
spectral densities for U =4A, 'k = A, I, = 2Ty (asymmetric
coupling), ® = /2, and ¢ = —U/2 (half-filling) calculated using
the DC approximation (red solid line), FDC approximation (blue
dashed-dotted line), and NRG (black dashed line). Discrete Andreev
bound states within the gap are represented by arrows whose height
is determined by their weight.
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(see the manual to Ref. [52]) was used for the NRG plot.
Considering the simplicity of the (F)DC approximations and
the broadening of NRG curves, which is fully responsible for
the discrepancies around the band edge, the spectral functions
are in a very good agreement, notice especially the perfect
agreement both in the position and weight of the ABS.

V. COMPARISON WITH EXPERIMENTS
A. Grenoble experiment [Phys. Rev. X 2, 011009 (2012)]

Realization of a fully tunable superconducting carbon-
nanotube quantum dot SQUID by Maurand er al. [20]
allowed to determine the phase diagram for the 0-7 phase
transition in the I'-¢ plane experimentally (Fig. 10). In the
experiment, the Coulomb interaction was measured from the
finite-bias spectroscopy of the Coulomb-blockade diamonds
and estimated to be U = 0.80 £ 0.05 meV. The supercon-
ducting gap A ~ 0.08 meV was determined from the peaks
in the nonequilibrium (finite-bias) differential conductance.
The analysis of the maximum of normal-state conductance
showed that the tunneling amplitudes to the leads were
balanced; therefore, the symmetric setup (I'/2 =T =Tg)
was assumed. Hybridization I' for different tunings of the
setup was estimated from the half-width at half-maximum
of the Kondo resonance in the finite-bias conductance. The
authors argue that the Kondo screening plays a key role for
the 0-m phase transition in their device. This statement is
supported by a quantitative comparison of the position of phase
boundary with their theoretical predictions based on the SC
ABS approximation [36], which is a perturbative method based
on the superconducting atomic limit [35,37] with expansion
for finite gap A. The key role of the Kondo screening is
emphasized also from the identified operating regime of the
experiment marked in Fig. 7 of Ref. [20]. Considering this
and the limitations of the DC approach discussed above, it is

0.25 :
Exp. e~
SC ABS
02r DC ==
0.15 ¢ 1
2
~
0.1 t 1
0.05 r 1
m-phase
0 I
-0.6 -04 -0.2 0 02 04 0.6
(etU/2)/U

FIG. 10. Phase boundary between 0 and & phases as a function
of ¢ and I'/U. Both the experimental data (with the estimated
Coulomb repulsion U = 0.8 meV and SC gap A = 0.08 meV) and
the theoretical curve calculated using the self-consistent description
of Andreev bound states (SC ABS) [36] were taken graphically
from Fig. 6 of Ref. [20]. The DC phase boundary was calculated
forU/A =10and & = 0.
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surprising that the actual DC phase boundary calculated for
the same parameters as SC ABS (U/A = 10) is very close to
the experimental one as shown in Fig. 10. Although the SC
ABS phase boundary is closer to experimental points than the
DC boundary, that is still within the experimental error bars.
Therefore, we conclude that the DC method performs well
even beyond its expected validity range and can be applied to
a very broad range of real superconducting quantum dots.

B. Orsay experiment [Phys. Rev. B 91, 241401(R) (2015)]

The most recent experimental study [23] of the supercon-
ducting carbon-nanotube quantum dot confirmed theoretical
predictions that the 0-7 phase transition can be controlled
not only by the gate voltage, but also by the superconducting
phase difference @ tuned by the magnetic flux piercing the
SQUID loop with the carbon-nanotube Josephson junction.
The superconducting gap of the leads A =0.17 meV and
the Coulomb interaction U = 3.2 meV, both with uncer-
tainty ~10%, were experimentally determined by standard
methods (see the previous subsection). Total hybridization
I'=Tg+ T =0.44 meV and the asymmetry ['y/ ', =4
of the couplings were obtained by comparing the measured
normal-state finite-temperature linear conductance with the
one obtained from CT-INT quantum Monte Carlo [43] cal-
culations for the Anderson impurity model analogously to
Ref. [26]. The experimental results were compared to QMC
calculations and an excellent agreement was observed both for
the current-phase relation as well as for the shape and width
of the 0-7 boundary in the ®-¢ plane. However, a shift of the

! Exp. - 7
QMC, shifted
0.8 r U=32meV = J7"°""" ]
U=3.2 meV, shifted =
06 | U=3.44 meV == i
B
S
04} 1
F=044I4} meV
L R L i
0.2 A=0.17 meV
0t ) ) ) o

06 07 08 09 1 .1 12
g(meV)

FIG. 11. Comparison of phase boundary in the ®-¢ plane ob-
tained experimentally with different theoretical predictions. Both
the experimental data and QMC points were taken graphically
from Fig. 4(b) in Ref. [23]. Experimentally determined parameters
(for details see the main text) A =0.17 meV, U =3.2 meV, I' =
'k +T'y =0.44 meV, and I'y/I";, = 4 are subject to roughly 10%
uncertainty. According to Ref. [23], the QMC curve was horizontally
shifted to match the experiment. We plot the DC approximation
for U =3.2meV (solid red curve), the same result shifted by
de to overlap the experiment (dashed red curve), and result for
U = 3.44 meV within the experimental uncertainty without any
further modification (blue full line).
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energy level ¢ = 0.28 meV of unknown origin was needed to
overlap the experimental data with the theoretical curve.

In Fig. 11, we have calculated the 0-phase boundary with
the DC approximation (solid red line) and compared it with the
experimental and QMC data taken graphically from Fig. 4(b)
in Ref. [23]. One can see that after introducing a small shift
de = 0.14 meV, exactly as it was done for the QMC results, the
simple second-order perturbation theory reproduces (the shape
and width of) the phase boundary almost perfectly (dashed-
dotted red curve in Fig. 11). We have taken the advantages
of the DC approximation (its simplicity and speed) to check
how the boundary depends on the variance of used parameters.
We have found out that although the shape and width of the
boundary are quite robust within the 10% uncertainty, the
¢ position of the boundary is very sensitive to the value of
U. No shift of the phase boundary is needed if the value
U = 3.44 meV within the U uncertainty range is used instead
as it is shown in Fig. 11 (blue solid curve). This leads us to the
conclusion that the deviations between theory and experiment
observed in Ref. [23] are within the experimental uncertainty.
Moreover, this is yet another demonstration of the usefulness
of the DC approach for real systems.

VI. CONCLUSIONS

To summarize, we presented a detailed study of the self-
consistent second-order perturbation expansion in the interac-
tion strength of the superconducting single-impurity Anderson
model. Based on a thorough analysis of its properties, we
showed that it can reliably substitute time and resources
consuming numerical methods such us the NRG or QMC
for the study of the 0-m phase transitions and properties of
the 0 phase in superconducting quantum dots for a broad
range of parameters. It can be the method of first choice for
realistic setups with asymmetric tunnel couplings and even for
unconventional setups with different SC leads. We disclosed
its big potential by successful fits of two existing experimental
data sets for the 0-7 phase boundary, including the sugges-
tion for a plausible explanation of the existing discrepancy
between the newest experiment and corresponding QMC
results.

The approach can be straightforwardly applied to any
single-particle quantity in the O phase such as supercurrent,
local occupation and proximity-induced superconducting gap,
or energies and weights of the Andreev bound states including
the position of the 0-w quantum phase boundary at zero
temperature. Due to its perturbation-theory roots it, however,
conceptually fails in the description of the m phase and,
consequently, also in the description of the finite-temperature
properties close to the phase boundary. A possible remedy of
the perturbation approach to reach also the & phase with the
doublet ground state remains an open challenge, which in view
of the successes of the method in the O phase is worth taking
up in future studies.
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APPENDIX A: HARTREE-FOCK PHASE BOUNDARY

Initial version of HF equations (10) can be recast into the simpler form (11) by introducing auxiliary quantities E; = ZHF 4 ¢
andd =), » I'ye'® — SHF and further using the general identity

I L (AD)
- D(iw,) 2
valid for any spin-symmetric GF (4) due to a sum rule reflecting the fundamental anticommutation relation
io 1 i 0t 2in[1 + s(wp)] + T (iw,) — Z(iw,
—Z O Gliwn) + Gliw)] = —5 3 e (o) + T (iw,) = T(iw,)
@n ﬂ wy, D(lwn) (A2)

=Grt—-17>0)+Gr -7 > 0)=(d'd)+ (dd") =1

Large-frequency behavior of the self-energy X (iw,) is limited by a constant (in case of the HF approximation; otherwise it
generically decays as 1/iw,), which allows us to drop the phase-convergence factor in the above sum, and using the symmetry
relations ©*(iw,) = L(—iw,) (implying real ") and D(—iw,) = D(iw,) [Eq. (5)] we get Y, pion0" X liw)—Fliw) _

D(iw,)
Z E(—iw)—=E({iws)
Wp D(iw,)

Determinant DPF(iw,) explicitly reads as

= 0, thus proving the required identity (A1).

2
'<1>a _ SHF

DHF(za)n) =w
A2 + a)2

+ [e + 2HFP?

[a=]

2

:a)2

2
Ty - Ay
"[H;—m] + E; Zre (\/AZ—W 1)+5
~EX+ 157+ 1+Z& 2—ZF—Re(ael‘P«)
d — A, A2

(A3)

Because close to the QPT both E, and § are close to zero, the second term in the brackets multiplying ? can be safely neglected
in the calculation of the phase boundary (as is done in the main text) since this term is effectively of higher order in the w,
expansion.

Finally, we discuss the band contribution term B [Eq. (14)]. Its name derives from the fact that when the integral over the
Matsubara frequencies (14) is Wick rotated to the real frequencies, it only contains the continuous (band) part of the spectrum,
i.e., it does not encompass any ABS contributions. The general formula can be recast into a more compact form for the generic
case with equal SC gaps A; = Ag = A. Using the substitution @ = A sinh¢ and mutually canceling the common 2 sinh? %
terms in the numerator and denominator of the integrand, we arrive at the expression

5 >, Toei®e /‘2” dt cosh? ¢
- A 0 2 S Ta )\ ) S, Tyeita |2
(cosht + T) cosh” 5 + ‘T

(A4)

)
sinh” £
which generalizes the symmetric case ', = 'y =TI'/2 (and &, = —d = &/2) studied previously in Ref. [50].

APPENDIX B: CHARGE CONSERVATION FOR THE DYNAMICAL CORRECTIONS
1. FDC

As a special case of Eq. (7), we now consider the charge conservation in the second-order approximation for which the
“current defect” reads as

§JP = _%ImZS(Z)(iwn)g*(ia)n) @B
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with the anomalous self-energy [Eq. (18b)]

2
S¥iw,) = —% > " Gliwn + iva)x i), (B2)

Vm

and the bubble contribution [Eq. (18c)]

1
XGvn) = 5 D [G(ivm + iwn)Glion) + Glivm + iw0)G (o). (B3)

Wi

Separating the quantity §J@ = §J® + §J? into two parts corresponding to the normal and anomalous Green functions
constituents of the bubble, respectively, we get

4U?
8,7 = Z5Im 3 Glivw +i00G@0Gion +ivn)G (w,).

Wp Wk, Vn

(B4)
4U?
I =" Im Y Glive +i00G (00 wy + iva)G (0y).
B
Wy s Wk s Vin
Using the symmetry relation G*(iw) = G(—iw), we can manipulate the first formula as
202
8,7 = B > 1G(ivm +i00)Gliw)Gi 0y + 1v)G (0y) — G (ivm + i0)G (i 0)G ((wn + ivm)Giwy)]
Wn, Wi, Vi
2U? . . : : . s . : . s . .
B > (G vm + i0) GG (0 + ivy)G (i) — G(=ivy — i) G(—iw )G (o + ivy)G(iwy)]
Wy Wi, Viy (BS)
202 . ; . . . . . ; . . . ,
=g D (G ivm + i00)Giw)G (0, + iv)G (i) — Givy + i) GG ((wy — iv)Gliw,)]
Wy, W, Viy
=0,

where we have used substitutions w; — —wy and v,, — —v,, in the second term of the sums between the second and the third
lines and then the shift of the summation variable w,, — v,, — w, in the last step. Analogously, the anomalous contribution can
be simplified with help of the substitution v,, — —v,, and shift of variables w, y — w,.x + vin as follows:

202

§JP = e Z [GGvm +iw)G ()G wn + iv)G (W) — G (v + iw)GE0)G (s + iv)G )]
202 B6
N Z (GG + iw)G ([0 )GEwn + 1V,)G (wn) — G (—ivy + iw)GI )G ((w, — iv,)G(w,)] (B6)
=0,

which finalizes the required proof of the conserving nature §J? = 0 of the FDC approximation.

2. DC

As we have shown numerically in Sec. IV C, the DC approximation is charge conserving for identical gaps A; = A, = A.
This can be proven analytically by showing that both G°¢(iw,) and SP€(iw, ) are real, which is a sufficient condition for §J = 0
in Eq. (B1). By making use of the gauge invariance it is possible to introduce a global phase shift

r,-r
¢sn = arctan <ﬁ tan %), (B7)

such that ¢, = ¢, — /2, pr = ¢ + ¢/2 for which A,(iw,) is real for all frequencies. Consequently, the G (iw,) and SHF
are real too because the equality

* U 1
2ImS™ = ST — ST = —2Ims™ = " ———— B8
" B ; DFF(iw,) (8)
can be generally fulfilled only when ImS"F = 0. Assuming the contrary, i.e., the existence of the special solution
U 1
hl L B9
/3 Z DHF(iwn) ( )

Wp
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Ay iwn)
oy DU (jw,)

implies from Eq. (10) the identity 7 >

PHYSICAL REVIEW B 93, 024523 (2016)

= 0 which would in turn mean that Eq. (9b) is fulfilled for any SHF.

Correspondingly, the same must be true also for Eq. (B9) which can be easily contradicted, e.g., by taking limit S"F — oo.

Reality of GHF(iw),) then follows directly from Eq. (9¢).

The second-order contribution to the anomalous DC self-energy is also real because it reads as

2
SP(iw,) = _% > G wn + iva)x i),

Vm

(B10)

where both GHF(iw,) and the bubble contribution x " (iv,,) [see Eq. (18c)] are real. However, the first-order contribution to the
anomalous DC self-energy reads as SV = % >, G°C(iw,) where

DC _
G (iwy) = DX (an)

SV + SP(iw,) — Apliwy))

(B11)

with all SP(iw,), DPC(iw,), Ag4(iw,) being real. Therefore, using the same argument as for SHE and GHF (i w,), one can show
that S is real. Consequently, also SP¢ = S + S@ and GPC(iw,) are real, which was to be proven.

Note that this proof does not carry over to the general case A; # Ay due to the lack of existence of a global, i.e., frequency-
independent phase shift to make Ag(iw,) real for all w,’s. The DC approximation is thus not conserving for nonidentical leads
as revealed in our numerical results, although the observed current conservation breaking is very weak (see Fig. 8).
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